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Motivation



Motivation

modern computer systems become more and more complicated
humans and society become more and more dependent on them
bugs can lead to huge economic losses or even loss of life

maiden flight of Ariane 5 - the rocket was destructed due to integer overflow
induced by converting a 64bit floating point number to 16bit signed integer
Pentium FDIV bug - a bug in FPU of early Pentium processors
. . .

correctness cannot be guaranteed by simulation, testing, or code reviews

We need better ways to check that a system is correct!
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Formal methods

Formal methods are a collection of notations and techniques for describing and
analyzing systems. Methods are formal in the sense that they are based on some
mathematical theories, such as logic, automata or graph theory.

Doron A. Peled, 2001

Formal methods can be used for
test generation, bug finding,
verification, security analysis,
equivalence checking,
optimization, synthesis, . . .

of various systems like software, hardware, protocols, etc.
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Basic information about the course



Courses on formal methods at FI MU

situation before summer 2023
IA169 System Verification and Assurance

introductory course on formal methods in general
presented by Jiří Barnat

IA159 Formal Verification Methods
selected advanced topics
it had IA169 as prerequisite

current situation
two independent courses
IA169 Model Checking

basic formal methods for analysis of various systems
few of them are used for software (e.g. abstraction, CEGAR, PDR)

IA159 Formal Methods for Software Analysis
methods designed primarily for analysis of software
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Courses on formal methods at FI MU

content of IA159 Formal Methods for Software Analysis
formal aspects of testing: coverage criteria
automated test generation: greybox and whitebox fuzzing
deductive verification
static analysis and abstract interpretation
shape analysis
program slicing
symbolic execution, bounded model checking, k -induction
configurable program analysis (CPAchecker)
verification via automata, symbolic execution and interpolation (Ultimate
Automizer)
verification witnesses
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Courses on formal methods at FI MU

other courses related to formal methods
IA085 Satisfiability and Automated Reasoning
IV022 Principles of elegant programming
IA072 Seminar on Verification
IV120 Continuous and Hybrid Systems
IA175 Algorithms for Quantitative Verification
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Literature

E. M. Clarke, O. Grumberg, D. Kroening, D. Peled, and R. Bloem: Model
Checking, Second Edition, MIT, 2018.
Ch. Baier and J.-P. Katoen: Principles of Model Checking, MIT, 2008.
E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem: Handbook of Model
Checking, Springer, 2018.
some topics are not covered by these books; relevant sources will be referred
and available in Study materials in IS
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Lectures, seminars, and examination

lectures every week (except 11 April 2024)
seminar every other week starting on 7 March 2024
no intrasemestral tests, no mandatory homeworks
there will be an oral exam at the end
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Overview of the model checking



Model checking

Goal of model checking

Decide whether a given system satisfies a given specification.

system M specification φ

model checking
algorithm

YES,
M satisfies φ

NO,
M violates φ

We are checking whether M is a model of φ, hence the name.
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Model checking: actions versus states

action-based model checking
system exhibits actions and specification talks about actions
basic formalism for system description is labeled transition system

ready credit

beer

coke

insert coin

choose
beer

choose
coke

collect

collect

IA169 Model Checking: Introduction 20/50



Model checking: actions versus states

state-based model checking
there is a set of atomic propositions (AP)
in each state of the system, each atomic proposition either valid or not
specification talks about atomic propositions
basic formalism for system description is Kripke structure

open and empty
go,¬pf

closed and empty
¬go,¬pf

open with 1 car
go,¬pf

closed with 1 car
¬go,¬pf

open with 2 cars
go, pf

closed with 2 cars
¬go, pf

go = gate open
pf = parking full

IA169 Model Checking: Introduction 21/50



Model checking: specification

safety property
all reachable states/actions are safe (no error state/action is reachable)
examples

at every moment, at most one process is in a critical section
the system cannot reach any deadlock state

we talk about reachability analysis

linear time property
each run of the system (a linear sequence of actions or states) has to satisfy
a given property
examples

each request is eventually processed
a system runs forever unless it receives a termination signal

property can be specified by an ω-automaton (e.g. Büchi automaton) or
a formula of linear temporal logic (LTL) or other linear time logic
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Model checking: specification

branching time property
the behavior of the system (a single tree of actions or states) has to satisfy a
given property
examples

there exists a sequence of inputs leading to certain action
in each moment of system execution, the execution can be terminated

property can be specified by an formula of computation tree logic (CTL) or
CTL* or other branching time logic

equivalence with another system
the system is equivalent to another given system up to a given equivalence,
for example strong or weak bisimulation equivalence
we talk about equivalence checking
presented in IA006 Selected Topics on Automata Theory aka FJA II
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Model checking: finite and infinite system

finite systems
systems with finitely many states
basically every model checking problem is decidable by exhaustive (explicit of
implicit) enumeration of its reachable states
in practice, systems are not described by a labeled transition system or a
Kripke structure, but by some implicit description in a programming language,
VHDL, some modelling language (e.g. Promela in SPIN), etc.
the state space of the system can be extremely large even if its description is
small due to large data domains, parallelism, etc.
known as state explosion problem, it can make model checking infeasible
the state explosion problem can be mitigated by

partial order reduction
symbolic algoirthms where sets of states are represented by formulae or BDDs
abstraction applied to the original system

IA169 Model Checking: Introduction 26/50



Example

two parallel processes, each increases x by 1
what is the result of the computation starting with x = 0?

