Classical Satisfiability Algorithms
IA085: Satisfiability and Automated Reasoning

Martin Jonas

FI MUNI, Spring 2024

- basic logical notions (entailment, equivalence, satisfiability, .. .)
- applications of satisfiability,

- conversion of a formula to CNF of linear size

Today, we assume that all formulas are in CNF.

1/35

An algorithm that can decide satisfiability of formulas with
and

2/35

Exhaustive search

Exhaustive search

ExhaustiveSearch(formula &) {

’
2 foreach truth assignment p to Atoms(®)
3 res + evaluate ¢ under pu

4 if res == T

5 return SAT

6 return UNSAT

7

3/35

Exhaustive search in practice

- virtually
- for unsatisfiable instances always needs 2/4©ms(#)l steps

- for satisfiable instances can easily need exponential number of steps

Just buy a big powerful gpu?

- atoms on Earth ~ 10°° ~ number of truth assignments to 166 variables

- atoms in the universe ~ 108% ~ number of truth assignments to 266 variables

4/35

Propositional resolution

Resolution rule

Rule for deriving new clauses from existing ones

(AL, Y (AL)
0, Il 0y

In general form
AVe -AVy

VY
Notation and terminology

- Resolve(x, Cq, Cy) returns the resulting formula
- Resolve(x, Cy, () is called of Gy and G, on x

Correctness
GNANG): RQSO[VQ(X, C, Cz)
5/35

Resolution rule: notable instances

A -AVB

6/35

Resolution rule: notable instances

A -AVB A A—=B

v}
1
vy}
1l

modus ponens

6/35

Resolution rule: notable instances

A —-AVB A A= B

B = B = modus ponens
-B -AVB -B A—B

—A = =A = modus tollens

6/35

Resolution rule: notable instances

A —-AVB A A= B
B = B = modus ponens
-B -AVB -B A—B
—A = =A = modus tollens
-AVB -BVC
-AV C

6/35

Resolution rule: notable instances

A -AVB A A—B
B = B = modus ponens
-B -AVB -B A—B
—A = —A = modus tollens
-AVB —-BVC A—-B B—C
AV C = A—C = transitivity

6/35

Proving unsatisfiability by resolution

Observations

- if G4, € ® and R is a resolvent of Gy and C;, then & =R
- therefore & = o U{R}

7/35

Proving unsatisfiability by resolution

Observations

- if G4, € ® and R is a resolvent of Gy and C;, then & =R
- therefore & = o U{R}

Resolution method

- extend @ with all possible resolvents of clauses from ¢
- if) € ® at some point, return UNSAT
- if no more clauses can be derived and () & ®, return SAT

7/35

Proving unsatisfiability by resolution

{{A. B},
{-B,¢},
{=B,~C},
{-A,-B,-D},
{-A, B,~D},
{-A,B,D}

8/35

Proving unsatisfiability by resolution

{{A. B},

{—\A7 —-B, —\D}7
{_'A7 Bv _‘D},
{-A,B,D}

8/35

Proving unsatisfiability by resolution

{{A. B},

{—\A7 —-B, —\D}7
{_'A7 Bv _‘D},
{-A,B,D}

8/35

Proving unsatisfiability by resolution

{ ,
{-B,¢},
{=B,~C},
{-A,-B,-D},
{-A, B,~D},
{-A,B,D}

8/35

Proving unsatisfiability by resolution

{ ,
{-B,¢},
{=B,~C},
{-A,-B,-D},
{-A, B,~D},
{-A,B,D}
{-B},

)

8/35

Proving unsatisfiability by resolution

{{A. B},
{-B,C},
{=B,~C},
{-A,-B, D},

)

{“B}*
{A},

8/35

Proving unsatisfiability by resolution

{{A. B},
{-B,C},
{=B,~C},
{-A,-B, D},

)

{“B}*
{A},

8/35

Proving unsatisfiability by resolution

{{A. B},
{-B,¢},
{=B,~C},
{-A,-B,-D},
{-A, B,~D},
{-A,B,D}
{-B},

)

8/35

Proving unsatisfiability by resolution

{{A. B},
{-B,¢},
{=B,~C},
{-A,-B,-D},
{-A, B,~D},
{-A,B,D}
{-B},

)

8/35

Proving unsatisfiability by resolution

{{A. B},
{-B,¢},
{=B,~C},
{-A,-B,-D},
{-A, B,~D},
{-A,B,D}

{A},

{_‘A7 B}7

)

8/35

Proving unsatisfiability by resolution

{{A. B},
{-B,¢},
{=B,~C},
{-A,-B,-D},
{-A, B,~D},
{-A,B,D}

{A},
{_‘A7 B}7

)

}

8/35

Resolution Method: Properties

Theorem (Soundness) ‘ .
If the resolution method returns UNSAT, the formula ¢ is unsatisfiable.

