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Abstract

HiC-Pro is an optimized and flexible pipeline for processing Hi-C data from raw reads to normalized contact maps. HiC-Pro
maps reads, detects valid ligation products, performs quality controls and generates intra- and inter-chromosomal
contact maps. It includes a fast implementation of the iterative correction method and is based on a memory-efficient
data format for Hi-C contact maps. In addition, HiC-Pro can use phased genotype data to build allele-specific contact
maps. We applied HiC-Pro to different Hi-C datasets, demonstrating its ability to easily process large data in a
reasonable time. Source code and documentation are available at http://github.com/nservant/HiC-Pro.
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Introduction
High-throughput chromosome conformation capture
methods are now widely used to map chromatin interac-
tions within regions of interest and across the genome.
The use of Hi-C has notably changed our vision of gen-
ome organization and its impact on chromatin and gene
regulation [1, 2]. The Hi-C technique involves sequen-
cing pairs of interacting DNA fragments, where each
mate is associated with one interacting locus. Briefly,
cells are crossed-linked, DNA is fragmented using a re-
striction enzyme [3] or a nuclease [4], and interacting
fragments are ligated together. After paired-end sequen-
cing, each pair of reads can be associated to one DNA
interaction.
In recent years, the Hi-C technique has demonstrated

that the genome is partitioned into domains of different
scale and compaction level. The first Hi-C application has
described that the genome is partitioned into distinct
compartments of open and closed chromatin [3]. Higher
throughput and resolution have then suggested the pres-
ence of megabase-long and evolutionarily conserved
smaller domains. These topologically associating domains
are characterized by a high frequency of intra-domain chro-
matin interactions but infrequent inter-domain chromatin

interactions [5, 6]. More recently, very large data sets with
deeper sequencing have been used to increase the Hi-C
resolution in order to detect loops across the entire
genome [7, 8].
As with any genome-wide sequencing data, Hi-C usu-

ally requires several millions to billions of paired-end se-
quencing reads, depending on genome size and on the
desired resolution. Managing these data thus requires
optimized bioinformatics workflows able to extract the
contact frequencies in reasonable computational time
and with reasonable resource and storage requirements.
The overall strategy to process Hi-C data is converging
among recent studies [9], but there remains a lack of
stable, flexible and efficient bioinformatics workflows to
process such data. Solutions such as the HOMER [10],
HICUP [11], HiC-inspector [12], HiCdat [13] and HiC-
box [14] pipelines are already available for Hi-C data
processing. HOMER offers several functions to analyze
Hi-C data but does not perform the mapping of reads
nor the correction of systematic biases. HiCdat, HiC-
inspector and HiCbox do not allow chimeric reads to be
rescued during the mapping of reads. HICUP provides a
complete pipeline until the detection of valid interaction
products. Using HICUP together with the SNPsplit pro-
gram [15] allows the extraction of allele-specific inter-
action products whereas all other solutions do not allow
allele-specific analysis. The HiCdat and HiCbox packages
offer a means of correcting contact maps for systematic
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biases. Finally, none of these software were designed to
process very large amounts of data in a parallel mode. The
hiclib package is currently the most commonly used solu-
tion for Hi-C data processing. However, hiclib is a Python
library that requires programming skills, such as know-
ledge of Python and advanced Linux command line, and
cannot be used in a single command-line manner. In
addition, parallelization is not straightforward and it has
limitations with regard to the analysis and normalization
of very high-resolution data (Table 1).
Here, we present HiC-Pro, an easy-to-use and complete

pipeline to process Hi-C data from raw sequencing reads
to normalized contact maps. HiC-Pro allows the process-
ing of data from Hi-C protocols based on restriction en-
zyme or nuclease digestion such as DNase Hi-C [4] or
Micro-C [16]. When phased genotypes are available, HiC-
Pro is able to distinguish allele-specific interactions and to
build both maternal and paternal contact maps. It is opti-
mized and offers a parallel mode for very high-resolution
data as well as a fast implementation of the iterative cor-
rection method [17].

