10 8. Mazurkiewicz:
Wir haben demnach folgenden Hilfssatz bewiesen:

Hilfssatz. Sei MC I eine perfelkile nulldimensionale Menge,
LCM eine PCA-Menge; dann ewistiort cine Funktion Hy(x,y,2) mit
folgenden Higenschafien:

() Hylz,y,2) ist fiir (v,y)eIxI, zeM sletig,

(2,3 2,) folgt [Hy(0,0,2) = Hi(0, 0, 2,)],
(ag) aus (zeL) folgt [Hy(z,y,2)e V], |

(ag) aus (ze M—1L) folgt [Hy(x,y,#)noned].

(ag) aus

Der Ubergang von diesem Hilfssatz zum Satz erfolgt nun in
genau derselben Weise, wie in meiner unter ®) zitierten Arbeit
(S. 248—249).

Zegiestéw, 3/IX 1936.
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Formal definitions in the theory of ordinal numbers Y.
By

Alonzo Church and S. C. Kleene (Princeton, N. J.).
1. The purpose of this paper is to extend to the transfinite

ordinals, and functions of transfinite ordinals, the theory of formal

definition which has been developed by one of the present authors ?)

for functions of positive integers. The notation and termmologv

are those prevxously employed by the authors 3).

') Presented to the Ainerican Mathematical Society, September 1935.
2) 8. C. Kleene, A theory of positive integers in formal logic, Amer. Jour.

- Math., vol. 57, 1935, pp. 153—173, 219—244. It should be observed that the

part of this paper of Kleene which is concerned with problems of formal de-
finition depends only on Churcl’s rules of procedure I—III and is therefore
unaffected by the fact that the complete system of Church, making use of the
properties of JI' and &, is now known to lead to contradiction (8. C. Kleene
and J. B. Rosser, The inconsistency of certain formal logics, Ann. Math., vol. 36,
1935, pp. 630—636). Indeed these problems of formal definition have an interest
which is independent even of the question whether there exists a consistent,
adequate system of symbolic logic which embodies the rules of procedure I—III.
The, fact of this independent interest is made especially clear by the results of
8. C. Kleene, loc. cit., § 18, and of Alonzo Church, An unsolvable problem of
elementary number theory, forthcoming (abstract in Bull. Amer. Math. Soc., vol. 41,
1935, p. 332). Also it is thought that the considerations of the present paper have
a bearing on the distinction between constructive and non-constructive ordinals,
and on questions of enumerability and effective enumerability.

%) See Alonzo Chureh, A set of postulates for the foundation of logic, Ann.
Math., vol. 38, 1932; pp. 346-—366; 8. C. Kleene, loc. cit., and Proof by oases
in formal logic, Ann. Math., vol. 35, 1934, pp. 529—544; Alonzo Church and
J. B. Rosser, Some properties of conversion, forthcoming (abstract in Bull. Amer.
Math. Soc., vol. 41, 1935, p. 332). These papers will hereafter be referred to by
author or by author and date. :

Note particularly the definition of 'wcsll formed (Kleene 1934 §1), the
abbreviations of well-formed formulas (Church 1982 § 6 and Kleene 1934 §3),
the use of leavy-type letters (Kleene 1934 §3, (1) and (2), and 1935, footnotes
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For the convenience of the reader we give here a brief ox-
planation of this notation and terminology. .

Consider the infinite list of symbols: {, I, (, ), ALyl ay by ey,
of which @, b,¢,... are to be called proper symbols. A formula iy
any finite sequence of symbols from thig list.

A formula is called well-formed, and an occurrence of a proper
symbol in a formula is said to be an occurrence as a free symbol in
accordance with the following rules, and those only: (1) a formula
consisting of a single proper symbol & is well-formed, and the oceur-
rence of o in the formula & is an occurrence as & free symbol, (2) if
F and X are well-formed, (I} (X) is well-formed, and the occur-
rences of proper symbols as free symbols in F and in X are occur-
rences as free symbols in {F} (X), (3) if M is well-formed, and « is
a proper symbol which oceurs as a free symbol in M, Aw[ M iy well-
formed, and the occurrences of proper symbols other than . as
free symbols in M are occurrences as free symbols in Aw[M]. An
occurrence of a proper symbol in a formula which is not an occur-
rence as a free symbol is called an occurrence as a bound symbol.
By a free (bound) symbol of K, is meant a proper symbol which
occurs as a free (bound) symbol in K.

