
PV260 - SOFTWARE QUALITY
[Spring 2023]

PRINCIPLES OF TESTING. REQUIREMENTS & TEST CASES.
TEST PLANS & RISK ANALYSIS

Bruno Rossi

brossi@mail.muni.cz

LAB OF SOFTWARE ARCHITECTURES
AND INFORMATION SYSTEMS

FACULTY OF INFORMATICS
MASARYK UNIVERSITY, BRNO

2/81

"Discovering the unexpected is "Discovering the unexpected is
more important than confirming more important than confirming
the known." the known."

George BoxGeorge Box

3/81

● In Eclipse and Mozilla, 30–40% of all changes are fixes
(Sliverski et al., 2005)

● Fixes are 2–3 times smaller than other changes (Mockus
+Votta, 2000)

● 4% of all one-line changes introduce new errors
(Purushothaman + Perry, 2004)

A. Zeller, Why Programs Fail, Second Edition: A Guide to Systematic Debugging,
2 edition. Amsterdam ; Boston: Morgan Kaufmann, 2009.

Introduction

4/81

Static void ssl_io_filter_disable(ap_filter_t *f)

{ bio_filter_in_ctx_t *inctx = f->ctx;

 inctx->ssl = NULL;

 inctx->filter ctx->pssl = NULL;

}

Apache web server, version 2.0.48
Response to normal page request on secure (HTTPS) port

No obvious error, but Apache
leaked memory slowly (in
normal use) or quickly (if
exploited for a DOS attack)

(c) 2007 Mauro Pezzè & Michal Young

Motivational example: a Memory Leak (1/3)

5/81

Static void ssl_io_filter_disable(ap_filter_t *f)

{ bio_filter_in_ctx_t *inctx = f->ctx;

 SSL_free(inctx -> ssl);

 inctx->ssl = NULL;

 inctx->filter ctx->pssl = NULL;

}

Apache web server, version 2.0.48
Response to normal page request on secure (HTTPS) port

The missing code is for a structure
defined and created elsewhere,
accessed through an opaque pointer.

(c) 2007 Mauro Pezzè & Michal Young

Motivational example: a Memory Leak (2/3)

6/81

Static void ssl_io_filter_disable(ap_filter_t *f)

{ bio_filter_in_ctx_t *inctx = f->ctx;

 SSL_free(inctx -> ssl);

 inctx->ssl = NULL;

 inctx->filter ctx->pssl = NULL;

}

Apache web server, version 2.0.48
Response to normal page request on secure (HTTPS) port

Almost impossible to find with unit testing.
 (Inspection and some dynamic techniques
could have found it)

(c) 2007 Mauro Pezzè & Michal Young

Motivational example: a Memory Leak (3/3)

7/81

Defects are omnipresent

https://en.wikipedia.org/wiki/List_of_software_bugs

https://en.wikipedia.org/wiki/List_of_software_bugs

8/81

What is Software Testing

"Program testing can be used to show the presence of bugs, but never to show their
absence!" - Edsger W. Dijkstra

“Testing is the process of exercising or evaluating a system or
system component by manual or automated means to verify that it
satisfies specified requirements.” IEEE standards definition

Test Oracle Problem: the challenge of a mechanism to determine
if the output is correct given a set of inputs

9/81
Definitions according to IEEE Std 1044-2009 “IEEE Standard Classification for Software Anomalies“

Software Testing – Important Terms

Defect: “An imperfection or deficiency in a work product where that work
product does not meet its requirements or specifications and needs to be either
repaired or replaced.”

Error: “A human action that produces an incorrect result”

Failure: “(A) Termination of the ability of a product to perform a required
function or its inability to perform within previously specified limits. (B) An event
in which a system or system component does not perform a required function
within specified limits.
 A failure may be produced when a fault is encountered→ A failure may be produced when a fault is encountered

Fault: “A manifestation of an error in software.”

10/81

● Very often a synonymous of “defect” so that “debugging” is the
activity related to removing defects in code

However:
 → it may lead to confusion: it is not rare the case in which “bug” is

used in natural language to refer to different levels:

“this line is buggy” - “this pointer being null, is a bug” - “the
program crashed: it's a bug”

 → starting from Dijkstra, there was the search for terms that could
increase the responsibility of developers – the term “bug” might give
the impression of something that magically appears into software

What about the term “Bug”?

11/81

Hopefully you have not seen many of these...

