A Process Mining Framework for Insider Attack Detection

Martin Macák

Faculty of Informatics, Masaryk University, Brno

April 6th, 2023

Outline

1. Insider domain

2. Process mining domain

3. Process mining framework for insider attack detection

Classification of insiders

- Insider
 - A person with legitimate access to an organization's resources.

malicious 😈 VS. 😊 unintentional internal 🧝 VS. 👷 external low-end 👰 VS. 😡 high-end

- Affiliate
 - Do not have any justified and legitimate reason to enter the organization.

Reasons for insider attacks

Malicious

- 1. Self-motivated get a job promotion, avenge the injustice against them, ...
- 2. Planted steal intellectual property
- 3. Recruited perform a malicious act for their benefit

The motivation can be financial, political, or personal.

Unintentional

- 1. Underminers life is easier when I don't respect security policies
- 2. Overambitious when I want to be more effective, I have to bypass security
- 3. Socially engineered I was tricked by someone
- 4. Data leakers ooopsie, I just leaked something

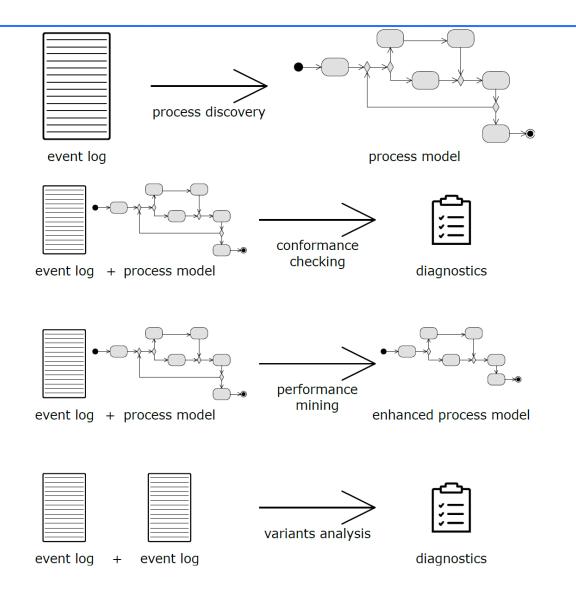
No motivation or intent to cause harm.

Defense solutions

Mitigation and prevention

Decoy-based solutions

Detection and assessment

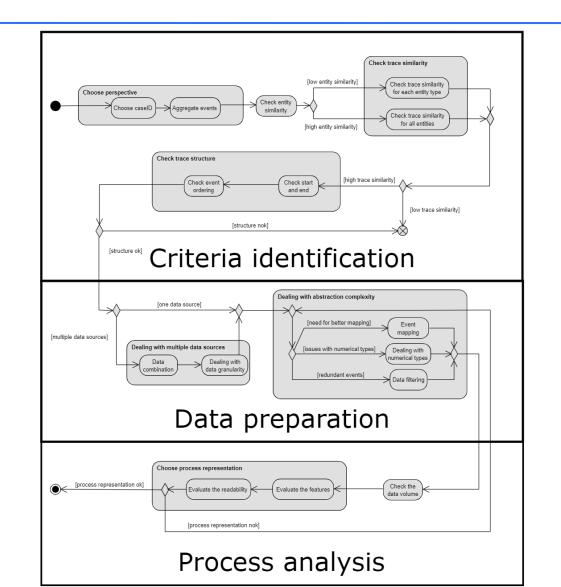


Research gaps in detection and assessment

- The insider behavior is often encoded into a mathematical model that might not be accessible or is very abstract / complex.
- The proper response to a detected case is challenging.
- It is hard to detect previously not seen insider attacks.

Process Mining

Challenges of Process Mining in insider attack detection


Criteria identification

• Data preparation

• Process analysis

Process Mining Framework for Insider Attack Detection

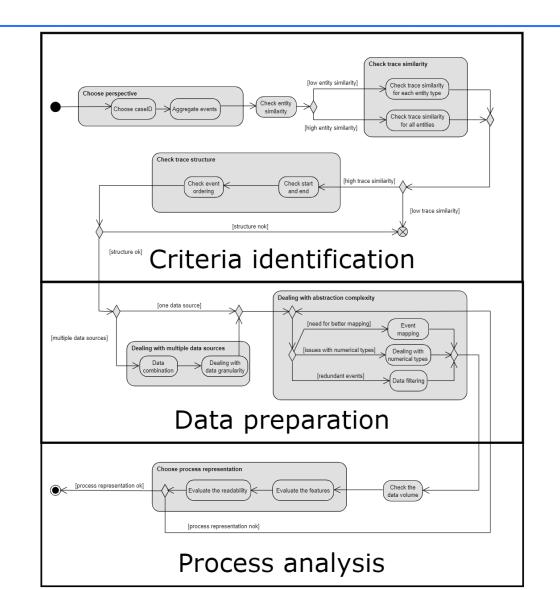
asaris

Criteria identification

- 1. Choose a process perspective
 - Personal perspective
 - Production perspective
 - Manipulation perspective
- 2. Check for similarity between entities
- 3. Check for similarity between traces
- 4. Check trace structure
 - Check start and end
 - Check event ordering

Data preparation

- 1. Deal with multiple data sources
 - Data combination
 - Data granularity
- 2. Deal with abstraction complexity
 - Data filtering
 - Deal with numerical types
 - Data mapping



Process analysis

- 1. Handle data volume
- 2. Choose a process representation
 - Evaluate the features
 - Evaluate the readability
 - Compactness, Intuitiveness, Interactive view, Storytelling, Rapid workflow

Conclusion

lasaris