Heavy type letters are used to represent undetermined well-
formed formulas. The expression S‘l”vM | is used to stand for the result
of substituting N for « throughout M.

An immediate conversion is any one of the following operations
on well-formed formulas:

I. To replace any part Ax[M] by ,?.y[S”’M'H, where ¥ is
any proper symbol which does not oceur in M.

IL. To replace any part {Ax[M]}(N) by STM]|, provided
that the bound symbols of M are distinet both from 2 and from
the free symbols of N.

III. To replace any part S%}'M | (other than a proper symbol
which immediately follows a 1) by {Ax[M]} (W), provided that
the bound symbols of M are distinet both from a and from the
free symbols of N.

on pp. 219—220), the rules of procedure I—IIT (Chureh 1932, pp. 350, 3653566,
and Kleene 1934 §1) and the definition of conversion (Church, 1932, p. 347,
and Kleene 1934, p. 535), the definition of normal form (Kleene, 1934, p. 535),
the definitions of I (Kleene 1934, p. 536) and of 1, 2, 3, 4, ..., § (Kleoene, 1935,
p- 156), and the definition of formal definability (Kleene 1085, p. 219),
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A finite sequence of immediate conversions is called a con-
version; and it is said that 4 is convertible into B, or 4 conv B
if B ig obtainable from 4 by a conversion. ’

A formula is said to be in normal form if it is well-formed and
has no part of the form {lw[M]} (N). A formula B is said to be
a normal form of a formula 4 if B iy in normal form and 4 conv B.

As a matter of convenience in the actual writing down of
formulas, various abbreviations are employed. {...{F} (.X;)}(X,)...} (X,)
is written as

(X, oy X)) o F(X, ..., X,);
and

Aoy [ Ao Ao, [M].LT] a8 Ay oy, &, M.

We use I, 8, 1, 2, 3, ...
Anfao-f(n(f, x)),

‘

The formulas 1, 2, 3, ...

af abbreviations respectively for
Afacf),  Afef(fe)), Afef(f@)), . -

are taken to represent the positive integers.

Awr,

2. Using an arrow to mean “stands for”” or ‘““is an abbreviation
for”’, we let:
0y —> Am-m(1)
8> Aam-m(2, a).
L —> darm-m{3, a,7).
Lo > 86 (04), 20> 84(1), etic.

The formulas 0, 1, 2, ...
ordinals.

Here we are using the subseript o to distinguish notations
used in connection with the present theory from like notations used
in other connections. When the context precludes ambiguity, we
may omit this subscript o, writing for instance -2 instead of
w442, (cf. §4 below).

We adopt the following rules for the assignment of formulas
to represent particular ordinaly of the first and second number
classes:

are taken to represent the finite

i. If @ represents the ordinal @, and b conv @, then b also
represents a.

ii. 0, represents the ordinal zero.

iii. I @ vepresents the ovdinal @, then S,(e) represents the
guccessor of a.
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iv. It b is the limit of an increasing sequence (series) of ordinaly,
bey by, by ...y Of order type o, and if » ig a formula such that the
formulas 2°(0,), (1), #(2), ... represent the ordinals by, by, by, ...,
respectively, then L({0,, ) represents b.

Since one of the formulas assigned by these rules to represent
the least ordinal @ of the second number class is L(0,, L), we let,

©~>L(0,, I).

We shall call an ordinal of the first or second number class
formally definable, or A-definable, if there is, under Rules i—iv,
at least one formula assigned to represent it.

From the possibility under iv of using different sequences for
any particular b (or of using different »’s for any particular sequence)
it follows that every formally definable ordinal of the second number
class has an infinite number of non-interconvertible formulag as-
signed to represent it.