12/81

...or some of these

13/81

Basic Principles of Software Testing

14/81

● Sensitivity: better to fail every time than sometimes
● Redundancy: making intentions explicit
● Restrictions: making the problem easier
● Partition: divide and conquer
● Visibility: making information accessible
● Feedback: applying lessons from experience in process

and techniques

(c) 2007 Mauro Pezzè & Michal Young

Basic Principles of Testing

15/81

● Consistency helps:
– a test selection criterion works better if every selected test provides the

same result, i.e., if the program fails with one of the selected tests,
it fails with all of them (reliable criteria)

– run time deadlock analysis works better if it is machine independent,
i.e., if the program deadlocks when analyzed on one machine, it
deadlocks on every machine

(c) 2007 Mauro Pezzè & Michal Young

Sensitivity: better to fail every time than sometimes

16/81

● Look at the following code fragment

char before[] = “=Before=”;
char middle[] = “Middle”;
char after [] = “=After=”;

int main(int argc, char *argv){

 strcpy(middle, “Muddled”); /* fault, may not fail */
 strncpy(middle, “Muddled”, sizeof(middle)); /* fault, may not fail */

}

What's the problem?

(c) 2007 Mauro Pezzè & Michal Young

Sensitivity: better to fail every time than sometimes

17/81

● Let's make the following adjustment
char before[] = “=Before=”;
char middle[] = “Middle”;
char after [] = “=After=”;

int main(int argc, char *argv){

 strcpy(middle, “Muddled”); /* fault, may not fail */
 strncpy(middle, “Muddled”, sizeof(middle)); /* fault, may not fail */
 stringcpy(middle, “Muddled”, sizeof(middle)); /* guaranteed to fail */

}

void stringcpy(char *target, const char *source, int size){
 assert(strlen(source) < size);
 strcpy(target, source);
}

This adds sensitivity to a
non-sensitive solution

(c) 2007 Mauro Pezzè & Michal Young

Sensitivity Example

18/81

● Let's look at the following Java code fragment. We use the ArrayList as a
sort of queue and we remove one item after printing the results

public class TestIterator {

 public static void main(String args[]) {

 List<String> myList = new ArrayList<>();

 myList.add("PV260");
 myList.add("SW");
 myList.add("Quality");

 Iterator<String> it = myList.iterator();
 while (it.hasNext()) {
 String value = it.next();
 System.out.println(value);
 myList.remove(value);
 }
 }
} Will this output

“PV260
SW
Quality” ?

Sensitivity Example

19/81

● Let's look at the following Java code fragment. We use the ArrayList as a
sort of queue and we remove one item after printing the results

public class TestIterator {

 public static void main(String args[]) {

 List<String> myList = new ArrayList<>();

 myList.add("PV260");
 myList.add("SW");
 myList.add("Quality");

 Iterator<String> it = myList.iterator();
 while (it.hasNext()) {
 String value = it.next();
 System.out.println(value);
 myList.remove(value);
 }
 }
} Actually, this throws

java.util.ConcurrentModificationException

Sensitivity Example

20/81

● From Java SE documentation:

● “[...] Some Iterator implementations (including those of all the general
purpose collection implementations provided by the JRE) may choose to
throw this exception if this behavior is detected. Iterators that do this are
known as fail-fast iterators, as they fail quickly and cleanly, rather that
risking arbitrary, non-deterministic behavior at an undetermined time in
the future.”

● “Note that fail-fast behavior cannot be guaranteed as it is, generally
speaking, impossible to make any hard guarantees in the presence of
unsynchronized concurrent modification. Fail-fast operations throw
ConcurrentModificationException on a best-effort basis. Therefore, it
would be wrong to write a program that depended on this exception for
its correctness: ConcurrentModificationException should be used only
to detect bugs.”

Sensitivity Example

21/81

• Redundant checks can increase the capabilities of catching
specific faults early or more efficiently.
– Static type checking is redundant with respect to dynamic type

checking, but it can reveal many type mismatches earlier and more
efficiently.

– Validation of requirement specifications is redundant with respect
to validation of the final software, but can reveal errors earlier and
more efficiently.

– Testing and proof of properties are redundant, but are often used
together to increase confidence

(c) 2007 Mauro Pezzè & Michal Young

Redundancy: making intentions explicit

22/81

• Adding redundancy by asserting that a condition must always be
true for the correct execution of the program

void save(File *file, const char *dest){
 assert(this.isInitialized());
 ...
}

• From a language (e.g. Java) point of view, think about declarations
of thrown exceptions from a method

 public void throwException() throws FileNotFoundException{
 throw new FileNotFoundException();
 }

Think if you could throw any exception from a method
without declaration in the method signature

Redundancy Example

23/81

• Suitable restrictions can reduce hard (unsolvable) problems to
simpler (solvable) problems
– A weaker spec may be easier to check: it is impossible (in general) to

show that pointers are used correctly, but the simple Java requirement
that pointers are initialized before use is simple to enforce.