Theorem (Completeness) '
If the formula is unsatisfiable, the resolution method returns UNSAT.

9/35

Resolution Method: Properties

Resolution method is

- the size of ® never decreases
- the size of ® grows quickly (often exponentially)

- as presented, the algorithm is not deterministic

10/35

Systematic resolution: Davis-Putnam algorithm

Davis-Putnam algorithm (1960)

- eagerly apply simple resolution cases first -- (unit
propagation)
- fix an order of variables in which to resolve

- for a variable x, use resolution on at
once and

1/35

Davis-Putnam algorithm: Unit propagation

Variable assignment
- for example
{{A.B}.{C.-D},{-A.D}}|, = {{C.~D},{D}}
- @) ={C\{~v}|Cedandvg(}
- similarly for ®|_
Unit propagation
- if ® contains a ({l} € @), we can directly assign its value

- for example

{{Av _'8}7 {B}v {Bv C}> {Ca _'D’A}} ~ {{A}v {C> _‘DvA}}

12/35

Davis-Putnam algorithm: Variable elimination

- divide ® = VUV, UV_, where clauses in ¥ do not contain x, clauses in Wy
contain x positively, and W_, contain x negatively

- EliminateVar(x, ®) = W U {Resolve(x, C1, ;) | C1 € Wy, C; € W4} without
tautological clauses

o = {{A,B},{-B,C},{-B,~C},{-A,-B,-D},{-A,B,-D},{-A,B,D}}

EliminateVvar(A, ®) = {{-B, C},{-B, =C},
{B,—B,—D},
{B, =D},
{B,D}}

13/35

Davis-Putnam algorithm: Variable elimination

- divide ® = VUV, UV_, where clauses in ¥ do not contain x, clauses in Wy
contain x positively, and W_, contain x negatively

- EliminateVar(x, ®) = W U {Resolve(x, C1, ;) | C1 € Wy, C; € W4} without
tautological clauses

o = {{A,B},{-B,C},{-B,~C},{-A, =B, =D}, {-A, B,~D}, {-A,B,D}}
EliminateVvar(A, ®) = {{-B, C},{-B, =C},

{87 —|D},
{B,D}}

13/35

Davis-Putnam Algorithm

DP(formula ®):
while @ contains unit clause {(}:
d><—¢|,

if =0 return SAT
if @ € ® return UNSAT

v < PickVariable(®)
® « EliminateVar(v,®)
10 return DP(®)

© O N O LR W N o

14 /35

Davis-Putnam algorithm: Properties

Theorem (Soundness)
If DP(®) returns UNSAT, the formula & is unsatisfiable.

Theorem (Completeness)
If the formula ® is unsatisfiable, DPLL(®) returns UNSAT.

Proof idea. _ o . o
Invariant: at every step, the formula ® is equisatisfiable with the original.

- Unit propagation is satisfiability preserving.

- Variable elimination is satisfiability preserving. O

15/35

Davis-Putnam algorithm: Properties

Theorem (Soundness)
If DP(®) returns UNSAT, the formula & is unsatisfiable.

Theorem (Completeness)
If the formula ® is unsatisfiable, DPLL(®) returns UNSAT.

Proof idea. _ o . o
Invariant: at every step, the formula ® is equisatisfiable with the original.

- Unit propagation is satisfiability preserving.

- Variable elimination is satisfiability preserving.

Corollary (Complexity)

15/35

Davis-Putnam algorithm: Properties

Theorem (Soundness)
If DP(®) returns UNSAT, the formula & is unsatisfiable.

Theorem (Completeness)
If the formula ® is unsatisfiable, DPLL(®) returns UNSAT.

Proof idea. _ o . o
Invariant: at every step, the formula ® is equisatisfiable with the original.

- Unit propagation is satisfiability preserving.

- Variable elimination is satisfiability preserving. O

Corollary (Complexity)
Unless P = NP, the procedure DP does not run in polynomial time.

15/35

Resolution lower bounds

Pigeonnhole formula PHP,

- Can n+ 1 pigeons be assigned to n boxes such that there is at most one
pigeon in one box?

* variables x; ; -- pigeon i is in the box j
- foreach1<i<n-+1aclause \/1§j§n Xi]
- foreach1<j<nand1<i<i <n+1aclause —x;;V =Xy

- obviously unsatisfiable

16/ 35

Resolution lower bounds

Pigeonnhole formula PHP,

- Can n+ 1 pigeons be assigned to n boxes such that there is at most one
pigeon in one box?