We shall say that a gequence of ordinals of order type w is
formally defined as a function of ordinals by # if, for every formula
@ which represents a finite ordinal a, (@) represents the (1-+-a)th
ordinal of the sequence. ,

It is clear that the question what ordinals of the second number
clags are formally definable is tied up with the question what se-
quences of ordinals are formally definable as functions of ordinals,
in such a way that neither question can be regarded as prior to
the other.

From Theorem 2 below and the enumerability of the set of
all well-formed formulas, it follows (by a non-congtructive argument)
that the set of all formally definable ordinals ig enumerable, and
hence that there is a least ordinal £ in the second number class
which is not formally definable. It is then readily proved that no
ordinal in the second clags greater than & is formally definable.

It is to be emphasized, however, that the definition of § which
has just been given is not constructive, in any usual sense of that
term, and that no means is known to the authorg of obtaining con-

structively an ordinal of the second number class which is not form-

ally definable. In particular, it will be shown below that, if ¢ and b
are formally definable ordinals out of the first and second number
classes, then the sum of ¢ and b, the product of « and b, and the
result of raising o to the power b are formally definable, and hence
all ordinals less than e, are formally definable. Moreover, if a is
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formally definable, then ¢, is formally definable, and hence it follows
that all ordinals less than the least solution of &=y are formally
definable. Similar theorems can be established in which various
generalizations of the e-numbers4) appear. Thus the boundary of
ordinals in the second number class known to be formally definable
is continually pushed upwards, and no congtruetively obtainable
limit to this process is seen.

We prove the two following theorems by transfinite induction.

Theorem 1. Every formula which represents an ordinal number
under Rules i—iv has a normal form.

Any formula which represents the ordinal zero must be con-
vertible into 0, and hence has the normal form 0,. Suppose that
every formula which represents an ordinal less than b has a normal
form. If b is the successor of an ordinal @, any formula which re-
presents b must be convertible into S,(e), where @ represents a,
and hence must have the normal form Am-m(2, A), where 4 is the
normal form of @. If b is the limit of an increasing sequence of or-
dinals of order type w, any formula which represents b must be
convertible into IL(0,,#), where there is some increasing sequence
of ordinals of order type w which has b as its limit and which is
formally defined as a function of ordinals by #; moreover » must
have a normal form R, because otherwise »(0,) would lack
a normal form?%), and hence L{0,?) must have the normal form
Am-m(3, 0, R).

Theorem 2. If, under Rules i—iv, a formula b represents an
ordinal b, then b cannot represent am ordinal distinet from b.

The theorem is true if b is zero, because b then has Am-m(1)
as a normal form, and formulas which represent ordinals distinct
from zero have a normal form of one of the forms, Am-m(2, 4), or
Am-m(3, 0o, R), and hence cannot have Am-m(1) as a normal form ).
‘We proceed by induction with respect to b.

4) Cf. O. Veblen, Continuous increasing functions of finite and transfinite
ordinagls, Trans. Amer. Math. Soc., vol. 9, 1908, pp. 280—292. All the particular
ordinals defined by Veblen in this paper are formally definable in our present
gense, including the ordinals E (1), E(2), ..., and even the first (second, and
80 on) solutions of the equation f(1,..., 1 )=, page 292.

8) Chureh and Rosser, Thm. 2 Cor.

8) Churech and Rosser, Thm. 1 Cor. 2.
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If b is the successor of an ordinal a, then b i not the limif
of any increasing sequence of ordinals and IH not the ﬁu(z(mww of
any ordinal other than a, and congequently ® must have a normal
form Am-m(2, A), where A represents a. Therefore ¢) every normal
form of b must be of the form Ann(2,4), wherg 2oonv 2 z.m(l
A’ conv A (being the same formulas except for possible alphabetical
differences of bound symbols). Therefore b can represent only a sue-
cessor of an ordinal represented by 4. By hypothesis of induction, 4
cannot represent an ordinal distinet from a. Therefore b cannot
represent an ordinal distinet from b.