– A stronger spec may be easier to check: it is impossible (in general) to
show that type errors do not occur at run-time in a dynamically typed
language, but statically typed languages impose stronger restrictions that
are easily checkable.

(c) 2007 Mauro Pezzè & Michal Young

Restriction: making the problem easier

24/81

● Will the following compile in Java?

 public static void questionable(){
 int k;
 for (int i=0; i<10;++i){
 if (someCondition(i)){
 k = 0;
 } else {
 k+=i;
 }
 }
 }

 int k;

 if (true == false){
 k+=i;
 }

Java ALWAYS enforces variable initialization before usage
as the following example shows – this is a case of restriction

But restrictions can be applied at different levels, e.g. at the
architectural level the decision of making the HTTP protocol
stateless hugely simplified testing (and as such made the
protocol more robust)

Restriction Example

25/81

• Hard testing and verification problems can be handled by suitably
partitioning the input space:
– both structural (white box) and functional test (black box) selection

criteria identify suitable partitions of code or specifications (partitions
drive the sampling of the input space)

– verification techniques fold the input space according to specific
characteristics, grouping homogeneous data together and determining
partitions

→ Examples of structural (white box) techniques: unit testing,
integration testing, performance testing

→ Examples of functional (black box) techniques: system testing,
acceptance testing

(c) 2007 Mauro Pezzè & Michal Young

Partition: Divide & Conquer

26/81

● Non-uniform distribution of faults
● Example: Java class “roots” applies quadratic equation

● Incomplete implementation logic: Program does not properly handle the
case in which b2 - 4ac = 0 and a = 0

 → Failing values are sparse in the input space — needles in a very big
haystack. Random sampling is unlikely to choose a=0.0 and b=0.0

These would make good input values for test cases

(c) 2007 Mauro Pezzè & Michal Young

ax2+bx+c=0

x=
−b±√b2−4 ac

2a

Partition Example

27/81

Failure (valuable test case)

No failure

Failures are sparse
in the space of
possible inputs ...

... but dense in some
parts of the space

If we systematically test some
cases from each part, we will
include the dense parts

Functional testing is one way of
drawing pink lines to isolate
regions with likely failures

Th
e

sp
ac

e
of

 p
os

si
bl

e
in

pu
t

va
lu

es
(t

he
 h

ay
st

ac
k)

(c) 2007 Mauro Pezzè & Michal Young

Partition Example

28/81

● The ability to measure progress or status against
goals

● X visibility = ability to judge how we are doing on X, e.g., schedule
visibility = “Are we ahead or behind schedule”, quality visibility =
“Does the quality meet our objectives?”

– Involves setting goals that can be assessed at each stage of
development

● The biggest challenge is early assessment, e.g., assessing
specifications and design with respect to product quality

● Related to observability
– Example: Choosing a simple / standard internal data format to

facilitate unit testing

(c) 2007 Mauro Pezzè & Michal Young

Visibility: Judging Status

29/81

● The HTTP Protocol

GET /index.html HTTP/1.1
Host: www.google.com

Why wasn't a more efficient binary format selected?

To note HTTP 2.0 will use a binary format
(from https://http2.github.io/faq):
“Binary protocols are more efficient to parse, more compact “on
the wire”, and most importantly, they are much less error-prone,
compared to textual protocols like HTTP/1.x, because they often
have a number of affordances to “help” with things like whitespace
handling, capitalization, line endings, blank links and so on.”
In fact, reduction of visibility is confirmed by
“It’s true that HTTP/2 isn’t usable through telnet, but we already
have some tool support, such as a Wireshark plugin.”

Visibility Example

30/81

• Learning from experience: Each project provides information to
improve the next project

• Examples

- Checklists are built on the basis of errors revealed in the past
- Error taxonomies can help in building better test selection criteria
- Design guidelines can avoid common pitfalls
- Using a software reliability model fitting past project data
- Looking for problematic modules based on prior knowledge

(c) 2007 Mauro Pezzè & Michal Young

Feedback: tuning the development process

31/81

Testing Levels & Techniques

32/81

Testing Design Techniques

33/81

http://softwaretestingfundamentals.com/software-testing-levels/

A level of the software testing process where individual units/components
of a software/system are tested – Validate that each unit performs as
designed

Individual units are combined and tested as a group. Aim: expose faults in
the interaction between integrated units

A complete, integrated system/software is tested. Aim: evaluate the
system’s compliance with the specified requirements

A system is tested for acceptability. Aim: evaluate the system’s
compliance with the business requirements and ready for delivery.

