
Advanced cryptographic ratcheting
moxie0 on 26 Nov 2013

At Open Whisper Systems, we’ve been working on improving our
encrypted asynchronous chat protocol for TextSecure. The
TextSecure protocol was originally a derivative of OTR, with minor
changes to accommodate it for transports with constraints like SMS
or Push. Some of the recent changes we’ve made include
simplifying and improving OTR’s deniability, as well as creating a
key exchange mechanism for asynchronous transports. Our most
recent change incorporates what we believe to be substantial
improvements to OTR’s forward secrecy “ratchet.”

The OTR Ratchet

As we’ve discussed previously, “forward secrecy” is one of the
critical security properties OTR is designed to provide. In contrast
to the PGP protocol model, where messages to a recipient are
encrypted with the same public key over and over again, OTR uses
ephemeral key exchanges for each session. This is a critical feature
of any modern secure protocol, because otherwise a network
adversary who records (potentially years of) ciphertext traffic can
later decrypt all of it if they manage to later compromise the one
key that was used. By contrast, with ephemeral key exchanges,
there is no key to compromise in the future (since the keys are only
ephemerally in memory for a short time), so any recorded
ciphertext should remain private.

Simply doing an ephemeral key exchange at the beginning of a
session is enough to provide this property, but OTR takes things a
step further by continuously ratcheting the key material forward
during the course of a session. The OTR ratchet is what we call a
“three step ratchet.”

 Alice sends an encrypted message to Bob. Along with the actual
message content, Alice “advertises” a new Diffie-Hellman key
that she will use in the future.

 Bob sends an encrypted message to Alice. Along with the actual
message content, Bob “acknowledges” the key that Alice
advertised, and also advertises his own next key.

https://github.com/moxie0
https://github.com/moxie0
https://otr.cypherpunks.ca/Protocol-v3-4.0.0.html
https://otr.cypherpunks.ca/Protocol-v3-4.0.0.html
https://whispersystems.org/blog/simplifying-otr-deniability
https://whispersystems.org/blog/simplifying-otr-deniability
https://signal.org/blog/asynchronous-security
https://signal.org/blog/asynchronous-security
https://signal.org/blog/asynchronous-security
https://signal.org/blog/asynchronous-security
https://en.wikipedia.org/wiki/Forward_secrecy
https://en.wikipedia.org/wiki/Forward_secrecy
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
http://www.thoughtcrime.org/blog/lavabit-critique/
http://www.thoughtcrime.org/blog/lavabit-critique/
http://www.thoughtcrime.org/blog/lavabit-critique/
http://www.thoughtcrime.org/blog/lavabit-critique/
https://signal.org/#signal
https://signal.org/#signal

 Alice will use the advertised and acknowledged key the next
time she sends a message.

Note that, until Bob has acknowledged Alice’s next key, she can’t
use it. If Alice needs to send multiple messages to Bob before he
replies, Alice will need to keep using her current key and
advertising the same next key.

TextSecure and Forward Secrecy

Given that OTR was originally positioned for instant messaging
apps, it’s not clear why individual message-level forward secrecy is
necessary. Instant messaging sessions tend to be ephemeral, and
the messages themselves tend to be in memory for the duration of
the session, so it’s not entirely obvious what immediate value a
ratcheting forward secrecy protocol provides in that context.
Simply doing an ephemeral Diffie-Hellman key exchange at the
beginning of every session would probably be enough.

As an asynchronous messaging app, however, TextSecure benefits
greatly from such a ratcheting forward secrecy mechanism.
Asynchronous chat sessions tend to be extremely long-lived
(perhaps even years long), in contrast to IM sessions which are
constantly being setup and torn down. In the context of long-lived
sessions, however, the OTR ratcheting protocol leaves something to
be desired. Given the nature of a “three step” ratchet, if a sender
transmits something to a receiver, and the receiver doesn’t respond
for a few days, the sender has to keep the key material used to
encrypt that message around for days.

There are other simple problems as well. OTR was designed for
transports which guarantee in-order delivery, which most
asynchronous messaging transports don’t provide. There is a
counter which prevents replay attacks, but it’s complex to adapt to
an unreliable transport, and there is also a possibility that old
messages can arrive after key material has been rolled forward.

https://signal.org/#signal
https://signal.org/#signal

The SCIMP Ratchet

Silent Circle uses a synchronous protocol of their own devising
(called SCIMP that employs a different style of ratchet.

Each message key is derived as an iterative hash of the last
message key used.

 As soon as Alice sends a message to Bob, she hashes her
encryption key to get her next encryption key.

 Alice immediately destroys her encryption key and replaces it
with her next encryption key.

