JavaScript:

JS Introduction
JS How To

JS Statements
JS Comments
JS Variables

JS Data Types
JS Objects

JS Arrays

Agenda

Agenda

JS JSON

JS Functions

JS Operators

JS Inspect Elements (Chrome, Firefox, IE)
JQuery

DEMO

Introduction

JavaScript is the world's most popular
programming language. It is the language for
HTML and the web, for

servers, PCs, laptops, tablets, smart phones, and
more.

A scripting language is a lightweight programming
language.

JavaScript is programming code that can be
inserted into HTML pages.

JavaScript inserted into HTML pages, can be
executed by all modern web browsers.

JavaScript is easy to learn.

How TO

 JavaScripts in HTML must be inserted between
<script> and </script> tags.

<script>
alert ("My First JavaScript"):;
</script>

 JavaScript can be put in the <body> and in the
<head> section of an HTML page.

<script>
document.write ("<h1>This is a heading</h1l>");
document.write ("<p>This is a paragraph</p>"):;
</script>

OUTPUT

 JavaScript is typically used to manipulate
HTML elements.

<p id="demo">My First Paragraph</p>
<script>
document.getElementById ("demo") . innerHTML="
My First JavaScript";

</script>

Statements

JavaScript is a sequence of statements to be
executed by the browser.

JavaScript statements are "commands" to the
browser.

The purpose of the statements is to tell the
browser what to do.

JavaScript code (or just JavaScript) is a sequence
of JavaScript statements.

Each statement is executed by the browser in the
sequence they are written.

Statements

* Semicolon ;

— Semicolon separates JavaScript statements.

— Normally you add a semicolon at the end of each
executable statement.

— Using semicolons also makes it possible to write
many statements on one line.

document.getElementById ("demo") . innerHTML="
Hello Dolly";

document.getElementById ("myDIV") .innerHTML=
"How are you?";

Statements

» JavaScript is Case Sensitive

— Watch your capitalization closely when you write
JavaScript statements:

» Afunction getElementByld is not the same as
getElementbyID.

* Avariable named myVariable is not the same as
MyVariable.

Statements

* Block Statement

{
statement 1;
statement 2;

statement_n;

}

* Example

while (x < 10){
> %153 o

}

Statements

* Conditional Statements
— if...else Statement
— switch Statement

if (condition)
statement 1

[else
statement 2]

switch (expression) {

case label 1:
statements 1
[break;]

case label 2:
statements_ 2
[(break;]

default:
statements def
[break;]

Statements

* LOOPS
— for Statement
— do...while Statement
— while Statement
— break Statement
— continue Statement

Statements

* Object Manipulation Statements

— for...in Statement

var obj = {make:"BMW", model:"2013"}
function dump props (obj, obj name) {

var result = "";
for (var i in obj) ({
result += obj_name + UM 4 i+ =M

+ objfi] + "
";
}

return result;

}
document .write (dump props (obj,"obj")):

Comments

Comments will not be executed by JavaScript.

Comments can be added to explain the
JavaScript, or to make the code more
readable.

Single line comments start with //.

Multi line comments start with /* and end
with */.

Comments

// Write to a heading
document.getElementById ("myH1") .innerHTML="Welcome to my

Homepage";

/*

The code below will write

to a heading and to a paragraph,

and will represent the start of

my homepage:

7

document.getElementById ("myH1") .innerHTML="Welcome to my
Homepage";

var x=5; // declare x and assign 5 to it

Variables

 JavaScript variables are "containers" for storing
information.

* As with algebra, JavaScript variables can be used
to hold values (x=5) or expressions (z=x+y).

* Variable can have short names (like x and y) or
more descriptive names (age, sum, totalvolume).
— Variable names must begin with a letter

— Variable names can also begin with $ and _ (but we
will not use it)

— Variable names are case sensitive (y and Y are
different variables)

var money;
var name;

Variables

* JavaScript Data Types

var name = "Ali";
var money;
money = 2000.50;

* Global & Local Variables

var myVar = "global"; // peclare a global variable
function checkscope() {
var myVar = "local"; // beclare a local variable
document .write (myVar) ;

}

Variables

* One Statement, Many Variables

var lastname="Ahmad", age=30,
job="carpenter";

var lastname="Mohammad",
age=30,
job="Engineer";

* Value = undefined

— In computer programs, variables are often declared
without a value. The value can be something that has to be
calculated, or something that will be provided later, like
user input. Variable declared without a value will have the
value undefined.

lvar lastname; ‘

Data Types

» String, Number, Boolean, Array, Object, Null,
Undefined.

* JavaScript has dynamic types. This means that
the same variable can be used as different
types:

var x; // Now x is undefined
53 // Now x is a Number

var x ;
”Salih"; // Now x is a String

var X

Data Types

* JavaScript Booleans
— Booleans can only have two values: true or false.

var x=true;
var y=false;

* JavaScript Arrays

var arr = new Array():;

arr{0] = “item 1";

arr[l] = ”“item 2";

var arr = new Array(”“iteml",”item2”);
var arr = [“iteml", “item2");

Data Types

 JavaScript Objects

— An object is delimited by curly braces. Inside the
braces the object's properties are defined as name
and value pairs (name : value). The properties are
separated by commas:

var person={firstname:”James",
lastname:”Bond", id:9899};

var person={
firstname : “James",
lastname : “Bond",
id : 19899

}:

Objects

 JavaScript is designed on a simple object-
based paradigm. "Everything" in JavaScript is

an Object: a String, a Number, an Array, a
Date....