* variables x; ; -- pigeon i is in the box j

- foreach1<i<n+1aclause \/1§j§n Xi]

- foreach1<j<nand1<i<i <n+1aclause —x;;V =Xy
- obviously unsatisfiable

Theorem (Haken, 1985)
Every resolution proof of PHP,, has size 22",

16 /35

Davis-Putnam-Logemann-Loveland
algorithm (DPLL)

DPLL

Davis-Putnam-Logemann-Loveland algorithm (1962)

- replace the resolution step in DP by
- assign one value; if UNSAT, and try the opposite value

- eagerly apply unit propagation whenever possible

17/35

O N U A W N

"

DPLL(formula ¢):
while ¢ contains unit clause {(}:
P 9|,

if ® =0 return SAT
if @ € ® return UNSAT

v « Pickvariable(®)

if DPLL(®|,) == SAT:
return SAT

return DPLL(®|_)

18/35

DPLL: Example

{{A, B}, {-A,B},{-A,C,—-B},{-A,-C,—B}}

19/35

DPLL: Example
{{A? B}a {_'A> B}> {_‘A7 C> _‘B}a {_‘A> _'C, _'B}}

A

{{8}7 {Cv _‘8}7 {_‘C7 _‘B}}

19/35

{{A, B}, {-A,B},{-A,C,—-B},{-A,-C,—B}}
e
{{8}7 {Cv _‘8}7 {_‘C7 _‘B}}
B
S {-C)

19/35

{{A, B}, {-A,B},{-A,C,—-B},{-A,-C,—B}}
e
{{8}7 {Cv _‘8}7 {_‘C7 _‘B}}
B
S {-C)
C
{0}

19/35

{{A, B}, {-A,B},{-A,C,—-B},{-A,-C,—B}}
e
{{8}7 {Cv _‘8}7 {_‘C7 _‘B}}
B
S {-C)
C

{0}
UNSAT

19/35

{{A, B}, {ﬁA, B}, {ﬁA, C, ﬂB}, {ﬁA, =C, —|B}}
{{B},{C,-B},{-C,-B}} {{B}}
;
Hc} {-C}}
:

{0}
UNSAT

19/35

DPLL: Example
{{A? B}a {_'A> B}> {_‘A7 C> _‘B}a {_‘A> _‘C, _'B}}

{{8},{C, ~B}, {~C.~B}} ey
B B
tERaa) 0
C
0}
UNSAT

19/35

DPLL: Example
{{A? B}a {_'A> B}> {_‘A7 C> _‘B}a {_‘A> _‘C, _'B}}

{{B}, {C, =B}, {=C, ~B}} {{B}}
B B
{C {=Ch} 0
c SAT
{0}
UNSAT

19/35

DPLL: Properties

Theorem (Soundness)
If DPLL(®) returns SAT, the formula & is satisfiable.

Theorem (Completeness)
If the formula ® is satisfiable, DPLL(®) returns SAT.

Corollary (Complexity) . o
Unless P = NP, the procedure DPLL does not run in polynomial time.

20/ 35

UNSAT DPLL — Resolution

{{A7 8}17 {_‘Ba C}2a {ﬁB7 _‘C}3> {_‘A7 _‘Ba _\D}z,, {_‘Av Ba _‘D}57 {_‘A> Ba D}6}

21/35

UNSAT DPLL — Resolution

{{A7 8}17 {_‘Ba C}Za {ﬁB7 _‘C}3> {_‘A7 _‘Ba _\D}z,, {_‘Av Ba _‘D}57 {_‘A> Ba D}6}

{{—B, C}2,{~B,~C}3,{—B,~D}4,{B, ~D}s, {B, D}¢} {{B}1,{—B, C}2, {-B,~C}3}
% W i
{{C}2, {~C}s, {-D}s} {{-D}s,{D}6} {{C}2, {-C}3}
C =D C
{05, {-D}+} {06} {05}

21/35

UNSAT DPLL — Resolution

{{A7 8}17 {_‘Ba C}Za {ﬁB7 _‘C}3> {_‘A7 _‘Ba _\D}z,, {_‘Av Ba _‘D}57 {_‘A> Ba D}6}

{{-B,C}2,{—B,~C}3,{=B,~D}4,{B,~D}s,{B, D}¢} {{B}1,{-B, C}2, {-B, ~C}3}
/ W i
{{C}2, {=C}3,{—D}4} {{-D}s,{D}6} {{C}, {-C}3}
C =D C
{05, {-D}+} {06} {05}
{_‘B’ _‘C}3 {_‘AvB’ D}6 {_‘Bv _‘C}3

