IA169: Model Checking

Seminar 5

Exercise 1 Recall the definition of simulation between two Kripke structures $M = (S^M, \rightarrow^M, S_0^M, L^M)$ and $N = (S^N, \rightarrow^N, S_0^N, L^N)$.

Exercise 2 Given the following Kripke structures M_i , decide for each pair (M_i, M_j) such that $i \neq j$ whether $M_i \leq M_j$ holds. If it does, find the simulation relation. If not, explain why.

Simulation relation between *M* and *N* is written as $M \leq N$ and is read "*N* simulates *M*"

Exercise 3 Briefly explain what is a predicate abstraction M_{may} of a labeled transition system M given a set of predicates \mathbb{P} .

Exercise 4 Consider the labeled transition system M defined by the following description in guarded command language

$$V = \{x, y\},\$$

$$E = \{(a, x = 0, x := x + 1),\$$

$$(b, y = 0, y := y + 1),\$$

$$(c, x > 0, (x := x + 3, y := y + 3))$$

and a set of predicates

$$\mathbb{P} = \{ x > 0, x = y, y > 2 \}.$$

Compute the system M_{may} that is the result of predicate abstraction of the system M.

Exercise 5 Consider the labeled transition system M and the set of predicates \mathbb{P} from Exercise 4. The system satisfies the property $G(|x - y| \le 1)$ but the abstract system M_{may} does not. Find a spurious counterexample.

Try to find a refiniment of \mathbb{P} *that* blocks *the spurious counterexample.*

Exercise 6 Consider the labeled transition system M defined by the following description in guarded command language

$$V = \{x, y\},\$$

$$E = \{(a, \top, y := y + 10),\$$

$$(b, x \mod 3 = 0, (x := x + 1, y := y + 3)),\$$

$$(c, x \mod 3 = 1, (x := x + 1, y := y + 4)),\$$

$$(d, x \mod 3 = 2, (x := x + 1, y := y - 6))\}$$

The system satisfies the property $G(y \ge 0)$. Find a finite set of predicates \mathbb{P} that reduces the system M to a finite-state system M_{may} that also satisfies the property.

Try to find as small \mathbb{P} *as possible.*