Results
HiC-Pro results and performance
We processed Hi-C data from two public datasets:
IMR90 human cell lines from Dixon et al. [6] (IMR90)
and from Rao et al. [7] (IMR90_CCL186). The latter is
currently one of the biggest datasets available, used to
generate up to 5-kb contact maps. For each dataset, we
ran HiC-Pro and generated normalized contact maps at
20 kb, 40 kb, 150 kb, 500 kb and 1 Mb resolution. Nor-
malized contact maps at 5 kb were only generated for
the IMR90_CCL186 dataset. The datasets were either
used in their original form or split into chunks contain-
ing 10 or 20 million read pairs.
Using HiC-Pro, the processing of the Dixon’s dataset

(397.2 million read pairs split into 84 read chunks) was
completed in 2 hours using 168 CPUs (Table 2). Each

chunk was mapped on the human genome using four
CPUs (two for each mate) and 7 GB of RAM Processing
the 84 chunks in parallel allows extraction of the list of
valid interactions in less than 30 minutes. All chunks
were then merged to generate and normalize the
genome-wide contact map.
In order to compare our results with the hiclib library,

we ran HiC-Pro on the same dataset, and without initial
read splitting, using eight CPUs. HiC-Pro performed the
complete analysis in less than 15 hours compared with
28 hours for the hiclib pipeline. The main difference in
speed is explained by our two-step mapping strategy
compared with the iterative mapping strategy of hiclib,
which aligned the 35 base pair (bp) reads in four steps.
Optimization of the binning process and implementation
of the normalization algorithm led to a three-fold de-
crease in time to generate and normalize the genome-
wide contact map.
The IMR90 sample from the Rao dataset (1.5 billion

read pairs split into 160 read chunks) was processed in
parallel using 320 CPUs to generate up to 5-kb contact
maps in 12 hours, demonstrating the ability of HiC-Pro
to analyze very large amounts of data in a reasonable
time. At a 5-kb resolution, we observe the presence of
chromatin loops as described by Rao et al. [7] (Figure S1
in Additional file 1). The merged list of valid interactions
was generated in less than 7.5 hours. Normalization of
the genome-wide contact map at 1 Mb, 500 kb, 150 kb,
40 kb, 20 kb and 5 kb was performed in less than
4 hours. Details about the results and the implementa-
tion of the different solutions are available in Additional
file 1.
Finally, we compared the Hi-C processing results of

hiclib and HiC-Pro on the IMR90 dataset. Although the
processing and filtering steps of the two pipelines are not
exactly the same, we observed a good concordance in the
results (Fig. 1). Using default parameters, HiC-Pro is less
stringent than hiclib and used more valid interactions to

Table 1 Comparing solutions for Hi-C data processing

Mapping Detection of valid interactions Binning Correction of systematic noise Parallel implementation Allele-specific analysis

HOMER x x

HICUP x x x

HiC-inspector xa x x

HiC-Box xa x x x

HiCdat xa x x x

Hiclib x x x x

HiC-Pro x x x x x x

HOMER [10] offers several programs to analysis Hi-C data from aligned reads. aHiC-inpector [12], HiCdat [13] and HiC-Box [14] do not allow chimeric reads to be
rescued during the mapping. HICUP [11] provides a complete pipeline until the detection of valid interaction products. It can be used together with the SNPsplit
software [15] to extract allele-specific mapped reads. The hiclib Python library [17] can be applied for all analysis steps but requires good programming skills and
cannot be used in a single command-line manner. None of these software enable very large amounts of data to be processed easily in a parallel mode. Note that
HOMER, hiclib and HiCdat also offer additional functions for downstream analysis. In the case of HiC-Pro, the downstream analysis is supported by the HiTC
BioConductor package [28]
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build the contact maps. The two sets of normalized con-
tact maps generated at different resolutions are highly
similar (Fig. 1c). We further explored the similarity
between the maps generated by the two pipelines by
computing the Spearman correlation of the normalized
intra-chromosomal maps. The average correlation coeffi-
cient across all chromosomes at different resolutions was
0.83 (0.65–0.95). Finally, since the inter-chromosomal data
are usually very sparse, we summarized the inter-
chromosomal signal using two one-dimensional coverage
vectors of rows and columns [18, 19]. The average Spear-
man correlation coefficient of all coverage vectors between
hiclib and HiC-Pro inter-chromosomal contact maps was
0.75 (0.46–0.98).