Testing Levels (1/2)

http://softwaretestingfundamentals.com/software-testing-levels/

34/81

http://softwaretestingfundamentals.com/software-testing-levels/

WHITE BOX TESTING

BLACK BOX / WHITE BOX TESTING

BLACK BOX TESTING

BLACK BOX TESTING

! Test Plans / Test cases are created *for each* level!

Testing Levels (2/2)

http://softwaretestingfundamentals.com/software-testing-levels/

35/81

● Unit Testing is a process in which units (e.g., classes) are
tested independently in isolation – tests must:
– be Fast
– be Simple
– not include duplication of

implementation logic
– be Readable
– be Deterministic
– be part of the build process
– use Test Doubles (e.g., mocks)
– have consistent naming conventions

Unit Testing

Img source: https://martinfowler.com/bliki/UnitTest.html

https://martinfowler.com/bliki/UnitTest.html

36/81

● Arrange: Set up the conditions for your test (e.g., create
instances and set-up variables)

● Act: run the code under test
● Assert: verify the behaviour

Unit Testing - Arrange, Act and Assert (AAA) Pattern

 # Arrange
 MyStringUtils.init();

 # Act
 result = MyStringUtils.reverse(“Anna”);

 # Assert
 assertEquals(result, "annA"),

37/81

● Test Double1: a replacement for a dependent component or
module that is used in a unit test
– Dummy objects”: items passed around but never used (e.g., to

fill parameter lists)
– Fake objects: have working implementations but not suitable for

production (e.g., an in-memory database)
– Stubs provide constrained answers to calls made during the test,

not responding to anything outside of the tests
– Spies: stubs that also record information based on how they

were called (e.g., stub email service that logs # emails sent)
– Mocks: “objects pre-programmed with expectations which form a

specification of the calls they are expected to receive”2

About Test Doubles

2. For more details see: https://martinfowler.com/articles/mocksArentStubs.html

1. Defined by Gerard Meszaros in the book "xUnit Test Patterns" (2007)

https://martinfowler.com/articles/mocksArentStubs.html

38/81

● The goal of Integration Testing is to test “whether many
separately developed modules work together as expected”
– Differently than Unit tests, integration tests use external

dependencies
– Integration Tests verify several modules at once
– Slower and more complex than Unit tests

Integration Testing

See https://martinfowler.com/bliki/IntegrationTest.html

https://martinfowler.com/bliki/IntegrationTest.html

39/81

● Tests that deal with the validation of the complete and
integrated software system. The main categories:
– Usability Testing: test the usability / UI of the system so that

they meet the requirements
– Load/Stress Testing: verify the system under heavy loads
– Performance: verify the performance of the system, if complies

to the requirements
– Functional Testing: focuses more on the requirements side:

checking for functionality that might be missing
– Security Testing: identify vulnerabilities of the system (security

should be embedded from the beginning, see Security by
Design)

System Testing

There can be more sub-categories: installation/deployment
testing, documentation testing, migration testing, etc...

40/81

Acceptance Tests ensure that a software system meets the requirements
from the customer

Example: using Fitnesse (http://fitnesse.org) to write acceptance tests so that the
customer can actually write the acceptance conditions for the software

Looking at our previous example the “root” case

That we solve by means of

ax2+bx+c=0

x=
−b±√b2−4 ac

2a

Acceptance Tests (1/2)

The customer can write what he expects from the implementation

http://fitnesse.org/

41/81

Other frameworks are available for automation of acceptance
testing, like Selenium (https://www.seleniumhq.org) for web-based
acceptance testing

Acceptance Tests (2/2)

https://www.seleniumhq.org/

42/81

● Regression Testing: verify that no changes made during the
development have caused new defects (or old defects re-
appearing)

● This is a cross-cutting concept in relation to different test
levels

Regression Testing

43/81

● Software Smoke Testing: carried out to check whether the
critical functionalities of a software application in a new unstable
build are working properly
– If the smoke test fails, the build is rejected and not deployed

● Software Sanity Testing: done to verify that a software
application in a new stable build is working as expected and to go
for further testing at other levels
– the goal is to catch issues as soon as possible

Smoke Testing / Sanity Testing

44/81

● It is about learning, design tests and executing the tests
● Might trigger failures that systematic testing misses
● This is a kind a semi-manual test

– Completely freestyle: no rules, just the judgment of the tester
– Strategy-based: use common techniques (like boundary checks)

together with the instinct of the tester
– Scenario-based: start from the requirements and try to play

those with variations

● This explains why there are video game companies paying
players to test their games – , e.g., “do the craziest things you
will think about when playing the game”

Exploratory Testing

45/81

1) Create a failing Test

2) Code it to make it pass

3) Refactor other code and
tests

Test Driven Development (TDD)