21/35

UNSAT DPLL — Resolution

{{A7 8}17 {_‘Ba C}Za {ﬁB7 _‘C}3> {_‘A7 _‘Ba _\D}z,, {_‘Av Ba _‘D}57 {_‘A> Ba D}6}

{{—B,C}2,{—=B, =C}3, {=B, ~D}4,{B, ~D}s,{B, D}e} {{B}1, {—B, C}s, {—=B, ~C}3}
/ W i
HCha, {=C}3,{—=D}4} {{—-D}s,{D}e} {A, B {{C}, {—C}5}
C =D C
{05, {~D}+} {06} {05}
{ﬁBvcb {_‘B’ _‘C}3 {ﬂAan_‘D}5 {_‘A7Bv D}6 {ﬁBvcb {_‘B’ _‘C}3

21/35

UNSAT DPLL — Resolution
/ \
-B

% \ / i

{AaB}W
/) / . /)
{ﬁB,C}z {—\B,—\C}g {ﬂA,B,—\D}5 {—\A,B,D}6 {ﬁB,C}z {_\B,_\C}3

21/35

UNSAT DPLL — Resolution

{-B} {-A, B}

S

{-B,C}, {-B,~C}; {-A,B,~D}s {-A,B,D}e {-B,C}, {-B,~C}s

{-8}

C

\
/ B
{Aa B}W

21/35

UNSAT DPLL — Resolution

L
N

{=B} {4, B}

S

{-B,C}, {-B,~C}; {-A,B,~D}s {-A,B,D}e {-B,C}, {-B,~C}s

{=B}

C

\
{A}
/ B

{A, B]/

21/35

UNSAT DPLL — Resolution

A run of DPLL with result UNSAT corresponds to a resolution proof

- replace all derived () leaves by the corresponding original input clauses

- to each unit propagation step, add the original clause of the unit clause that
triggered the unit propagation

- complete the resolution

Corollary (Time Complexity)
DPLL has exponential time complexity (e.g., for PHP formulas).

Theorem (Space Complexity) .
DPLL has polynomial space complexity.

22/35

DPLL in practice

- DPLL s

- basis of Conflict-Driven Clause Learning (CDCL) used in most of the modern
SAT solvers

23 /35

Implementing DPLL

Real implementation of DPLL

- the previous theoretical description is

- each modification of formula @ is too expensive

Clause status

- contains satisfied literal —
- all literals are assigned opposite values — /
- one literal is unassigned, other literals are assigned opposite values —

- otherwise
24 [35

DPLL: Searching in assignments

(AVB) A (FAVB) A (mAV CV=B) A (mAV =CV -B)

0]

25/35

DPLL: Searching in assignments

(AVB) A (FAVB) A (mAV CV=B) A (=AV =CV —B)

i

decide A

[A]

25/35

DPLL: Searching in assignments

(AVB) A (FAVB) A (mAV CV=B) A (=AV =CV —B)

i

decide A

[A]

propagate B
[A, B]

25/35

DPLL: Searching in assignments

(AVB) A (FAVB) A (mAV CV=B) A (mAV =CV —B)

i

decide A

[A]

propagate B
[A, B]

propagate C

[A, B, (]

25/35

DPLL: Searching in assignments

(AVB) A (FAVB) A (mAV CV=B) A (mAV =CV —B)

i

decide A

[A]

propagate B
[A, B]

propagate C

[A, B, (]
CONFLICT

25/35

DPLL: Searching in assignments

(AVB) A (FAVB) A (mAV CV=B) A (=AV =CV -B)

[

decide A o backtrack —A
[Al [-A]
propagate B
[A, Bl
propagate C
[A, B, (]
CONFLICT

25/35

DPLL: Searching in assignments

(AVB) A (FAVB) A (mAV CV=B) A (=AV =CV -B)

[

decide A T backtrack —A
[Al [-A]
propagate B propagate B
A, 8] [, 8]

propagate C

[A, B, (]
CONFLICT

25/35

DPLL: Searching in assignments

(AVB) A (FAVB) A (mAV CV=B) A (=AV =CV -B)

decide A

[A]

propagate B
[A, B]

propagate C

[A, B, (]
CONFLICT

[

backtrack —A

[-A]

propagate B

[ﬂAv B]
SAT

25/35

Partial assignment representation

Trail

- stack of currently assigned literals
- trail = [A, —C]
- used during backtracking

Map of values

- maps each variable to true/false/unknown
- value[A] = true, value[B] = unknown, value[C] = false

