Web Essentials: Clients, Servers, and Communication

PV219, spring 2023

Web Essentials

- **Client**: web browsers, used to surf the Web
- Server systems: used to supply information to these browsers
- Computer **networks**: used to support the browserserver communication

Internet vs. Web

- The Internet: a inter-connected computer networks, linked by wires, cables, wireless connections, etc.
- Web: a collection of interconnected documents and other resources.
- The world wide web (**WWW**) is accessible via the Internet, as are many other services including email, file sharing, etc.

How does the Internet Work?

- Through communication protocols
- A communication protocol is a specification of how communication between two computers will be carried out
 - IP (Internet Protocol): defines the packets that carry blocks of data from one node to another
 - TCP (Transmission Control Protocol) and UDP (User Datagram Protocol): the protocols by which one host sends data to another.
 - Other application protocols: DNS (Domain Name Service), SMTP (Simple Mail Transmission Protocol), and FTP (File Transmission Protocol)

The Internet Protocol (IP)

- A key element of IP is IP address, a 32/64-bit number
- The Internet authorities assign ranges of numbers to different organizations
- IP is responsible for moving **packet** of data from node to node
- A packet contains information such as the data to be transferred, the source and destination IP addresses, etc.
- Packets are sent through different local network through gateways
- A checksum is created to ensure the correctness of the data; corrupted packets are discarded
- IP-based communication is unreliable

	IP Heade	er	
Version	Header Length	TOS	Total Length
Identification	Flags	Frag	nent Offset
Time to Live (TTL)	Protocol	Header Checksum	
	Source Add	ress	
	Destination A	ddroce	11
	Destination A	adress	
	Options	<u> </u>	
		V	
ternet Protocol Version 4, Src:	10.100.16.200 (10.100.16.200), Dst: 10.100.185.66	(10.100.185.66)
Version: 4			
Header length: 20 bytes			
Differentiated Services Field: 0	x00 (DSCP 0x00: Default; ECN	: 0x00: Not-ECT (Not E	CN-Capable Transport))
0000 00 = Differentiated Se	rvices Codepoint: Default (Ux		(0.00)
	Notification: Not-ECT (Not EC	N-Capable Transport)	(0x00)
Iotal Length: 1420			
Identification: 0x126d (4/17)			
Flags: 0x02 (Don't Fragment)	1 2		
U = Reserved bit: Not se	t		
= Don't fragment: Set	teat		
ragment offset: 0	il set		
Time to live: 255			
Protocol: TCP (6)			
Header checksum: 0x98ad [cor	rect]		
[Good: True]			
[Bad: False]			
Source: 10.100.16.200 (10.100	.16.200)		

Transmission Control Protocol (TCP)

- TCP is a higher-level protocol that extends IP to provide additional functionality: reliable communication
- TCP adds support to detect errors or lost data and to trigger retransmission until the data is correctly and completely received
- Connection
- Acknowledgment

TCP/IP Protocol Suites

DATA	OSI MODEL	TCP MODEL
Data	Application Network Process to Application	
Data	Presentation Data Representation and Encryption	Application
Data	Session Inter host Communication	HTTP, FTP, Telnet, DNS, SMTP
Segment	Transport End to End connection and reliability	Transport TCP, UDP
Packet	Network Best path determination and IP (Logical) Addressing	Internet IP (IPv4, IPv6
Frame	Data Link MAC and LLC (Physical Addressing)	Notwork Accoss
Bits	Physical Media, Signal and Binary Transmission	Network Access

The World Wide Web

- WWW is a system of interlinked, hypertext documents that runs over the Internet
- Two types of software:
 - Client: a system that wishes to access the information provided by servers must run client software (e.g., web browser)
 - Server: an internet-connected computer that wishes to provide information to others must run server software
 - Client and server applications communicate over the Internet by following a protocol built on top of TCP/IP – HyperText Transport Protocol (HTTP)

WWW History

- 1989 Birth of WWW
 - Tim Berners-Lee & his associates at CERN
- 1990 First Web Browser

- Used within CERN

- 1991 Public offering of WWW
- 1993 Birth of Mosaic

- Graphical, multimedia browser from NCSA

- 1994 First commercial browser
 - By Netscape communications founded by Jim Clark and Marc Andreessen

Basics of the WWW

- Hypertext: a format of information which allows one to move from one part of a document to another or from one document to another through hyperlinks
- Uniform Resource Locator (URL): unique identifiers used to locate a particular resource on the network
- Markup language: defines the structure and content of hypertext documents

Web Client: Browser

Makes HTTP requests on behalf of the user

- Reformat the URL entered as a valid HTTP request
- Use DNS to convert server's host name to appropriate IP address
- Establish a TCP connection using the IP address
- Send HTTP request over the connection and wait for server's response
- Display the document contained in the response
 - If the document is not a plain-text document but instead is written in HTML, this involves rendering the document

Web Servers

Main functionalities:

- Server waits for connect requests
- When a connection request is received, the server creates a new process to handle this connection
- The new process establishes the TCP connection and waits for HTTP requests (stateless!) HTTP2 is a solution
- The new process invokes software that maps the requested URL to a resource on the server
- If the resource is a file, creates an HTTP response that contains the file in the body of the response message
- If the resource is a program, runs the program, and returns the output

Static Web: HTML/XHTML, CSS

- HTML stands for HyperText Markup Language
 - It is a text file containing small markup tags (elements) that tell the Web browser how to display the page
- XHTML stands for eXtensible HyperText Markup Language
 - It is identical to HTML 4.01
 - It is a stricter and cleaner version of HTML
- CSS stands for Cascading Style Sheets
 It defines how to display HTML elements

Client-Side Programmability

- Scripting language: a lightweight programming language
- Browser scripting: JavaScript (by Netscape in 1995)
 - Designed to add interactivity to HTML pages
 - Usually embedded into HTML pages
 - What can a JavaScript do?
 - Put dynamic text into an HTML page
 - React to events
 - Read and write HTML elements
 - Validate data before it is submitted to a server
 - Asynchronously communicate with server,
 - Create cookies
 - ...

Server-Side Programmability

- The requests cause the response to be generated
- Server scripting:
 - CGI/PerI: Common Gate Way Interface (*.pl, *.cgi)
 - PHP: Open source, strong database support (*.php)
 - ASP: Microsoft product, uses .Net framework (*.asp)
 - Java via JavaServer Pages (*.jsp)