Implementation of the iterative correction algorithm
We provide an implementation of the iterative correc-
tion procedure which emphasizes ease of use, perform-
ance, memory-efficiency and maintainability. We obtain
higher or similar performance on a single core compared
with the original ICE implementation from the hiclib li-
brary (Table 2) and from the HiCorrector package [20]
(Table 3).
The HiCorrector package provides a parallel version of

the iterative correction for dense matrices. We therefore
compared the performance of HiCorrector with the
HiC-Pro normalization at different Hi-C resolutions
(Table 3). All algorithms were terminated after 20 itera-
tions for the purpose of performance comparison, as
each iteration requires nearly the same running time.
Choosing dense or sparse matrix-based implementation
is dependent on the Hi-C data resolution and on the
depth of coverage. Although our implementation can be
run in either sparse or dense mode, the available data

published at resolutions of 5–40 kb are currently charac-
terized by a high degree of sparsity. At each level of Hi-
C contact map resolution, we compared our dense or
sparse implementation with the parallel and/or sequen-
tial version of HiCorrector. Our results demonstrate that
using a compressed sparse row matrix structure is more
efficient on high resolution contact maps (<40 kb) than
using parallel computing on dense matrices. As expected
for low resolution contact maps (1 Mb, 500 kb), using a
dense matrix implementation is more efficient in time,
although the gain, in practice, remains negligible.
The code for the normalization is available as a standa-

lone package (https://github.com/hiclib/iced) as well as
being included in HiC-Pro. Our implementation based on
sparse row matrices is able to normalize a 20-kb human
genome map in less than 30 minutes with 5 GB of RAM
(Table 3). Genome-wide normalization at 5 kb can be
achieved in less than 2.5 hours with 24 GB of RAM. Thus,
compared to existing solutions, our implementation sub-
stantially speeds up and facilitates the normalization of
Hi-C data prior to downstream analysis.

Allele-specific contact maps
We used HiC-Pro to generate allele-specific contact
maps for the human GM12878 cell line. Differences in
paternal and maternal X chromosome organization were
recently described, with the presence of mega-domains
on the inactive X chromosome, which are not seen in
the active X chromosome [7, 21, 22]. We used HiC-Pro
to generate the maternal and paternal chromosome X
contact maps of the GM12878 cell line using the Hi-C
dataset published by Selvaraj et al. [23]. Phasing data
were gathered from the Illumina Platinum Genomes
Project [24]. Only good quality heterozygous phased

Table 2 HiC-Pro performance and comparison with hiclib

Dataset IMR90 IMR90 IMR90 IMR90_CCL186

Number of reads 397,200,000 397,200,000 397,200,000 1,535,222,082

Pipeline hiclib HiC-Pro HiC-Pro parallel HiC-Pro parallel

Number of input files 10 10 84 160

Number of jobs 1 1 42 80

Number of CPUs per job 8 8 4 4

Maximum memory 10 7 7 24

Wall time 28:24 14:32 02:15 11:49

Mapping 22:03 10:31 00:21 05:56

Filtering 00:30 03:10 00:05 00:36

Merge 00:20 00:18 00:50

Contacts maps 01:45 00:15 00:15 00:42

Normalization 04:06 01:16 01:16 03:49

HiC-Pro was run on the IMR90 Hi-C dataset from Dixon et al. and Rao et al. in order to generate contact maps at resolutions of 20 kb, 40 kb, 150 kb, 500 kb and
1 Mb. Contact maps at 5 kb were also generated for the IMR90_CCL186 dataset. The CPU time for each step of the pipeline is reported and compared with the
hiclib Python library. The reported results include time of writing contact maps in text format. Times are minutes:seconds
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Fig. 1 (See legend on next page.)
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single-nucleotide polymorphisms (SNPs) were selected.
The final list contained 2,239,492 SNPs. We then
masked the human genome hg19 by replacing the SNP
position by an ‘N’ using the BEDTools utilities [25] and
generated the new bowtie2 indexes. In practice, the
allele-specific analysis can be easily performed by simply
specifying to HiC-Pro the list of SNPs and the N-
masked indexes for read alignment through the config-
uration file.
Among the initial 826 million read pairs, 61 % were

classified as valid interactions by HiC-Pro. Around 6 %
of valid interactions were then assigned to either the pa-
ternal or maternal genome and used to construct the
haploid maps. As expected, the inactive X chromosome
map is partitioned into two mega-domains (Fig. 2). The
boundary between the two mega-domains lies near the
DXZ4 micro-satellite.