If b is the limit of an increasing sequence of ordinaly of order
type o, then b is not the successor of any ordinal, and consequently 0
must have a normal form Am-m(3, 0, R), where J? formally defines
as a function of ordinals an increaging sequence of ordinals of order
type  which has b as its limit. Therefore 9 every normal form
of b must be of the form An-n(3, O, R'), where 3conv 3, Oconv O,
R’ conv R. Therefore b can represent only a limit of an inereasing
sequence of ordinals which is formally defined as w function of or-
dinals by R. But it follows from the hypothesis of induetion that I?
can define only one increasing sequence of ordinals of order tiype o.
Therefore b can represent only b.

8. We shall call a function a function in the first and second
number classes it the range of the independent variable (or of each
independent variable) consists of the first and second number clas-
ses and the range of the dependent variable is contained in the
first and second number classes,

We shall say that a function f, of n variables, in the first and
second number classes, is formally defined by a formula f if, for
every set of m formulas &y, @, ..., ¥, which represent ordinals
L1y Bay ..vy Ly, respectively, in the first and second number classes,
Sloey, oy, ...y 2c,) is a formula which represents the ordinal f(w, @, .., w4).
We shall call a function f in the first and second number classes
formally definable, or A-definable, if there is at least one formula f
by which it is formally defined.

We remark that if a formula f'is to define (formally) a function,
of n variables, in the first and second number classes, not only must
Floe, agy oy oe,) represent an ordinal in the first and secowd numbeoer
classes for every set of n formulas uy, e, .., &, which vepresent
ordinals in the first and second number clagses, hut also, i€ 41, ¥y very Y
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are formulas which represent ordinals equal respectively to the
ordinals represented by @y, &y, ..., &, then Y, Yoy oy y,) muss
represent an ordinal equal to the ordinal represented by
f’(;l,’” Hay oeny -’X)“).

It is clear that any function in the first and second number
clagses which is formally definable must be in a certain sense con-
structive, because given a formal definition of the function, the
process of reduction to normal form provides an algorithm for cal-
culating the values of the function (provided that we consider an
ordinal to have been calculated if a formula in normal form which
represents it has been obtained). Therefore certain functions which
are not constructive in this sense are clearly not formally definable;
in particular, the function /, such that f(z,y) is equal to the ordinal
zero or the ordinal one according to whether the ordinals # and Y
are equal or distinet, is not formally definable 7).

It is conjectured, however, that every constructive function
in the first and second number classes is formally definable. This
conjecture is vague because of the lack of a satisfactory definition
of the notion of a constructive function of ordinals, but it is sup-
ported by analogy with the case of functions of positive integers,
where it is possible to give a plausible definition of constructivity
and to prove the equivalence of constructivity and 1-definability 8).

4. We proceed now to the proof of a theorem which is useful
in many particular cases where it is required to obtain a formal
definition of some given function in the first and second number
classes.

Theorem 3. If A, G and H are given formulas having no free
symbols, it is possible to find a set of eight formulas fy (where the
subseripts 4, §, k take the values 1 and 2) satisfying the following
conditions:

[1j2(0,) conv 4
Fi1x(8o(@)) conv G (a)
fin(L(a, 7)) conv H(a, )

fzjk(oo) conv A(ﬁzjk)
Tiar(So(@)) conv G(fizr, @)
fipp(L(@, 7)) conv H{f}js, @, 7).

") The full proof of this assertion makes use of the results of Church,
An unsolvable problem of elementary number theory.

8) See Church, An unsolvable problem of elementary nwmber theory, and
8. C. Kleene, A-definability and recursiveneggmfjorthcoming (abstract in Bull
Amer. Math. Soc., Vol. 41, 1935, No. 7).

Fundamenta Mathematicae, T, XXVIIL 2
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This theorem is to be understood to mean, not merely that
the formulas fix ‘‘exist”, but that means are at hand by which
they can be effectively obtained in any given case.

Tn order to construct the formulas fix we proceed ag follows.
We let,

€, — 4fb-b(4, f),
€y —> Afb-f (Aw-x(An-b(n, b))).

Using Kleene 1935, 15 111, we construct eight formulas I3, such
that Bijk(l) conv (f[(fj.), 1;,",'];(2) conv @j ((l!‘), »I;ljli(g) conv @/;(I[)’
and Bijr(4) conv I. Then we let,

Fipn—> Aw-w(An-Biyr(n, Bije))-

The proof that the formulas £, have the required conversion
properties is then straightforward.