It’s clear that an asynchronous messaging app like TextSecure
could benefit from an immediate ratchet. Even with long running
sessions, there would never be any outstanding key material
available for compromise. However, a protocol like SCIMP has some
drawbacks as well:

 The first question is what a client should do when a message is
lost. If a client is expecting a message with sequence number
5 but instead receives a message with sequence number 6

(common for asynchronous transports), what should the client
do? It’s possible to derive the key material for sequence number
5 and then immediately derive the key material for sequence

number 6 to decrypt the message, but the client would need

to hang on to the key material for sequence number 5 until the

message arrives.

https://signal.org/#signal
https://signal.org/#signal

That key material is sensitive, however, because it can be used
to calculate the key material for every subsequent sequence
number. So a client can’t hang on to it forever, and using time-
based or window-based approaches for how long a client should
retain it are always going to be hard to tune and inevitably tuned
incorrectly for some percentage of cases.

 The OTR style ratchet has the nice property of being “self
healing.” If, for whatever reason, any individual ephemeral key is
compromised or otherwise found to be weak at any time, the
ratchet will heal itself. We call this “future secrecy.” In the SCIMP
hash iteration case, however, any individual ephemeral key
compromise or problem will extend through the entire session.

The Window Of Compromise

A ratcheting protocol is largely about reducing the impacts of a key
compromise. A hash ratchet protocol like SCIMP has excellent
forward secrecy properties but poor future secrecy properties,
while a DH ratchet protocol like OTR has less than perfect forward
secrecy properties but nice future secrecy properties:

The TextSecure Ratchet

We wanted a ratchet that combines the best of both worlds: the
optimal forward secrecy that a hash iteration ratchet like SCIMP
provides, as well as the nice future secrecy properties that a DH
ratchet like OTR provides, with as little of the negatives of both as
possible. The inimitable Trevor Perrin did most of the heavy lifting
for the primary innovations in combining the two.

First, remember that the OTR message format looks roughly like

https://github.com/trevp
https://github.com/trevp
https://signal.org/#signal
https://signal.org/#signal

this:

struct {

 opaque sender_key_id[4];

 opaque receiver_key_id[4];

 opaque next_key_id[4];

 opaque next_key[32];

 opaque ciphertext[...];

 opaque mac[10];

} OTR_Message;

All these key IDs are necessary because OTR is based on a
mechanism of “advertising” keys and receiving confirmations for
those keys in subsequent messages. By advertising a key under a
MAC from the previous key, the integrity of advertised keys can be
traced all the way back to the original shared key, ensuring that no
MITM attack is possible on any of the subsequently advertised
keys. However, that is the source of our “three step” DH ratchet
problem, and also makes for a fair amount of book keeping.

We wanted to incorporate a DH ratchet into our ratcheting protocol
because of the “future” secrecy it provides. However, it would be
nice if we could eliminate the “advertise” step in the OTR ratchet
and bring it down to a “two step” ratchet. In order to achieve a “two
step” ratchet, we derive a RootKey in our initial handshake KDF,

and both mix it into and re-derive it from every subsequent DH KDF.
This makes it possible to chain the key material together so that
Alice can create and use a new DH ephemeral key immediately
without first advertising it and waiting for acknowledgment.
Because the RootKey is mixed into the KDF, trust in new

ephemerals can still be chained back to the initial handshake.

This transforms the “three step” DH ratchet into a “two step” DH
ratchet:

 Alice generates a new ECDH ephemeral key A1 and uses it
immediately to send a message.

 Alice receives a message with Bob’s new ECDH ephemeral B1

and can then destroy A1 and generate A2 when sending her
next message.

This is a best possible case DH ratchet, and it also greatly simplifies

https://signal.org/#signal
https://signal.org/#signal

the message format, which is now simply:

struct {

 opaque sender_ephemeral[32];

 opaque body[...]

 opaque mac[10]

}

It also eliminates all the key ID book keeping.

To get the immediate forward secrecy of a SCIMP-like protocol, we
can now mix in that style of hash iteration ratchet for the space
between DH round trip clicks. Essentially, for each message sent
within the context of a single DH ratchet click, there is a sub-
ratchet in the hash iteration ratchet style.

From Alice’s perspective, the final picture looks like this:

 Alice

 Sending | Receiving

MK CK RK CK MK

-- -- -- -- --

 ECDH(A0,B0)

 |

 |

 ECDH(A1,B0) +

 /|

 / |

 / + ECDH(A1,B1)

 CK-A1-B0 |\

 | | \

MK-0 ----+ | \

 | | CK-A1-B1

MK-1 ----+ | |

 | | +---- MK-0

MK-2 ----+ | |

 | +---- MK-1

 ECDH(A2,B1) +

 /|

 / |

 / |

 CK-A2-B1 |

 | + ECDH(A2,B2)

MK-0 ----+ \

 \

 \

 CK-A2-B2

 |

 +---- MK-0

 |

 +---- MK-1

 Each DH ratchet is combined with the existing root key (RK) to
derive a new RK as well as a “chain key” for that DH pair.