● Tests have to be:
– Fast: short time to run
– Independent: never depend on other

tests, components, db, etc...
– Repeatable: they must be deterministic
– Self-checking: a test must be able to

check its own state
– Timely: test must come first than the

implementation

46/81

Behaviour Driven Development (BDD) (1/2)

47/81

● Run tests based on scenarios according to Given, When,
Then constructs

Behaviour Driven Development (BDD) (2/2)

Scenario: When a user adds a product to the shopping cart, the product should be
included in the user's shopping cart.
Given a user
Given a shopping cart
Given a product
When the user adds the product to the shopping cart
Then the product must be included in the list of the shoppingcart's entries

 @Given("a user")
 public void aUser() {
 user = new User();
 }
 @Given("a shopping cart")
 public void aShoppingCart() {
 shoppingCart = new ShoppingCart();
 }
 @Given("a product")
 public void aProduct() {
 product = new Product("Coffee");
 }
 @When("the user adds the product to the shopping cart")
 public void userAddsProductToTheShoppingCart() {
 ShoppingCart.add(user, product);
 }
 @Then("the product must be included in the list of the shoppingcart's entries")
 public void productMustBeListed() {
 List<Product> entries = shoppingCart.getProductsByUser(user);
 Assert.assertTrue(entries.contains(product));
 }

48/81

Quality of Software Tests –
Mutation Testing

49/81

Estimating Software Test Suite Quality

● What if we could judge the effectiveness of a test suite in finding
real faults, by measuring how well it finds seeded fake faults?

● How can seeded faults be representative of real defects?

Example: I add 100 new defects to my application
– they are exactly like real defects in every way
– I make 100 copies of my program, each with one of my 100 new

defects

I run my test suite on the programs with seeded defects ...
– ... and the tests reveal 20 of the defects
– (the other 80 program copies do not fail)

 → What can I infer about my test suite?

50/81

Mutation Testing Assumptions

● Competent programmer hypothesis:
– Programs are “nearly” correct

● Real faults are small variations from the correct program
● → Mutants are reasonable models of real buggy programs

● Coupling effect hypothesis:
– Tests that find simple faults also find more complex faults

● Even if mutants are not perfect representatives of real faults, a test
suite that kills mutants is good at finding real faults too

51/81

• Create many modified copies of the original program called mutants
Each mutant with a single variation from the original program.

• Mutation Process: application of
mutation operators, such as
statement deletions, statement
modifications (e.g. != instead of ==)

How Mutation Testing works (1/3)

52/81

• All mutants are then tested by test suites to get the percentage of
mutants failing the tests

• The failure of mutants is expected!
• If mutants do not cause tests to fail,

they are considered live mutants

How Mutation Testing works (2/3)

53/81

• All mutants are then tested by test suites to get the percentage of
mutants failing the tests

• The number of live mutants can be a sign
of:

– i) tests are not sensitive enough to catch
the modified code

– ii) there are equivalent mutants

e.g. original program
 if (x==2 && y==2){
 int z = x+y;
 }

equiv mutant
if (x==2 && y==2){

 int z = x*y;

 }
M Score=

M killed

M tot−M eq

Mutation Score as indication of the tests
quality:

How Mutation Testing works (3/3)

54/81

Mutation Operators

● Syntactic change from legal program to legal program
● Specific to each programming language. C++ mutations don’t

work for Java, Java mutations don’t work for Python
● Examples:

– crp: constant for constant replacement
● for instance: from (x < 5) to (x < 12)
● select from constants found somewhere in program text

– ror: relational operator replacement
● for instance: from (x <= 5) to (x < 5)

– vie: variable initialization elimination
● change int x =5; to int x;

55/81

• Mutation testing has not yet widely adopted for a series of reasons,
mainly:

– Performance reasons
– The equivalent mutants problem
– Missing integration tools
– Benefits might not be immediately clear

M Score=
M killed

M tot−M eq

Equivalent mutants
problem: determining
syntactically different but
semantically equal mutant
is undecidable

Problems of Mutation Testing

56/81

Weak Mutation

● Problem: There are lots of mutants. Running each test case
to completion on every mutant is expensive

● Number of mutants grows with the square of program size

● Approach:
– Execute meta-mutant (with many seeded faults) together with

original program
– Mark a seeded fault as “killed” as soon as a difference in

intermediate state is found
● Without waiting for program completion
● Restart with new mutant selection after each “kill”

57/81

Statistical Mutation

● Problem: There are lots of mutants. Running each test case
on every mutant is expensive

● It’s just too expensive to create N2 mutants for a program of N lines
(even if we don’t run each test case separately to completion)

● Approach: Just create a random sample of mutants
– May be just as good for assessing a test suite