Materials and methods
HiC-Pro workflow
HiC-Pro is organized into four distinct modules following
the main steps of Hi-C data analysis: (i) read alignment,
(ii) detection and filtering of valid interaction products,
(iii) binning and (iv) contact map normalization (Fig. 3).

Mapping
Read pairs are first independently aligned on the refer-
ence genome to avoid any constraint on the proximity
between the two reads. Most read pairs are expected to
be uniquely aligned on the reference genome. A few per-
cent, however, are likely to be chimeric reads, meaning
that at least one read spans the ligation junction and
therefore both interacting loci. As an alternative to the
iterative mapping strategy proposed by Imakaev et al.
[17], we propose a two-step approach to rescue and
align those reads (Fig. 4a). Reads are first aligned on the

reference genome using the bowtie2 end-to-end algo-
rithm [26]. At this point, unmapped reads are mainly
composed of chimeric fragments spanning the ligation
junction. According to the Hi-C protocol and the fill-in
strategy, HiC-Pro is then able to detect the ligation site
using an exact matching procedure and to align back on
the genome the 5′ fraction of the read. Both mapping
steps are then merged in a single alignment file. Low
mapping quality reads, multiple hits and singletons can
be discarded.

Detection of valid interactions
Each aligned read can be assigned to one restriction
fragment according to the reference genome and the se-
lected restriction enzyme. Both reads are expected to
map near a restriction site, and with a distance within
the range of molecule size distribution after shearing.
Fragments with a size outside the expected range can be
discarded if specified but are usually the result of ran-
dom breaks or star activity of the enzyme, and can
therefore be included in downstream analysis [17]. Read
pairs from invalid ligation products, such as dangling
end and self-circle ligation, are discarded (Fig. 4b). Only
valid pairs involving two different restriction fragments
are used to build the contact maps. Duplicated valid
pairs due to PCR artifacts can also be filtered out. Each
read is finally tagged in a BAM file according to its map-
ping and fragment properties (Figure S2 in Additional
file 1). In the context of Hi-C methods which are not
based on restriction enzyme digestion, no filtering of re-
striction fragments is applied. The uniquely mapped
read pairs are directly used to build the contact maps.
However, one way to filter out artifacts such as self-
ligation is to discard intra-chromosomal pairs below a
given distance threshold [4]. HiC-Pro therefore allows
these short range contacts to be filtered out.

(See figure on previous page.)
Fig. 1 Comparison of HiC-Pro and hiclib processing. a Both pipelines generate concordant results across processing steps. The fraction of uniquely
aligned read pairs is calculated on the total number of initial reads. Self-circle and dangling-end fractions are calculated on the total number of aligned
read pairs. Intra- and inter-chromosomal contacts are calculated as a fraction of filtered valid interactions. b Boxplots of the Spearman correlation
coefficients of intra- and inter-chromosomal maps generated at different resolutions by both pipelines. c Chromosome 6 contact maps generated by
hiclib (top) and HiC-Pro (bottom) at different resolutions. The chromatin interaction data generated by the two pipelines are highly similar

Table 3 Performance of iterative correction on IMR90 data

HiC-Pro – Iced (dense – 1 CPU) HiC-Pro – Iced (sparse – 1 CPU) HiCorrector – MES (dense – 1 CPU) HiCorrector – MEP (dense – 8 CPUs)

IMR90 1Mbp 00:00:12 00:00:25 00:00:25 00:00:06

IMR90 500 kbp 00:00:40 00:01:30 00:02:15 00:00:22

IMR90 150 kbp - 00:04:28 00:13:21 00:03:10

IMR90 40 kbp - 00:07:19 02:35:34 00:35:43

IMR90 2 0kbp - 00:08:36 12:57:17 02:34:05

HiC-Pro is based on a fast implementation of the iterative correction algorithm. We therefore compare our method with the MES (Memory-Efficient Sequential)
and MEP (Memory-Efficient Parallel) algorithms of the HiCorrector software [20] for Hi-C data normalization (hours:minutes:seconds). All algorithms were termi-
nated after 20 iterations (see Additional file 1 for details)
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Binning
In order to generate the contact maps, the genome is di-
vided into bins of equal size, and the number of contacts
observed between each pair of bins is reported. A single
genome-wide interaction map containing both raw intra-
and inter-chromosomal maps is generated for a set of
resolutions defined by the user in the configuration file.