 Each “chain key” is hash iterated for each message
sent/received under that chain.

 Rather than hash iterating the cipher keys used to encrypt a

https://signal.org/#signal
https://signal.org/#signal

message directly (SCIMP style), there is a layer of indirection
where message keys are derived from the chain keys. This
solves SCIMP’s “delayed message problem,” because in the case
of a delayed message its keys can be immediately derived and
cached without holding back the chain key from ratcheting
forward. Those cached message keys can not be used to derive
any subsequent message keys, maintaining forward secrecy.

The final message format is simply:

struct {

 opaque sender_ephemeral_key[32];

 opaque counter[3];

 opaque mac[10];

}

The result is a ratcheting protocol that combines the best of a DH
ratchet’s “future secrecy” properties with the optimal “forward
secrecy” properties from a hash ratchet. It also simplifies the wire
format and eliminates all the key ID book keeping. Nice properties
like cryptographically enforced message ordering and replay
protection all come for free, without any complex record keeping
required. The code is simpler, and the protocol security is more
robust.

We think this represents an improved cryptographic protocol for
asynchronous messaging systems like TextSecure. Another
asynchronous messaging system, Pond, has also incorporated it.

This is obviously a simplified protocol description, but the full
specification can be found here if you’d like to look at it critically or
in more detail.

 Moxie Marlinspike, 26 November 2013

 Tweet Facebook

Don't have Signal? Give it a try!

https://github.com/agl/pond/commit/338395668fbb8a7819c0fccf54dccaa4d7f0ae9e
https://github.com/agl/pond/commit/338395668fbb8a7819c0fccf54dccaa4d7f0ae9e
https://github.com/trevp/axolotl/wiki
https://github.com/trevp/axolotl/wiki
https://github.com/trevp/axolotl/wiki
https://github.com/trevp/axolotl/wiki
https://twitter.com/moxie
https://twitter.com/moxie
https://twitter.com/intent/tweet?text=Advanced%20cryptographic%20ratcheting&url=https://signal.org/blog/advanced-ratcheting/&via=signalapp&related=signalapp
https://twitter.com/intent/tweet?text=Advanced%20cryptographic%20ratcheting&url=https://signal.org/blog/advanced-ratcheting/&via=signalapp&related=signalapp
https://twitter.com/intent/tweet?text=Advanced%20cryptographic%20ratcheting&url=https://signal.org/blog/advanced-ratcheting/&via=signalapp&related=signalapp
https://facebook.com/sharer.php?u=https://signal.org/blog/advanced-ratcheting/
https://facebook.com/sharer.php?u=https://signal.org/blog/advanced-ratcheting/
https://facebook.com/sharer.php?u=https://signal.org/blog/advanced-ratcheting/
https://signal.org/download/
https://signal.org/download/
https://signal.org/#signal
https://signal.org/#signal

© 20132022 Signal, a 501c3 nonprofit.
Signal is a registered trademark in the United States and
other countries.

For media inquiries, contact press@signal.org

Organization

Donate
Careers
Blog
Terms & Privacy
Policy

Download

Android
iPhone & iPad
Windows
Mac
Linux

Social

GitHub
Twitter
Instagram

Help

Support Center
Community

mailto:press@signal.org
mailto:press@signal.org
https://signal.org/donate/
https://signal.org/donate/
https://signal.org/workworkwork/
https://signal.org/workworkwork/
https://signal.org/blog/
https://signal.org/blog/
https://signal.org/legal/
https://signal.org/legal/
https://signal.org/legal/
https://signal.org/legal/
https://signal.org/download/android
https://signal.org/download/android
https://signal.org/download/ios
https://signal.org/download/ios
https://signal.org/download/windows
https://signal.org/download/windows
https://signal.org/download/macos
https://signal.org/download/macos
https://signal.org/download/linux
https://signal.org/download/linux
https://github.com/signalapp
https://github.com/signalapp
https://twitter.com/signalapp
https://twitter.com/signalapp
https://www.instagram.com/signal_app/
https://www.instagram.com/signal_app/
https://support.signal.org/
https://support.signal.org/
https://community.signalusers.org/
https://community.signalusers.org/
https://signal.org/#signal
https://signal.org/#signal