- used to evaluate clauses

26 /35

Decision and Backtracking

- do not use recursion for backtracking, manage the stack explicitly (faster and
will be useful later)

- keep list of positions of that can be reverted if needed
- eg fortrail = [A, -B, C, D, —E], decisions = [0, 21

- literals trail[0] = Aand trail[2] = C were decisions

- other literals were unit propagated or set during backtracking

Desired functionalities

- Decide(x,V): sets x to v; can be flipped using backtracking

- Assign(x,Vv): sets x to v; cannot be flipped using backtracking

- Backtrack(): undo all assignments up to the last decision, Assign the
decided variable to the opposite value

- How to implement?
27135

Unit propagation

UnitPropagate()

- detects unit clauses

- keeps a queue of unit assignments that have to be performed
- assigns value to until fixed point

- can detect conflicts

28 /35

DPLL: Realistic

© O N LR W N o

def DPLL(formula ¢):
InitializeDatastructures()

if UnitPropagation() == CONFLICT:
return UNSAT

while not all variables are assigned:
v « PickUnassignedVariable()

Decide(v, false)

while UnitPropagation() == CONFLICT:

if decisions == []:
return UNSAT
Backtrack()

return SAT

29/ 35

Unit propagation: naive

Naive unit propagation

- go through the list of clauses
- unit clause — Assign the unassigned literal and repeat

- clause that has all literals assigned to false — return CONFLICT

30/35

Unit propagation: naive

Naive unit propagation

- go through the list of clauses
- unit clause — Assign the unassigned literal and repeat

- clause that has all literals assigned to false — return CONFLICT

Less naive unit propagation

- all unit propagations (except the first one) occur after variable
decision/assignment

- precompute for each literal occurs[1], the list of clauses that contain [

- after decision/assignment of [, only check the clauses in occurs[—1]

30/35

Unit propagation: need something better

Still not good enough, a variable can occur in a large number of clauses.
Most of the runtime is spent in unit propagation — must be !
Idea

Do not check clauses for which we are sure that contain at least two unassigned
literals.

31/35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals
()
- for each literal, remember list of clauses where it is head and where it is tail

- during unit propagation, only check clauses where the negation of literal is
head/tail

- needs to maintain the invariant during backtracking

32/35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals
()
- for each literal, remember list of clauses where it is head and where it is tail

- during unit propagation, only check clauses where the negation of literal is
head/tail

- needs to maintain the invariant during backtracking

4
)T<\/—|y\/Z\/—|V\/—|W\/ u
Variable assignment:

32/35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals
()
- for each literal, remember list of clauses where it is head and where it is tail

- during unit propagation, only check clauses where the negation of literal is
head/tail

- needs to maintain the invariant during backtracking

4
)T<\/—|y\/Z\/—|V\/—|W\/ u
Variable assignment:

32/35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals
()
- for each literal, remember list of clauses where it is head and where it is tail

- during unit propagation, only check clauses where the negation of literal is
head/tail

- needs to maintain the invariant during backtracking

4
)T<\/—|y\/Z\/—|V\/—|W\/ u
Variable assignment: y

32/35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals
()
- for each literal, remember list of clauses where it is head and where it is tail

- during unit propagation, only check clauses where the negation of literal is
head/tail

- needs to maintain the invariant during backtracking

4
)T<\/ﬂy\/Z\/—|V\/—|W\/ u
Variable assignment: y

32/35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals
()
- for each literal, remember list of clauses where it is head and where it is tail

- during unit propagation, only check clauses where the negation of literal is
head/tail

- needs to maintain the invariant during backtracking

i
)T<\/ﬂy\/Z\/—|V\/—|W\/u

Variable assignment: y, v

32/35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals
()
- for each literal, remember list of clauses where it is head and where it is tail

- during unit propagation, only check clauses where the negation of literal is
head/tail

- needs to maintain the invariant during backtracking

i
)T<\/ﬂy\/Z\/—|V\/—|W\/u

Variable assignment: y, v

32/35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals
()
- for each literal, remember list of clauses where it is head and where it is tail

- during unit propagation, only check clauses where the negation of literal is
head/tail

- needs to maintain the invariant during backtracking

i
)T<\/ﬂy\/Z\/—|V\/—|W\/u

Variable assignment: y, v, —=x

32/35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals
()
- for each literal, remember list of clauses where it is head and where it is tail

- during unit propagation, only check clauses where the negation of literal is
head/tail

- needs to maintain the invariant during backtracking

i
X\/ﬂy\/%\/—'V\/—'W\/u

Variable assignment: y, v, —=x

32/35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals
()
- for each literal, remember list of clauses where it is head and where it is tail