● Provided we don’t design test cases to kill particular mutants

58/81

• Selective mutation: reduce the number of active operators
selecting only the most efficient operators produce mutants not →
easy-to-kill

• Second Order Strategies: combining more than a single mutation,
putting together First Order Mutants (different sub-strategies to
combine them)

Other Optimization Approaches

59/81

Sample Demo with PiTest

http://pitest.org/

60/81

Risk-based Testing

61/81

According to ISO/IEC/IEEE 29119 Testing Standard:

1. Open the browser
2. Go to shopping cart page (pre-conditions: user is logged-in, no items are in the
shopping cart, the check-out button is not available)
3. Add item “x” exp result: i) the page is updated with the new item, ii) the →
check-out button becomes available
4. Remove item “x” exp result: i) no items are listed, ii) the check-out button →
is not available

Test Case Definition

Example:

Test Case Specification: “(A) A set of test inputs, execution conditions, and
expected results developed for a particular objective, such as to exercise a
particular program path or to verify compliance with a specific requirement.
(B) A document specifying inputs, predicted results, and a set of execution
conditions for a test item”

62/81

• Risk analysis deals with the identification of the risks (damage and
probabilities) in the software testing process and in the prioritization of
the test cases

• ISO/IEC/IEEE 29119 Testing Standard from 2022 suggests to adopt Risk-
based testing

Tests Prioritization - Risk Analysis

Understand
Context

Organize Test
Plan Development

Identify &
Estimate Risks

Identify Risk
Treatment

Approaches

Design Test
Strategy

Determine Staffing
& Scheduling

Document
Test Plan

Gain Consensus
on Test Plan

Publish
Test Plan

See http://www.softwaretestingstandard.org

http://www.softwaretestingstandard.org/

63/81

1. Define the risk items (e.g. type of failures for components)
2. Define probability of occurrence
3. Estimate impact
4. Compute Risk Values

M. Felderer, “Development of a Risk-Based Test Strategy and its Evaluation in Industry”, PV226 Lasaris Seminar, 3rd Nov 2016.

Steps for Risk Analysis (1/3)

64/81

5. Determine Risk levels

M. Felderer, “Development of a Risk-Based Test Strategy and its Evaluation in Industry”, PV226 Lasaris Seminar, 3rd Nov 2016.

Steps for Risk Analysis (2/3)

65/81

6. Definition and Refinement of Test Strategy

M. Felderer, “Development of a Risk-Based Test Strategy and its Evaluation in Industry”, PV226 Lasaris Seminar, 3rd Nov 2016.

Steps for Risk Analysis (3/3)

66/81

Functional (Black Box)
Testing

67/81

• Functional testing: Deriving test cases from program
specifications (Functional specification = description of intended program
behavior)

• Program code is not necessary
• Functional refers to the source of information used in test case

design, not to what is tested

• Also known as:
– specification-based testing (from specifications)

– black-box testing (no view of the code)

• Functional testing is best for missing logic faults
– A common problem: Some program logic was simply forgotten
– Structural (code-based) testing will not focus on code that is

not there!

(c) 2007 Mauro Pezzè & Michal Young

Specification-based / Functional Testing

68/81

Functional
Specifications

Independently
Testable
Feature

Model
Representative

Values

Test
Case

Specifications

Test
Cases

1. Decompose the specification
– If the specification is large, break it

into independently testable features
to be considered in testing

2. Select representatives
– Representative values of each input, or

Representative behaviors of a model
– Often simple input/output

transformations don’t describe a
system. We use models in program
specification, in program design, and in
test design

3. Form test specifications
– Typically: combinations of input values,

or model behaviors

4. Produce and execute actual tests

(c) 2007 Mauro Pezzè & Michal Young

Steps: from specifications to test cases

69/81

Functional
Specifications

Independently
Testable
Feature

Model
Representative

Values

Test
Case

Specifications

Test
Cases

Derive Independently Testable Features: identify
features that can be tested separately
Examples: a search functionality on a web application
or addition of new users this may map to different →
levels at the design and code level

NOTE: this helps
also in determining if
there are
requirements that
are not testable or
need to be rewritten
or clarified!

