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Automata-based LTL model checking

system K specification formula φ

automaton AK
representing runs of K

automaton A¬φ
representing runs violating φ

Do AK and A¬φ represent
disjoint sets of runs?

YES,
all runs of K satisfy φ

NO + counterexample,
i.e. a run of K violating φ
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Agenda and sources

agenda
formalization of the state-based LTL model checking problem:
(fair) Kripke structure and LTL
Büchi automata (BA) and generalized Büchi automata (GBA)
transformation of finite (fair) Kripke structures to (G)BA
translation of LTL to BA via self-loop alternating automata
algorithms checking disjointness of AK and A¬φ

algorithm based on SCC decomposition
nested DFS algorithm
optimizations

action-based version of LTL model checking

sources
Chapter 7 of E. M. Clarke, O. Grumberg, D. Kroening, D. Peled, and H. Veith:
Model Checking, Second Edition, MIT, 2018.
M. Y. Vardi: An Automata-Theoretic Approach to Linear Temporal Logic,
LNCS 1043, Springer, 1995.
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Formalization of the state-based LTL model checking problem



Atomic propositions

atomic propositions
basic observable properties of each state of the system
for example: x ≥ y + 10, z is even, gate is open, program is at line 10
the validity of each atomic proposition in each state of the system has to be
fully determined by the state
specification talks only about validity of atomic proposition during system runs
AP denotes a countable set of atomic propositions

basic formalism for state-based systems is a Kripke structure
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Kripke structure

Definition (Kripke structure)

A Kripke structure is a tuple K = (S,T ,S0,L), where
S is a set of states,
T ⊆ S × S is a transition relation,
S0 ⊆ S is a set of initial states,
L : S → 2AP is a labeling function associating to each state s ∈ S the set of
atomic propositions that are true in s.

Kripke structures are typically described in an implicit way
formats for implicit description typically offer

programs, processes, finite-state machines
synchronous or asynchronous composition
communication and synchronization mechanisms
nondeterminism or inputs
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Example in the modelling language DVE

channel {byte} c[0];

process A {
byte a;
state q1,q2,q3;
init q1;
trans
q1→q2 { effect a=a+1; },
q2→q3 { effect a=a+1; },
q3→q1 { sync c!a; effect a=0; };

}

process B {
byte b,x;
state p1,p2,p3,p4;
init p1;
trans
p1→p2 { effect b=b+1; },
p2→p3 { effect b=b+1; },
p3→p4 { sync c?x; },
p4→p1 { guard x==b; effect b=0, x=0; };

}

system async;

IA169 Model Checking: Automata-based LTL model checking 9/130



Example of a simple mutual exclusion system

cobegin P0 ∥ P1 coend

P0:: l0: while true do
NC0: wait (turn = 0);
CR0: turn := 1

end while

P1:: l1: while true do
NC1: wait (turn = 1);
CR1: turn := 0

end while

assume that turn is initially 0 or 1

turn = 0
⊥,⊥

turn = 0
l0, l1

turn = 0
l0,NC1

turn = 0
NC0, l1

turn = 0
NC0,NC1

turn = 0
CR0, l1

turn = 0
CR0,NC1

turn = 1
⊥,⊥

turn = 1
l0, l1

turn = 1
l0,NC1

turn = 1
NC0, l1

turn = 1
l0,CR1

turn = 1
NC0,NC1

turn = 1
NC0,CR1
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Run of a Kripke structure

Definition (run)

Let K = (S,T ,S0,L) be a Kripke structure. A run of K is an infinite sequence
π = s0s1s2 . . . of states such that s0 ∈ S0 and (si , si+1) ∈ T holds for each i ≥ 0.

linear time model checking decides whether all runs satisfy the specification
the set of infinite sequences of states is denoted by Sω

to consider also finite runs, we can define a run as a maximal sequence
π = s0s1s2 · · · ∈ S+ ∪ Sω of successive states starting in an initial state,
where maximal means infinite or ending in a state without any successor
it is usually assumed that there are no states without any successors: any
system can be transformed to this form by adding self-loops to such states
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Linear temporal logic (LTL)