- during unit propagation, only check clauses where the negation of literal is
head/tail

- needs to maintain the invariant during backtracking

i
X\/ﬂy\/%\/—'V\/—'W\/u

Variable assignment: y, v, =x, =

32/35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals
()
- for each literal, remember list of clauses where it is head and where it is tail

- during unit propagation, only check clauses where the negation of literal is
head/tail

- needs to maintain the invariant during backtracking

!
X\/ﬂy\/i\/—'V\/—'W\/u

Variable assignment: y, v, =x, =

32/35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals
()
- for each literal, remember list of clauses where it is head and where it is tail

- during unit propagation, only check clauses where the negation of literal is
head/tail

- needs to maintain the invariant during backtracking

!
X\/ﬂy\/i\/—'V\/—'W\/u

Variable assignment: y, v, =x, =U , W

32/35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals
()
- for each literal, remember list of clauses where it is head and where it is tail

- during unit propagation, only check clauses where the negation of literal is
head/tail

- needs to maintain the invariant during backtracking

!
X\/ﬂy\/i\/—'V\/ﬁW\/u

Variable assignment: y, v, =x, =U , W

32/35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals
()
- for each literal, remember list of clauses where it is head and where it is tail

- during unit propagation, only check clauses where the negation of literal is
head/tail

- needs to maintain the invariant during backtracking

!
X\/ﬂy\/i\/—'V\/ﬁW\/u

Variable assignment: y, v, =x, =U , W

32/35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals
()
- for each literal, remember list of clauses where it is head and where it is tail

- during unit propagation, only check clauses where the negation of literal is
head/tail

- needs to maintain the invariant during backtracking

!
X\/ﬂy\/i\/—'V\/ﬁW\/u

Variable assignment: y, v, =x, =

32/35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals
()
- for each literal, remember list of clauses where it is head and where it is tail

- during unit propagation, only check clauses where the negation of literal is
head/tail

- needs to maintain the invariant during backtracking

!
X\/ﬂy\/i\/—'V\/—'W\/u

Variable assignment: y, v, =x, =

32/35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals
()
- for each literal, remember list of clauses where it is head and where it is tail

- during unit propagation, only check clauses where the negation of literal is
head/tail

- needs to maintain the invariant during backtracking

!
X\/ﬂy\/i\/—'V\/—'W\/u

Variable assignment: y, v, —=x

32/35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals
()
- for each literal, remember list of clauses where it is head and where it is tail

- during unit propagation, only check clauses where the negation of literal is
head/tail

- needs to maintain the invariant during backtracking

i
X\/ﬂy\/%\/—'V\/—'W\/u

Variable assignment: y, v, —=x

32/35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals
()
- for each literal, remember list of clauses where it is head and where it is tail

- during unit propagation, only check clauses where the negation of literal is
head/tail

- needs to maintain the invariant during backtracking

i
X\/ﬂy\/%\/—'V\/—'W\/u

Variable assignment: y, v

32/35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals
()
- for each literal, remember list of clauses where it is head and where it is tail

- during unit propagation, only check clauses where the negation of literal is
head/tail

- needs to maintain the invariant during backtracking

i
)T<\/ﬂy\/Z\/—|V\/—|W\/u

Variable assignment: y, v

32/35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals
()
- for each literal, remember list of clauses where it is head and where it is tail

- during unit propagation, only check clauses where the negation of literal is
head/tail

- needs to maintain the invariant during backtracking

4
)T<\/ﬂy\/Z\/—|V\/—|W\/ u
Variable assignment: y

32/35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals
()
- for each literal, remember list of clauses where it is head and where it is tail

- during unit propagation, only check clauses where the negation of literal is
head/tail

- needs to maintain the invariant during backtracking

4
)T<\/ﬂy\/Z\/—|V\/—|W\/ u
Variable assignment: y

32/35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals
()
- for each literal, remember list of clauses where it is head and where it is tail

- during unit propagation, only check clauses where the negation of literal is
head/tail

- needs to maintain the invariant during backtracking

4
)T<\/ﬂy\/Z\/—|V\/—|W\/ u
Variable assignment:

32/35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals
()
- for each literal, remember list of clauses where it is head and where it is tail

- during unit propagation, only check clauses where the negation of literal is
head/tail

- needs to maintain the invariant during backtracking

4
)T<\/—|y\/Z\/—|V\/—|W\/ u
Variable assignment:

32/35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals
()
- for each literal, remember list of clauses where it is head and where it is tail

- during unit propagation, only check clauses where the negation of literal is
head/tail

- needs to maintain the invariant during backtracking

4
)T<\/—|y\/Z\/—|V\/—|W\/ u
Variable assignment:

32/35

Unit propagation: two watched literals

Two watched literals (zCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (

)

- for each literal, remember list of clauses where it is watched

- during unit propagation, only check clauses where the negation of literal is
watched

- nothing needs to be done during backtracking!