Derive Representative values OR a model that can
be used to derive test cases. Note that this phase is
mostly enumeration of values in isolation. Example:
considering empty list or a one element list as
representative cases

Generation of test case specification based on the
previous step, usually based on the Cartesian product
from the enumeration values (considering feasible
cases). Example: the search functionality,
representative values might be 0,1, many characters
and 0,1, many special characters, but the case
{0,many} is clearly impossible

Steps: from specifications to test cases

70/81

Using combinatorial testing (category partition) from the specifications.
Sample Scenario:
“We are building a catalogue of computer components in which customers can select the
different parts and assemble their PC for delivery. A model identifies a specific product
and determines a set of constraints on available components. A set of (slot, component)
pairs, corresponding to the required and optional slots of the model. A component might
be empty for optional slots”

Example one: using category partitioning

Parameter Model
– Model number
– Number of required slots for selected model (#SMRS)
– Number of optional slots for selected model (#SMOS)

Parameter Components
– Correspondence of selection with model slots
– Number of required components with selection ≠ empty
– Required component selection
– Number of optional components with selection ≠ empty
– Optional component selection

Environment element: Product database
– Number of models in database (#DBM)
– Number of components in database (#DBC)

Step 1 - derive Independently
Testable Features

(c) Mauro Pezzè & Michal Young 2003

71/81

Correspondence of selection with
model slots
Omitted slots
Extra slots
Mismatched slots
Complete correspondence

Number of required components with
non empty selection
0
< number required slots
= number required slots

Required component selection
Some defaults
All valid
≥ 1 incompatible with slots
≥ 1 incompatible with another selection

≥ 1 incompatible with model

≥ 1 not in database

Number of optional
components with non empty
selection
0
< #SMOS
= #SMOS

Optional component selection
Some defaults
All valid
≥ 1 incompatible with slots

≥ 1 incompatible with another
selection

≥ 1 incompatible with model

≥ 1 not in database

(c) 2007 Mauro Pezzè & Michal Young

Step 2: Identify relevant values: components

(c) Mauro Pezzè & Michal Young 2003

72/81

● A combination of values for each category corresponds
to a test case specification
– in the example we have 314.928 test cases
– most of the test cases represent “impossible” cases

● Example: zero slots and at least one incompatible slot

● Introduce constraints to
– rule out impossible combinations
– reduce the size of the test suite if too large

(c) 2007 Mauro Pezzè & Michal Young

Step 3: Introduce constraints

(c) Mauro Pezzè & Michal Young 2003

73/81

Model number
Malformed [error]
Not in database [error]
Valid

Correspondence of selection with model slots
Omitted slots [error]
Extra slots [error]
Mismatched slots [error]
Complete correspondence

Number of required comp. with non empty selection
0 [error]
< number of required slots [error]

Required comp. selection
≥ 1 not in database [error]

Number of models in database (#DBM)
0 [error]

Number of components in database (#DBC)
0 [error]

Error constraints
reduce test suite
from 314.928 to
2.711 test cases

(c) 2007 Mauro Pezzè & Michal Young

[Error] indicates a value class that
– corresponds to erroneous values

– need be tried only once

Step 3: error constraint

(c) Mauro Pezzè & Michal Young 2003

74/81

Number of required slots for selected model (#SMRS)
1 [property RSNE]
Many [property RSNE] [property RSMANY]

Number of optional slots for selected model (#SMOS)
1 [property OSNE]
Many [property OSNE] [property OSMANY]

Number of required comp. with non empty selection
0 [if RSNE] [error]
< number required slots [if RSNE] [error]
= number required slots [if RSMANY]

Number of optional comp. with non empty selection
< number required slots [if OSNE]
= number required slots [if OSMANY]

from 2.711 to 908
test cases

(c) 2007 Mauro Pezzè & Michal Young

constraint [property] [if-property]
rule out invalid combinations
of values

[property] groups values of a single
parameter to identify subsets
of values with common
properties

[if-property] bounds the choices of
values for a category that can
be combined with a particular
value selected for a different
category

Step 3: property constraints

(c) Mauro Pezzè & Michal Young 2003

75/81

from 908 to 69
test cases

Number of required slots for selected model (#SMRS)
0 [single]

1 [property RSNE] [single]

Number of optional slots for selected model (#SMOS)
0 [single]

1 [single] [property OSNE]

Required component selection
Some default [single]

Optional component selection
Some default [single]

Number of models in database (#DBM)
1 [single]

Number of components in database (#DBC)
1 [single]

(c) 2007 Mauro Pezzè & Michal Young

 [single] indicates a value
class that test designers
choose to test only once
to reduce the number of
test cases

Step 3: single constraints

(c) Mauro Pezzè & Michal Young 2003

76/81

Parameter Model
● Model number

– Malformed [error]
– Not in database [error]
– Valid

● Number of required slots for selected model
(#SMRS)

– 0 [single]
– 1 [property RSNE] [single]
– Many [property RSNE] [property RSMANY]

● Number of optional slots for selected model
(#SMOS)

– 0 [single]
– 1 [property OSNE] [single]
– Many [property OSNE] [property OSMANY]