Normalization
In theory, the raw contact counts are expected to be
proportional to the true contact frequency between two
loci. As for any sequencing experiment, however, it is
known that Hi-C data contain different biases mainly
due to GC content, mappability and effective fragment
length [18, 19]. An appropriate normalization method is
therefore mandatory to correct for these biases. Over
the last few years, several methods have been proposed
using either an explicit-factor model for bias correction
[19] or implicit matrix balancing algorithm [17, 27].
Among the matrix balancing algorithm, the iterative cor-
rection of biases based on the Sinkhorn-Knopp algo-
rithm has been widely used by recent studies due to its

conceptual simplicity, parameter-free nature and ability
to correct for unknown biases, although its assumption
of equal visibility across all loci may require further ex-
ploration. In theory, a genome-wide interaction matrix is
of size O(N2), where N is the number of genomic bins.
Therefore, applying a balancing algorithm on such a
matrix can be difficult in practice, as it requires a signifi-
cant amount of memory and computational time. The
degree of sparsity of the Hi-C data is dependent on the
bin size and on the sequencing depth of coverage. Even
for extremely large sequencing coverage, the interaction
frequency between intra-chromosomal loci is expected
to decrease as the genomic distance between them in-
creases. High-resolution data are therefore usually asso-
ciated with a high level of sparsity. Exploiting matrix
sparsity in the implementation can improve the per-
formance of the balancing algorithm for high-resolution
data. HiC-Pro proposes a fast sparse-based implementa-
tion of the iterative correction method [17], allowing
normalization of genome-wide high-resolution contact
matrices in a short time and with reasonable memory
requirements.

A

B

Fig. 2 Allele-specific analysis. a Allele-specific analysis of the GM12878 cell line. Phasing data were gathered from the Illumina Platinum Genomes
Project. In total, 2,239,492 high quality SNPs from GM12878 data were used to distinguish both alleles. Around 6 % of the read pairs were
assigned to each parental allele and used to build the allele-specific contact maps. b Intra-chromosomal contact maps of inactive and active X
chromosome of the GM12878 cell line at 500-kb resolution. The inactive copy of chromosome X is partitioned into two mega-domains which are
not seen in the active X chromosome. The boundary between the two mega-domains lies near the DXZ4 micro-satellite
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Quality controls
To assess the quality of a Hi-C experiment, HiC-Pro
performs a variety of quality controls at different steps
of the pipeline (Fig. 5). The alignment statistics are the
first available quality metric. According to the refer-
ence genome, a high-quality Hi-C experiment is usu-
ally associated with a high mapping rate. The number
of reads aligned in the second mapping step is also an
interesting control as it reflects the proportion of
reads spanning the ligation junction. An abnormal
level of chimeric reads can reflect a ligation issue dur-
ing library preparation. Once the reads are aligned on
the genome, the fraction of singleton or multiple hits
is usually expected to be low. The ligation efficiency

can also be assessed using the filtering of valid and in-
valid pairs. As ligation is a random process, it is ex-
pected that 25 % of each valid ligation class will be
defined by distinct read pair orientation. In the same
way, a high level of dangling-end or self-circle read
pairs is associated with a bad quality experiment, and
reveals a problem during the digestion, fill-in or
ligation steps.
Additional quality controls, such as fragment size distri-

bution, can be extracted from the list of valid interaction
products (Figure S3 in Additional file 1). A high level of
duplication indicates poor molecular complexity and a
potential PCR bias. Finally, an important metric is the
fraction of intra- and inter-chromosomal interactions, as