33/35

Unit propagation: two watched literals

Two watched literals (zCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (
)
- for each literal, remember list of clauses where it is watched

- during unit propagation, only check clauses where the negation of literal is
watched

- nothing needs to be done during backtracking!

!
)T<\/—\y\/Z\/—|V\/—|W\/u

Variable assignment:

33/35

Unit propagation: two watched literals

Two watched literals (zCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (
)
- for each literal, remember list of clauses where it is watched

- during unit propagation, only check clauses where the negation of literal is
watched

- nothing needs to be done during backtracking!

!
)T<\/—\y\/Z\/—|V\/—|W\/u

Variable assignment:

33/35

Unit propagation: two watched literals

Two watched literals (zCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (

)

- for each literal, remember list of clauses where it is watched

- during unit propagation, only check clauses where the negation of literal is
watched

- nothing needs to be done during backtracking!

i
)T<\/—|y\/Z\/—|V\/—|W\/ u
Variable assignment: y

33/35

Unit propagation: two watched literals

Two watched literals (zCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (

)

- for each literal, remember list of clauses where it is watched

- during unit propagation, only check clauses where the negation of literal is
watched

- nothing needs to be done during backtracking!

!
)T<\/ﬂy\/Z\/—|V\/—|W\/ u
Variable assignment: y

33/35

Unit propagation: two watched literals

Two watched literals (zCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (
)
- for each literal, remember list of clauses where it is watched

- during unit propagation, only check clauses where the negation of literal is
watched

- nothing needs to be done during backtracking!

.
)T<\/ﬂy\/Z\/—|V\/—|W\/u

Variable assignment: y, v

33/35

Unit propagation: two watched literals

Two watched literals (zCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (
)
- for each literal, remember list of clauses where it is watched

- during unit propagation, only check clauses where the negation of literal is
watched

- nothing needs to be done during backtracking!

.
)T<\/ﬂy\/Z\/—|V\/—|W\/u

Variable assignment: y, v

33/35

Unit propagation: two watched literals

Two watched literals (zCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (
)
- for each literal, remember list of clauses where it is watched

- during unit propagation, only check clauses where the negation of literal is
watched

- nothing needs to be done during backtracking!

.
)T<\/ﬂy\/Z\/—|V\/—|W\/u

Variable assignment: y, v, —=x

33/35

Unit propagation: two watched literals

Two watched literals (zCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (
)
- for each literal, remember list of clauses where it is watched

- during unit propagation, only check clauses where the negation of literal is
watched

- nothing needs to be done during backtracking!

.
X\/ﬂy\/Z\/—'V\/—'TW\/u

Variable assignment: y, v, —=x

33/35

Unit propagation: two watched literals

Two watched literals (zCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (

)

- for each literal, remember list of clauses where it is watched

- during unit propagation, only check clauses where the negation of literal is
watched

- nothing needs to be done during backtracking!

1
X\/ﬂy\/Z\/—'V\/—'TW\/ u
Variable assignment: y, v, =x, =

33/35

Unit propagation: two watched literals

Two watched literals (zCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (

)

- for each literal, remember list of clauses where it is watched

- during unit propagation, only check clauses where the negation of literal is
watched

- nothing needs to be done during backtracking!

1
X\/ﬂy\/Z\/—'V\/—'TW\/ u
Variable assignment: y, v, =x, =

33/35

Unit propagation: two watched literals

Two watched literals (zCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (

)

- for each literal, remember list of clauses where it is watched

- during unit propagation, only check clauses where the negation of literal is
watched

- nothing needs to be done during backtracking!

1
X\/ﬂy\/Z\/—'V\/—'TW\/u
Variable assignment: y, v, =x, =U , W

33/35

Unit propagation: two watched literals

Two watched literals (zCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (

)

- for each literal, remember list of clauses where it is watched

- during unit propagation, only check clauses where the negation of literal is
watched

- nothing needs to be done during backtracking!

1
xvﬂy\/zvﬁvv?\/\/\/u
Variable assignment: y, v, =x, =U , W

33/35

Unit propagation: two watched literals

Two watched literals (zCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (

)

- for each literal, remember list of clauses where it is watched

- during unit propagation, only check clauses where the negation of literal is
watched

- nothing needs to be done during backtracking!