Environment Product data base
● Number of models in database (#DBM)

– 0 [error]
– 1 [single]
– Many

● Number of components in database (#DBC)
– 0 [error]
– 1 [single]
– Many

Parameter Component
● Correspondence of selection with model slots

– Omitted slots [error]
– Extra slots [error]
– Mismatched slots [error]
– Complete correspondence

● # of required components (selection empty)
– 0 [if RSNE] [error]
– < number required slots [if RSNE] [error]
– = number required slots [if RSMANY]

● Required component selection
– Some defaults [single]
– All valid

≥ 1 incompatible with slots
≥ 1 incompatible with another selection
≥ 1 incompatible with model
≥ 1 not in database [error]

● # of optional components (selection empty)
– 0
– < #SMOS [if OSNE]
– = #SMOS [if OSMANY]

● Optional component selection
– Some defaults [single]
– All valid

 ≥ 1 incompatible with slots
 ≥ 1 incompatible with another selection
 ≥ 1 incompatible with model
 ≥ 1 not in database [error]

(c) 2007 Mauro Pezzè & Michal Young

Example - Summary

77/81

Maintenance: The Maintenance function records the history of items undergoing
maintenance.

• If the product is covered by warranty or maintenance contract, maintenance can be
requested either by calling the maintenance toll free number, or through the web site, or
by bringing the item to a designated maintenance station.

• If the maintenance is requested by phone or web site and the customer is a US or EU
resident, the item is picked up at the customer site, otherwise, the customer shall ship the
item with an express courier.

• If the maintenance contract number provided by the customer is not valid, the item follows
the procedure for items not covered by warranty.

• If the product is not covered by warranty or maintenance contract, maintenance can be
requested only by bringing the item to a maintenance station. The maintenance station
informs the customer of the estimated costs for repair. Maintenance starts only when the
customer accepts the estimate.

• If the customer does not accept the estimate, the product is returned to the customer.
• Small problems can be repaired directly at the maintenance station. If the maintenance

station cannot solve the problem, the product is sent to the maintenance regional
headquarters (if in US or EU) or to the maintenance main headquarters (otherwise).

• If the maintenance regional headquarters cannot solve the problem, the product is sent to
the maintenance main headquarters.

• Maintenance is suspended if some components are not available.
• Once repaired, the product is returned to the customer.

Multiple choices in the first
step ...

... determine the possibilities
for the next step ...

... and so on ...

From an informal specification:

(c) 2007 Mauro Pezzè & Michal Young

Example Two – Deriving a Model

78/81

To a finite state machine:

(c) 2007 Mauro Pezzè & Michal Young

Example Two – Deriving a Model

79/81

To a test suite:

(c) 2007 Mauro Pezzè & Michal Young

Example Two – Deriving a Model

80/81

Using transition coverage:

Using transition
coverage: Every
transition between
states should be
traversed
by at least one test
case

(c) 2007 Mauro Pezzè & Michal Young

Does history matter? That
is the order in which we
traverse a node influences
the functionality? (e.g. see
wait for completion)

Example Two – Deriving a Model

81/81

Most of the source code examples, class diagrams, etc... from [2] if not differently
stated

[1] A. Zeller, Why Programs Fail, Second Edition: A Guide to Systematic Debugging, 2
edition. Amsterdam ; Boston: Morgan Kaufmann, 2009.

[2] M. Pezzè and M. Young, Software Testing And Analysis: Process, Principles And
Techniques. Hoboken, N.J.: John Wiley & Sons Inc, 2007.

[3] Michel Felderer, “Development of a Risk-Based Test Strategy and its Evaluation in
Industry”, PV226 Lasaris Seminar, 3rd Nov 2016.

[4] ISO/IEC/IEEE 29119 Software Testing Standard,
http://www.softwaretestingstandard.org
https://www.iso.org/standard/45142.html

Acceptance Testing example using Fitnesse (www.fitnesse.org)

Mutation Testing example using PiTest (www.pitest.org)

References

http://www.softwaretestingstandard.org/
https://www.iso.org/standard/45142.html
http://www.fitnesse.org/
http://www.pitest.org/

	Lecture 10: ESB and middleware
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Sensitivity: better to fail every time than sometimes
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Redundancy: making intentions explicit
	Slide 22
	Restriction: making the problem easier
	Slide 24
	Partition: divide and conquer
	Slide 26
	Slide 27
	Visibility: Judging status
	Slide 29
	Feedback: tuning the development process
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Step 2: Identify relevant values: Component
	Step 3: Introduce constraints
	Example - Step 3: error constraint
	Example - Step 3: property constraints
	Example - Step 3: single constraints
	Check configuration – Summary
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81