In particular, we can, according to Theorem 3, obtain a for-
mula f such that f(0,) conv I, f(S.(a))conv Ax-S(f(a, @), and
f(L(a, 1)) conv Az-L(@, 2m-f(»(m), ®)). Then it can be proved, by
transfinite induction, that, if @ and b represent ordinals « and b,
respectively, in the first and second number classes, f(a, b) repre-
gents the sum of b and a. Hence we let,

[b14-o[a@l > f(a, D).

Likewise we may obtain a formula f such that f(0,) conv I,
f(8,(@)) conv f(e), and f(L(a, r))conv f(a, f(r (0,))). Then, by
trangfinite induction, if @ represents an ordinal, f(e)convI. Hence
a constancy function, K, of ordinals may be defined by letting,

Ko—>2ay-f (y, ).

If b represents an ordinal, K,(e, b)conv a.

Likewise we may obtain a formula f such that f(0,)convi,(0,),
f(So(@)) conviz-f(@,x)+,x, and f(L(@,r)) conv Az-L(@, Am-f (#(m),x)).
Then, if @ and b represent ordinals a and b respectively, f(a, b)
represents the product of o and b (with ¢ as multiplier and b as
multiplicand). Hence we let,

[a]xo[b] - f.(a’: ())
The expression [@]X,[b] may be abbreviated as [e][b], when
no ambiguity arises thereby. '

Similarly, we may obtain a formula f such that f(0,)convI{,(L,),
f(So(er)) conviz-x X, f(@,x), and f(L(a,r))convip-L{a,im-f(r(m)w)).
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Then, if @ and b represent ordinals ¢ and b, f(«@, ) represents
the result of raising b to the power a. Hence we let,

exp, —> Azy-f(y, x)

and in any case where no confusion with exponentiation of positive
integers, or other forms of exponentiation, is produced, we abbreviate
exp, (b, @) as- [b]1.

A predecessor function of ordinals is formally defined by a
formula P, chosen to satisfy the relations ®) P,(0,) conv 0,
P,(8,(@)) conv a, and P,(L(a,r))convL(a,r).

Let § be so chosen that F(0,) conv 0,, §(S8.(a)) conv §(e),
and §(L(a,r)) conv Ko(1l, L(a,r)).. Then, if @ represents an ox-
dinal a, §(a) is convertible into 0, or 1, according as a is finite
or infinite.

Choose R so that K(0,) conv 0, K(S.(@))convK,(1, @), and
®(L(a,r)) conv K,(2,, L(@, 7)). Then & formally defines the kind
of an ordinal in the following fashion: If @ represents an ordinal g,
R(a) is convertible into 0, or 1, or 2, according as a is zero, the
successor of some ordinal, or the limit of some increasing sequence
of ordinals.

The formula An-P,(n(Se, 0,)) defines the nth (finite) ordinal
number as & function of the nth positive integer. Inversely, if J
is so chosen that  J(0,) convl, - J(8,(a)) conv S(J(a)), and
S(L(@,r))convKy(1,L(a,r)), then § defines the nth positive integer
as a function of the mth (finite) ordinal number. Also, if a is any
ordinal number of the second kind, 3 defines the nth positive integer
as a function of the nth ordinal number in the set of ordinal num-
bers from @ on. With the aid of these transformations between
ordinal numbers and positive integers, much of the theory of
formal definition of functions of positive integers (Kleene 1935)
can be carried over at once to the ordinal numbers. '

Choose ¢ so that

¢(0,) conv L(0,, n-3(m, exp, (@), 00)),

e(8o(@)) conv L(0,, An-3(n, exp,(), So(e(@))),
d
. e(L(a, 7)) conv L{a, An-¢ (2 (n))).

9) The choice of the third relation was made somewhat arbitrarily. Any
other of the form required by Theorem 3 might have been used instead.

2%
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Then if @ represents an ordinal number «, the formula e(e) (which
we abbreviate as &,) represents the (L a)th epsilon number.