Definition (linear temporal logic, LTL)

Formulae of Linear Temporal Logic (LTL) are defined by

φ ::= ⊤ | a | ¬φ | φ1 ∧ φ2 | Xφ | φ1 Uφ2

where ⊤ stands for true and a ranges over a countable set AP.

abbreviations and alternative notation

⊥ ≡ ¬⊤
φ ∨ ψ ≡ ¬(¬φ ∧ ¬ψ)
φ⇒ ψ ≡ ¬φ ∨ ψ
φ⇔ ψ ≡ φ⇒ ψ ∧ φ⇐ ψ

⃝φ ≡ Xφ
Fφ ≡ ♢φ ≡ ⊤Uφ

Gφ ≡ □φ ≡ ¬F¬φ
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Intuitive semantic of LTL

operator name intuitive meaning
Xa next • a • • • . . .
a U b until a a . . . a b • • • . . .
Fa eventually • • . . . • a • • • . . .
Ga always or globally a a a a . . .
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Semantics of LTL

we interpret LTL on infinite words w = w(0)w(1) . . . ∈ (2AP)ω

by wi we denote the suffix of w of the form w(i)w(i + 1)w(i + 2) . . .

Definition

The relation w |= φ, meaning that w satisfies φ, is defined inductively as follows.

w |= ⊤
w |= a iff a ∈ w(0)
w |= ¬φ iff w ̸|= φ
w |= φ1 ∧ φ2 iff w |= φ1 ∧ w |= φ2
w |= Xφ iff w1 |= φ
w |= φ1 Uφ2 iff ∃i ≥ 0 . wi |= φ2 ∧ ∀0 ≤ j < i . wj |= φ1

By AP(φ) we denote the set of atomic propositions appearing in φ.
The language of φ is defined as L(φ) = {w ∈ Σω | w |= φ}, where Σ = 2AP(φ).
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The goal of LTL model checking

Definition

Let K = (S,T ,S0,L) be a Kripke structure and φ be an LTL formula.
A run π = s0s1s2 . . . of K satisfies φ, written π |= φ, if L(s0)L(s1)L(s2) . . . |= φ.
K satisfies φ, written K |= φ, if π |= φ holds for every run π of K .

Given a Kripke structure K and an LTL formula φ, the goal of LTL model checking
is to decide whether K |= φ or not. In the negative case, model checking should
provide a counterexample, i.e., a run π of K such that π ̸|= φ.
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Example

turn = 0
⊥,⊥

turn = 0
l0, l1

turn = 0
l0,NC1

turn = 0
NC0, l1

turn = 0
NC0,NC1

turn = 0
CR0, l1

turn = 0
CR0,NC1

turn = 1
⊥,⊥

turn = 1
l0, l1

turn = 1
l0,NC1

turn = 1
NC0, l1

turn = 1
l0,CR1

turn = 1
NC0,NC1

turn = 1
NC0,CR1

which formulae are satisfied?
G¬(CR0 ∧ CR1)

GFturn = 0 ∧GFturn = 1
IA169 Model Checking: Automata-based LTL model checking 22/130



Extension with fairness

fairness allows to add additional restrictions on the system runs
can reflect properties of process schedulers

Definition (fair Kripke structure)

A fair Kripke structure is a tuple K = (S,T ,S0,L,F), where (S,T ,S0,L) is a
Kripke structure and F = {F1,F2, . . . ,Fn} is a finite set of fairness constraints such
that Fi ⊆ S for each 1 ≤ i ≤ n.
A sequence π = s0s1s2 ∈ Sω is called a fair run of K if it is a run of (S,T ,S0,L)
and it visits each Fi ∈ F infinitely often, i.e., sj ∈ Fi for infinitely many j .
K fairly satisfies an LTL formula φ, written K |=F φ, if each fair run of K satisfies φ.

add reasonable fairness constraint to the mutual exclusion system
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Büchi automata (BA) and generalized Büchi automata (GBA)



Büchi automaton (BA)

Definition (Büchi automaton, BA)