* |In JavaScript, an object is data, with properties
and methods.

— Properties are values associated with objects.
— Methods are actions that objects can perform.

Objects

* Accessing Object Properties

‘objectName.propertyName

* Accessing Object Methods

objectName.methodName ()

Objects

* Objects in JavaScript, just as many other
programming languages, can be compared to
objects in real life.

var myCar = new Object():;
myCar.make = "Ford";
myCar.model = "Mustang";
myCar.year = 1969;

myCar.make
myCar [“make”]

Objects

var myCar = {make:"BMW",model:"s2013",year:"2013"}

function showProps (obj, objName) {
var result = "";
for (var i in obj) {
if (obj.hasOwnProperty(i)) {
result += objName + "." + i + " =" + obj[i] +
"\n"’.
}
}
return result;

}

alert (showProps (myCar, "myCar"))

Arrays

* The JavaScript Array global object is a constructor
for arrays, which are high-level, list-like objects.

* Arrays are list-like objects that come with a
several built-in methods to perform traversal and
mutation operations. Neither the size of a
JavaScript array nor the types of its elements are
fixed. Since an array's size can grow or shrink at
any time, JavaScript arrays are not guaranteed to
be dense.

Arrays

<!DOCTYPE html>
<html>

<head>

</head>

<body>

<script>

var years = [1950, 1960, 1970, 1980, 1990, 2000, 2010];
console.log(years[0]);
</script>

</body>

</html>

JSON

* JSON is a subset of the object literal notation
of JavaScript. Since JSON is a subset of
JavaScript, it can be used in the language

var myJSONObject = {"bindings": [

{"ircEvent": "PRIVMSG", "method":
"newURI", "regex": "“http://.*"},
{"ircEvent": "PRIVMSG", "method":

"deleteURI", "regex": "“delete.*"},
{"ircEvent": "PRIVMSG", "method":
"randomURI", "regex": "“random.*"}
]
}:

myJSONObject.bindings[0] .method // "newURI"

Functions

* Function is a "subprogram" that can be called
by code external (or internal in the case of
recursion). Like the program itself, a function
is composed of a sequence of statements
called the function body. Values can be passed
to a function, and the function can return a

value.

* Every function in JavaScript is actually a
Function object.

Functions

/* Declare the function 'myFunc' */
function myFunc(theCbject)
{
theCbject.brand = "Toyota":
}

/t
* Declare variable 'mycar’;
* create and initialize a new Object;
* assign reference to it to 'mycar’
7
var mycar = (
brand: "Honda",
model: "Accord",
year: 1998
b

/* Shows 'Honda' */
window.alert (mycar.brand);

/* Pass object reference to the function */
myFunc (mycar) ;

/o
* Shows 'Toyota' as the value of the 'brand' property
* of the object, as changed to by the function.
=

window.alert (mycar.brand);

Operators

Assignment operators
Comparison operators
Arithmetic operators
Bitwise operators
Logical operators
String operators
Special operators

Operators: Assignment

Shorthand operator Meaning

X 4= y *x x +y
x y x x Y
X %o y x X *'y
xijey x=x/y
X %y x x Y
X €<~ y x x << y
X >>= y x X >y
X >>> Y x X >>> Y
X &~ y b3 X &y
X A= y x x "y

Operators: Comparison

Operator
Equal (-)

Not equal (1+)

Strict equal (~-~)

Strict not equal (:--)

Greater than (»)

Greater than or equal {(>~)

Less than (<)

Less than or equal (<~)

Description
Returns true If the operands are equal.

Returns true if the operands are not equal.

Returns true if the operands are equal and of the same type. See also 0o ject. La.

Returns true If the operands are not equal and/or not of the same type.

Returns true if the left operand is greater than the right operand.

Returns true if the left operand is greater than or equal to the right operand.

Returns true If the left operand is less than the right operand.

Returns true If the left operand is less than or equal to the right operand.,

Examples returning true
3 == varzl
*3" == varl
3 - '3
varl I= 4
var2 "y
3 w== varl
vazl == "3*
3 o= 430
var2 > varl
" > 2

var2 > varl

varl < var2
nan < mae

vazl <= var?

Operators: Arithmetic

Operator Description Example
) Snary operator. Returms the integer remainder of dividing the two operands. 12 % 5 returns 2.
(Modulus)
. Unary operator. Adds one 1o its operand, If used as a prefix operator (+1x), returns the value of its I is 3, then «ox sets x 10 4 and returns 4
Oncrement) operand after adding one; If used as a postfix operator (s« +), returns the value of its operand before whereas =+ + returns 3 and, only then, sets
adding one. xtod,
- Unary operator. Subtracts one from its operand. The return value Is analogous to that for the I «ls 3, them —x sats « 10 2 and retuens 2,
(Decremena) Increment operator. whereas x-- retwrns 3 and, only then, sets
=to2
Unary operator, Returns the negation of its operand Wouis 3, then —x returns <3,
(Wmary

negation)

Operators: Logical

Operator uuot Description

“" wapel &6 (Logical AND) Returns sxp: 1 If it can be comverted to false; otherwise. returns exped. Thas, when used with Boolean values, 4o teturnsy
wnped true If both operands are true; otherwise, returns falee
nxpel (Logical OR) Returns expr1 IF il can be comverted 1o true; otherwise, returms wap 2, Thus, when used with Bodlean values, | | retums true
oprd i either operand i true, If both are false, retuens false

laxps (Logical NOT) Returns false If its single operand can be converted 10 true, otherwise, returns true

