
STATIC CODE ANALYSIS
and

MANUAL CODE REVIEW
Jakub Papcun

Jan Svoboda

HELLO!

Jakub Papcun

• FI MUNI graduate

• SW Developer since 2011

• DevOps since 2018

Jan Svoboda

• FI MUNI graduate

• SW Developer since 2011

How Developers See Quality

CODE QUALITY

Code
Quality

Bug Free

Secure

Readable

Documented

THERE IS NO
PERFECT CODE

WHAT IS STATIC CODE ANALYSIS

Analysis of computer software
performed without executing the

software.

ADVANTAGES

▪ No program execution

▪ Automated process

▪ Possibility to run as part of Continuous
Integration

TYPES OF STATIC CODE
ANALYSIS

• checks correct assignment of types of objectsType Checking

• checks style of the code and its formattingStyle Checking

• helps user make sense of large codebase and may
include refactoring capabilities

Program
Understanding

• uses dataflow analysis for detection of possible code
injectionSecurity review

• looks for places in the code where program may behave
in a different way from the way intended by developerBug Finding

WHY USE STATIC CODE
ANALYSIS

Higher Code Quality

Readability No Input

Cheaper defect fixing

Education
Coding

Guidelines
Compliance

Repeatability

DRAWBACKS

Only
STATIC
analysis

False
sense

of
security

Possible
overhead

PITFALLS OF STATIC CODE
ANALYSIS

Is a problem Is NOT a problem

Was found True Positive False Positive

Was NOT found False Negative

HELLO WORLD

LEARN ABOUT YOURSELF

LEARN ABOUT YOUR CODE

▪ Lines of Code (LOC)
▪ Comments Quality
▪ Code Duplication
▪ Technical Debt
▪ Cyclomatic Complexity
▪ Cognitive Complexity
▪ Dependency Cycle Detection

RULES

A checker defining possible
issues in the code

Unused local variable
Memory leaks
SQL injection

Call of function on null

TYPES – Bug

▪ Reliability issues
▪ May crash at runtime
▪ May cause extremely unpredictable

behavior

▪ Null pointer dereference
▪ Memory leaks
▪ Buffer overflow

TYPES – Bug

TYPES – Vulnerability

▪ Security issues
▪ Crash or corrupt the system
▪ Open space for attack

▪ Harcoding credentials
▪ Data/SQL Injection
▪ Not securing “cookies”

TYPES – Vulnerability

TYPES – Code Smell

▪ Maintainability issues
▪ Decrease readibility, architecture quality etc.

▪ Unused private method
▪ Switch statement that do not end with

“default” clause
▪ Classes with too many fields

TYPES – Code Smell

TYPES – Code Smell

EXCERSISE

Can return null

A NullPointerException is thrown in case of an attempt to dereference a null value.

EXCERSISE

Statement always false

1. Statement is always false and never enters the block

s is always null

2. s variable is always null and NullPointerException may be thrown

EXCERSISE

& or &&

Questionable use of bit operation ‘&’ in expression. Did you mean ‘&&’?

EXCERSISE

j is never used

1. j variable is never used and thus redundant

k not initialized

2. k variable is never initialized and thus unusable

EXCERSISE

REST may fail and return null

may return null

HOW DO I EVEN START?

IT ALL BEGINS WITH
THE FIRST LINE

STOP WITH
REGRESSION

PERFECTION IS IMPOSSIBLE

DO IT “ON-THE-FLY”

THANKS!

Any questions?

MANUAL CODE REVIEW

Systematic examination of the
source code

WHY?

Early Defect Detection

MCR IN DEVELOPMENT CYCLE

Software
Dev.
Cycle

Architecture

Design

ImplementationTesting

Deployment

Implementation

COST OF DEFECT FIX

COST OF DEFECT FIX

ADVANTAGES

▪ Different point of view

▪ Product evolution awareness

▪ Education

WHAT MAKES GOOD CODE
REVIEW?

▪ Goal

▪ People

▪ Technical knowledge

TYPES OF MCR

▪ Formal

▪ Informal

▪ Tool-assisted

FORMAL CODE REVIEW

▪ Typically, face-to-face meeting
▪ Roles (moderator, observer, reviewer)
▪ Participants go through the source code to

fulfill goal of review

• Well documented

• Process orientedPros

• Time consuming

• Effort required does not correspond to value gained

• Human Factor
Cons

INFORMAL CODE REVIEW

▪ Typically, two developers (author and
reviewer) conducting ad-hoc review

▪ Over-the-shoulder review
▪ Extreme programming

• Simple

• Most effective type of MCRPros

• Not documented

• Not process oriented

• Consumes time of two developers
Cons

TOOL-ASSISTED CODE
REVIEW

▪ A tool is used for the review
▪ Designed to mitigate drawbacks of other

approaches

• Documented

• Enforcing process

• Time efficient

• Reviewer has all the time required

Pros

• Cost of the tool

• It is easier for reviewer to cheatCons

CODE REVIEW TOOL
FEATURES

Automated File
Gathering

Combined
Display

Automated
Metrics

Collection

Process
Enforcement

GIT WORKFLOW

DEMO

Make Code review natural part of development
process

RELATION TO STATIC CODE
ANALYSIS?

Run
SCA

Review
Code

Fix
Code

HUMAN FACTOR
The only factor that ruins manual code review

LET’S SUM UP!

Effective Code Review

Do it

Don‘t be
affraid to

have
face-to-

face

Be
honest

Use
proper

and
polite

language

Never be
personal

THANKS!

Any questions?