•

•

•

•

•

•

•

•

y1 = x

y1 = y1 + 1

x = y1

y2 = x

y2 = y2 + 1

x = y2

x y1 y2

0, ?, ?

0, 0, ?

0, 1, ?

1, 1, ?

1, 1, 1

1, 1, 2

2, 1, 2

0, ?, 0

0, ?, 1

1, ?, 1

1, 1, 1

1, 2, 1

2, 2, 1

0, 1, 0 0, 0, 1

0, 1, 1

1, 1, 1 1, 1, 1

1, 1, 1

0, 0, 0

1, 1, 0 0, 1, 1

with
partial order

reduction
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Model checking: finite and infinite systems

infinite systems
must be described in a finite way using modelling language, pseudocode, etc.
there has to be some regularity in the state space
undecidable in general
decidable for some classes of systems and properties
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Model checking: finite and infinite system

y1=0;
y2=0;
while (y2 != x2) {

y1 = y1 + x1;
y2++;

}

verification of algorithms vs. verification of programs
if all variables are of finite type (e.g. int), the system is finite and problems
are decidable
if variables are (unbounded) integers, the state space is infinite
decidability of the halting problem for algorithms and programs
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PRS-hierarchy of infinite systems

the hierarchy of process rewrite systems (PRS) presented in IA006 Selected
Topics on Automata Theory aka FJA II
contains many known classes of infinite systems including BPA, BPP, PA,
Petri nets (PN), and pushdown processes (PDA)

PRS
(G,G)-PRS

PAD
(S,G)-PRS

PAN
(P,G)-PRS

PDA
(S,S)-PRS

PA
(1,G)-PRS

PN
(P,P)-PRS

BPA
(1,S)-PRS

BPP
(1,P)-PRS

finite systems
(1,1)-PRS
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Decidability of equivalence checking

the decidability boundary of strong bisimulation in the PRS-hierarchy

PRS

PAD PAN

PDA PA PN

BPA BPP

finite systems

undecidable

decidable
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Decidability of model checking

the decidability boundary of the action-based LTL model checking in the
PRS-hierarchy

PRS

PAD PAN

PDA PA PN

BPA BPP

finite systems

undecidable

decidable

IA169 Model Checking: Introduction 36/50



Content of the course



Actual topics of the course

introduction to model checking - 1 lecture
LTL model checking of finite systems - 3 lectures
CTL model checking of finite systems - 2 lectures
bounded model checking and k -induction - 1 lecture
reachability in pushdown systems - 1 lecture
abstraction and CEGAR - 2 lectures
property-driven reachability (PDR)- 1 lecture
the remaining lecture can be about

partial order reduction
LTL model checking of pushdown systems
hyperproperties
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Automata-based LTL model checking of finite systems

system M LTL formula φ

Büchi automaton AM
represents executions of M

Büchi automaton A¬φ
accepts words violating φ

product Büchi automaton B
L(B) = L(AM) ∩ L(A¬φ)

YES NO
+ counterexample

L(B) ?
= ∅

nested DFS algorithm

reduced automaton B′

by partial order reduction

L(B′)
?
= ∅

nested DFS algorithm

abstraction
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CTL model checking, bounded model checking, reachability in PDA

CTL model checking of finite systems
definition of CTL
basic algorithm
binary decision diagrams (BDD)
symbolic algorithm based on BDDs
definition of CTL*

bounded model checking and k -induction
finite systems represented by propositional formulae
SAT-based algorithm for bounded model checking
extension with k -induction

reachability in pushdown systems
formalism of pushdown systems (PDA) for description of infinite systems
algorithm for reachability in PDA
(algorithm for state-based LTL model checking of PDA)
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Abstraction and CEGAR

reduces the size of systems to be analyzed
can transform an infinite system into a finite one
the set of system behaviours is usually increased (source of false alarms)

x = 0

x = 1

x = 2

x = 3

x = 0

x > 0

counterexample-guided abstraction refinement (CEGAR)
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Property-driven reachability (PDR), hyperproperties

property-driven reachability (PDR)
recent approach to reachability analysis based on SAT solving
implemented in IC3
very successful in particular in hardware verification

hyperproperties
properties talking about several behaviours at once
applications in security
for example, it can say that some information is not revealed
can be presented as an extension of LTL
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Model checking in practice

model checking, in particular reachability analysis, is used in practice,
especially for hardware systems
successful tools (like NuSMV) combine abstraction and symbolic algorithms

success story from Intel
in hardware development, the main debugging methods are testing or
simulation
in development of execution cluster of Core i7 (2008), formal verification has
been used as a primary validation vehicle

simulation has been dropped
only 3 bugs escaped to silicon (2 other bugs were detected during the pre-silicon
stage by full chip testing)
this number is usually about 40, the previous minimum is 11

more information in Kaivola et al: Replacing Testing with Formal Verification in
Intel Core i7 Processor execution Engine Validation, CAV 2009, LNCS 5643,
Springer, 2009.
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