Fig. 3 HiC-Pro workflow. Reads are first aligned on the reference genome. Only uniquely aligned reads are kept and assigned to a restriction
fragment. Interactions are then classified and invalid pairs are discarded. If phased genotyping data and N-masked genome are provided, HiC-Pro
will align the reads and assign them to a parental genome. For the Hi-C protocol based on restriction enzyme digestion, the read pairs will then
be assigned to a restriction fragment and invalid ligation products will be filtered out. These first steps can be performed in parallel for each read
chunk. Data from multiple chunks are then merged and binned to generate a single genome-wide interaction map. For allele-specific analysis,
only pairs with at least one allele-specific read are used to build the contact maps. The normalization is finally applied to remove Hi-C systematic
bias on the genome-wide contact map. MAPQ Mapping Quality , PE paired end
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well as long-range versus short-range intra-chromosomal
interactions. As two genomic loci close on the linear
genome are more likely to randomly interact, a strong
diagonal is expected on the raw contact maps. A low qual-
ity experiment will result in a low fraction of intra-
chromosomal interactions depending on the organism
and the biological context. A high quality Hi-C experi-
ment on the human genome is typically characterized by
at least 40 % of intra-chromosomal interactions [9]. In the
same way, a high quality experiment is usually character-
ized by a significant fraction (>40 %) of long-range intra-
chromosomal valid pairs [7].

Speed and scalability
Generating genome-wide contact maps at 40 to 1 kb reso-
lution requires a sequencing depth of hundreds of millions
to multi-billions of paired-end reads depending on the or-
ganism [7, 8]. However, the main processing steps from
read mapping to fragment reconstruction can be optimized
using parallel computation of read chunks, significantly re-
ducing the time taken by the Hi-C data processing. Next,
all valid interactions are merged to remove the duplicates
and to generate the final contact maps.

The user can easily run the complete analysis work-
flow with a single command line either on a single lap-
top or on a computer cluster. Analysis parameters are all
defined in a single configuration file. In addition, HiC-
Pro is modular and sequential, allowing the user to focus
on a sub-part of the processing without running the
complete workflow. In this way, HiC-Pro can also be
used to complement other methods, for instance, by
running the workflow from already aligned files, or by
simply normalizing published raw contact maps.
The main steps of the pipeline are implemented in Py-

thon and C++ programming languages and are based on
efficient data structures, such as compressed sparse row
matrices for contact count data. Using an adequate data
structure allows the data processing to be sped up as well
circumvents memory limitations. In this way, HiC-Pro al-
lows a genome-wide iterative correction to be run at very
high resolution and in a short time. Our normalization
implementation exploits numpy’s dense array format and
fast operations, scipy’s sparse matrices representation and
Cython to combine C and Python to reach the perform-
ance of C executables with the ease of use and maintain-
ability of the Python language.

Fig. 4 Read pair alignment and filtering. a Read pairs are first independently aligned to the reference genome using an end-to-end algorithm. Then,
reads spanning the ligation junction which were not aligned in the first step are trimmed at the ligation site and their 5′ extremity is realigned on the
genome. All aligned reads after these two steps are used for further analysis. b According to the Hi-C protocol, digested fragments are ligated together
to generate Hi-C products. A valid Hi-C product is expected to involve two different restriction fragments. Read pairs aligned on the same restriction
fragment are classified as dangling end or self-circle products, and are not used to generate the contact maps. PE paired end, LS Ligation Site
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Contact map storage
Genome-wide contact maps are generated for resolu-
tions defined by the user. A contact map is defined as a
matrix of contact counts and a description of the associ-
ated genomic bins and is usually stored as a matrix, di-
vided into bins of equal size. The bin size represents the
resolution at which the data will be analyzed. For in-
stance, a human 20 kb genome-wide map is represented
by a square matrix of 150,000 rows and columns, which
can be difficult to manage in practice. To address this
issue, we propose a standard contact map format based
on two main observations. Contact maps at high reso-
lution are (i) usually sparse and (ii) expected to be sym-
metric. Storing the non-null contacts from half of the
matrix is therefore enough to summarize all the contact
frequencies. Using this format leads to a 10–150-fold re-
duction in disk space use compared with the dense for-
mat (Table 4).