Similarly formal definitions may be obtained for various gen-
eralizations of the e-numbers, using Theorem 3 and generalizations
of Theorem 3.

5. We let ]
Z, — Q(Ax-2(I), I),

Zy 2 Q(dwy-S(x) —y, 1),

where @ is the formula defined in the first paragraph of §17, Kleene
1935. Then. Z, and Z, define the sequences 1,1, 2,1, 2,3, 1, 2, 3, 4, ...
and 1,2,1,3,2,1,4,3,2,1, ... respectively, as functions of positive
integers (cf. Kleene 1935, 17 I).

Using Kleene 1935, 156 I1I, we obtain a formula B such that
B(1) conv Afz-Ko(x, f(0,, 1)) and, for all formulas 7 which repre-
sent positive integers, B(S(n)) conv Afz-f(x, n). Then using The-
orem 3 we obtain a formula enm such that enm (0,) conv An-n (I, 0,),

enm (8,(@)) cony An-B(n, enm, @),
and
enm(L(a, 1)) conv An-K(enm (2(P(Z1(n, 8o, 0,)), Zy(n)), ).

The formula enm has the property that, if @ represents an
ordinal @ of the first or the second number class, other than zero,
the infinite sequence enm (e, 1), enm (@, 2) enm (@, 3), ... is an
enumeration, with repetitions, of the ordinals less than a (i. e., every
term of the sequence represents such an ordinal, and every such
ordinal is represented by at least one term of the sequence).

It is not, however, true, if b represents an ordinal equal to a,
and 7 represents a positive integer, that enm (b,7) must represent
an ordinal equal to enm (@,n). There is no formula which has
this property in addition to the property of enm just described.

6. The agsignment of formulas to represent ordinals which was
set up in §2 can be extended to larger ordinals (not, however, to all
ordinals) by replacing Rule iv by the following transfinite set of
rules, iv,, where the subscript ¢ may take on as value any ordinal
a formula to represent which has been previously assigned:

iv,. If 1, is the least ordinal a formula to represent which ig
not assigned by the rules i, ii, iii, iv; (0 =14 <), if b iy the limit
of an increasing sequence of ordinals of order type t,, which is formally
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defined as a function of ordinals by », and if @ represents @, then
L(a,r) represents b.

For the rule iv, we take 1, to be w, so that Rule iv, is identical
with Rule iv.

It can be proved as before that a formula which represents
an ordinal must have a normal form, and that distinet ordinals
cannot be represented by the same formula; and it will be found
that the formal definitions of particular functions of ordinals which
are obtained in § 4 remain valid under the extended assignment of
formulas to represent ordinals.

The ordinals ¢, are defined formally by

te—> L(@, I).

Moreover, using Theorem 3, we may find a formula o
such that o(0,) conv L(0,, I), o(S,(@)) conv L(1,4.a, I), and
o(L{a,r)) conv L(@, in-L(r(n),I)), and so obtain a set of ordinals w,
defined formally by

wq—> 0(a@).

It can be proved, by a non-constructive argument, that all
the ordinals o, are eontained within the second number class. Never-
theless there is an analogy between these ordinals w, and the first
ordinals of the successive number classes, in which the notion of
2-definability corresponds, in general, to the notion of existence.
In particular, @, the first ordinal of the third number class, can
be described as the least ordinal of the second kind which is not
the limit of an increasing sequence of ordinals of order type w. Cor-
respondingly, o, is the least ordinal of the second kind which is not
the limit of a A-definable increasing sequence of ordinals of order
type w.

In fact, if we are willing to take the position that an ordinal
less than w; is not constructively calculated unless a formula re-
presenting it is constructively calculated, then we may regard an
infinite sequence of ordinals (of order type ) as constructive if
some function f such that f(n) is the Godel representation of a
formula representing the nth ordinal of the sequence is effectively
calculable in the sense of Church, An wnsolvable problem of ele-
mentary nwmber theory, and hence conclude, by wuse of § and of
Kleene, A-definability and recursiveness, (25), that o, is not the
limit of any constructive increasing sequence of ordinals of order
type .



GUEST