1
xvﬂy\/zvﬁvv?\/\/\/u
Variable assignment: y, v, =x, =U , W

33/35

Unit propagation: two watched literals

Two watched literals (zCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (

)

- for each literal, remember list of clauses where it is watched

- during unit propagation, only check clauses where the negation of literal is
watched

- nothing needs to be done during backtracking!

1
xvﬂy\/zvﬁvv?\/\/\/ u
Variable assignment: y, v, =x, =

33/35

Unit propagation: two watched literals

Two watched literals (zCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (

)

- for each literal, remember list of clauses where it is watched

- during unit propagation, only check clauses where the negation of literal is
watched

- nothing needs to be done during backtracking!

1
X\/ﬂy\/Z\/—'V\/—'TW\/ u
Variable assignment: y, v, =x, =

33/35

Unit propagation: two watched literals

Two watched literals (zCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (
)
- for each literal, remember list of clauses where it is watched

- during unit propagation, only check clauses where the negation of literal is
watched

- nothing needs to be done during backtracking!

.
X\/ﬂy\/Z\/—'V\/—'TW\/u

Variable assignment: y, v, —=x

33/35

Unit propagation: two watched literals

Two watched literals (zCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (
)
- for each literal, remember list of clauses where it is watched

- during unit propagation, only check clauses where the negation of literal is
watched

- nothing needs to be done during backtracking!

.
X\/ﬂy\/Z\/—'V\/—'TW\/u

Variable assignment: y, v, —=x

33/35

Unit propagation: two watched literals

Two watched literals (zCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (
)
- for each literal, remember list of clauses where it is watched

- during unit propagation, only check clauses where the negation of literal is
watched

- nothing needs to be done during backtracking!

.
X\/ﬂy\/Z\/—'V\/—'TW\/u

Variable assignment: y, v

33/35

Unit propagation: two watched literals

Two watched literals (zCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (
)
- for each literal, remember list of clauses where it is watched

- during unit propagation, only check clauses where the negation of literal is
watched

- nothing needs to be done during backtracking!

.
X\/ﬂy\/Z\/—'V\/—'TW\/u

Variable assignment: y, v

33/35

Unit propagation: two watched literals

Two watched literals (zCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (

)

- for each literal, remember list of clauses where it is watched

- during unit propagation, only check clauses where the negation of literal is
watched

- nothing needs to be done during backtracking!

!
X\/ﬂy\/Z\/—'V\/—'TW\/u
Variable assignment: y

33/35

Unit propagation: two watched literals

Two watched literals (zCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (

)

- for each literal, remember list of clauses where it is watched

- during unit propagation, only check clauses where the negation of literal is
watched

- nothing needs to be done during backtracking!

!
X\/ﬂy\/Z\/—'V\/—'TW\/ u
Variable assignment: y

33/35

Unit propagation: two watched literals

Two watched literals (zCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (
)
- for each literal, remember list of clauses where it is watched

- during unit propagation, only check clauses where the negation of literal is
watched

- nothing needs to be done during backtracking!

.
X\/ﬂy\/Z\/—'V\/—'TW\/u

Variable assignment:

33/35

Unit propagation: two watched literals

Two watched literals (zCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (
)
- for each literal, remember list of clauses where it is watched

- during unit propagation, only check clauses where the negation of literal is
watched

- nothing needs to be done during backtracking!

.
X\/—\y\/Z\/—|V\/—|TW\/u

Variable assignment:

33/35

Unit propagation: two watched literals

Two watched literals (zCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (
)
- for each literal, remember list of clauses where it is watched

- during unit propagation, only check clauses where the negation of literal is
watched

- nothing needs to be done during backtracking!

.
X\/—\y\/Z\/—|V\/—|TW\/u

Variable assignment:

33/35

Conflict-Driven Clause Learning (cbcL)

- DPLL search (unit propagation, backtracking)
- + using resolution to learn new clauses after conflict

- + non-chronological backtracking

34 /35

Conflict-Driven Clause Learning (cbcL)

- DPLL search (unit propagation, backtracking)
- + using resolution to learn new clauses after conflict

- + non-chronological backtracking

Modern SAT Solvers

- CDCL

- +two watched literal scheme
- +variable decision heuristics
-+ dynamic restarts

- + preprocessing/inprocessing
34 /35

You can already start implementing your SAT solver

- input in DIMACS format
- DPLL-like assignment decisions and backtracking

- unit propagation with two watched literal scheme

35/35

	Exhaustive search
	Propositional resolution
	Davis-Putnam-Logemann-Loveland algorithm (DPLL)
	Implementing DPLL