Allele-specific analysis
HiC-Pro is able to incorporate phased haplotype infor-
mation in the Hi-C data processing in order to generate
allele-specific contact maps (Fig. 2). In this context, the
sequencing reads are first aligned on a reference genome
for which all polymorphic sites were first N-masked.
This masking strategy avoids systematic bias toward the
reference allele, compared with the standard procedure
where reads are mapped on an unmasked genome. Once
aligned, HiC-Pro browses all reads spanning a poly-
morphic site, locates the nucleotide at the appropriate
position, and assigns the read to either the maternal or
paternal allele. Reads without SNP information as well
as reads with conflicting allele assignment or unexpected
alleles at polymorphic sites are flagged as unassigned. A
BAM file with an allele-specific tag for each read is gen-
erated and can be used for further analysis. Then, we
classify as allele-specific all pairs for which both reads

Fig. 5 HiC-Pro quality controls. Quality controls reported by HiC-Pro (IMR90, Dixon et al. data). a Quality control on read alignment and pairing.
Low quality alignment, singleton and multiple hits are usually removed at this step. b Read pair filtering. Read pairs are assigned to a restriction
fragment. Invalid pairs, such as dangling-end and self-circle, are good indicators of the library quality and are tracked but discarded for subsequent
further analysis. The fractions of duplicated reads, as well as short range versus long range interactions, are also reported
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are assigned to the same parental allele or for which one
read is assigned to one parental allele and the other is
unassigned. These allele-specific read pairs are then used
to generate a genome-wide contact map for each paren-
tal genome. Finally, the two allele-specific genome-wide
contact maps are independently normalized using the it-
erative correction algorithm.

Software requirements
The following additional software and libraries are re-
quired: the bowtie2 mapper [26], R and the BioConductor
packages RColorBrewer, ggplot2, grid, Samtools (>0.1.19),
Python (>2.7) with the pysam, bx.python, numpy and scipy
libraries, and the g++ compiler. Note that a bowtie2 ver-
sion > 2.2.2 is strongly recommended for allele-specific
analysis, because, since this version, read alignment on an
N-masked genome has been highly improved. Most of the
installation steps are fully automatic using a simple com-
mand line. The bowtie2 and Samtools software are auto-
matically downloaded and installed if not detected on the
system. The HiC-Pro pipeline can be installed on a Linux/
UNIX-like operating system.

Conclusions
As the Hi-C technique is maturing, it is now important
to develop bioinformatics solutions which can be shared
and used for any project. HiC-Pro is a flexible and effi-
cient pipeline for Hi-C data processing. It is freely avail-
able under the BSD licence as a collaborative project at
https://github.com/nservant/HiC-Pro. It is optimized to
address the challenge of processing high-resolution data
and provides an efficient format for contact map sharing.
In addition, for ease of use, HiC-Pro performs quality
controls and can process Hi-C data from the raw se-
quencing reads to the normalized and ready-to-use
genome-wide contact maps. HiC-Pro can process data
generated from protocols based on restriction enzyme or
nuclease digestion. The intra- and inter-chromosomal con-
tact maps generated by HiC-Pro are highly similar to the
ones generated by the hiclib package. In addition, when
phased genotyping data are available, HiC-Pro allows the
easy generation of allele-specific maps for homologous

chromosomes. Finally, HiC-Pro includes an optimized ver-
sion of the iterative correction algorithm, which substan-
tially speeds up and facilitates the normalization of Hi-C
data. The code is also available as a standalone package
(https://github.com/hiclib/iced).
A complete online manual is available at http://nservant.

github.io/HiC-Pro. The raw and normalized contact maps
are compatible with the HiTC Bioconductor package [28],
and can therefore be loaded in the R environment for
visualization and further analysis.

Additional file

Additional file 1: The supplementary data file contains a
description of the dataset used for this study as well as details
about how the HiC-Pro, hiclib and HiCorrector software were used
in practice. It also includes supplementary figures about the HiC-Pro
results and output. (DOCX 1452 kb)
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Dense format (MB) Sparse symmetric format (MB)
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IMR90_CCL186 40 kbp 12,000 1900

IMR90_CL186 20 kbp 45,000 2600

IMR90_CL186 5 kbp 720,000 4200

Disk space for IMR90_CCL186 genome-wide contact maps generated using either the classical dense format or the sparse symmetric format at
different resolutions
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