A Büchi automaton (BA) is a tuple A = (Q,Σ, δ,Q0,F ), where
Q is a finite set of states,
Σ is a finite alphabet,
δ ⊆ Q × Σ×Q is a transition relation,
Q0 ⊆ Q is a set of initial states,
F ⊆ Q is a set of accepting states.

we write p a→ q instead of (p,a,q) ∈ δ
a

b

b

a
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Büchi automaton (BA)

for an arbitrary infinite sequence σ, by inf(σ) we denote the set of its elements
that appear infinitely often in σ

Definition (run, language)

Let A = (Q,Σ, δ,Q0,F ) be a BA.
A run of A over an infinite word w = a1a2 . . . ∈ Σω is a sequence of states
π = s0s1 . . . ∈ Qω satisfying s0 ∈ Q0 and si−1

ai→ si for each i ≥ 1.
A run π is accepting if inf(π) ∩ F ̸= ∅.
A word w ∈ Σω is accepted by A if there exists an accepting run of A over w .
A language represented by A is the set L(A) ⊆ Σω of words accepted by A.

L(A) = {w ∈ {a,b}ω | a ∈ inf(w)}

a

b

b

a

IA169 Model Checking: Automata-based LTL model checking 29/130



Büchi automaton (BA)

for an arbitrary infinite sequence σ, by inf(σ) we denote the set of its elements
that appear infinitely often in σ

Definition (run, language)

Let A = (Q,Σ, δ,Q0,F ) be a BA.
A run of A over an infinite word w = a1a2 . . . ∈ Σω is a sequence of states
π = s0s1 . . . ∈ Qω satisfying s0 ∈ Q0 and si−1

ai→ si for each i ≥ 1.
A run π is accepting if inf(π) ∩ F ̸= ∅.
A word w ∈ Σω is accepted by A if there exists an accepting run of A over w .
A language represented by A is the set L(A) ⊆ Σω of words accepted by A.

L(A) = {w ∈ {a,b}ω | a ∈ inf(w)}

a

b

b

a

IA169 Model Checking: Automata-based LTL model checking 30/130



Büchi automaton (BA)

for an arbitrary infinite sequence σ, by inf(σ) we denote the set of its elements
that appear infinitely often in σ

Definition (run, language)

Let A = (Q,Σ, δ,Q0,F ) be a BA.
A run of A over an infinite word w = a1a2 . . . ∈ Σω is a sequence of states
π = s0s1 . . . ∈ Qω satisfying s0 ∈ Q0 and si−1

ai→ si for each i ≥ 1.
A run π is accepting if inf(π) ∩ F ̸= ∅.
A word w ∈ Σω is accepted by A if there exists an accepting run of A over w .
A language represented by A is the set L(A) ⊆ Σω of words accepted by A.

L(A) = {w ∈ {a,b}ω | a ∈ inf(w)}
a

b

b

a

IA169 Model Checking: Automata-based LTL model checking 31/130



Properties of Büchi automata

languages represented by Büchi automata are called ω-regular
the class of ω-regular languages is closed under ∪, ∩, and complement
(though complementation of Büchi automata is highly non-trivial)
deterministic Büchi automata are less expressive than nondeterministic ones:
for example {a,b}∗.{b}ω cannot be described by any deterministic BA

L(A) = {a,b}∗.{b}ωb
a,b b

the class of languages represented by deterministic Büchi automata is not
closed under complement

L(B) = {w ∈ {a,b}ω | a ∈ inf(w)}
L(B) = {a,b}ω ∖ L(A)

a

b

b

a
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Generalized Büchi automaton (GBA)

Definition (generalized Büchi automaton, GBA)

A generalized Büchi automaton (GBA) is a tuple A = (Q,Σ, δ,Q0,F), where
Q,Σ, δ,Q0 have the same meaning as in BA and F = {F1, . . . ,Fn} is a finite set of
accepting sets satisfying Fi ⊆ Q for each Fi ∈ F .
The definition of run is the same as for BA.
A run π is accepting if for each Fi ∈ F it holds inf(π) ∩ Fi ̸= ∅.
The definition of an accepted word and language is the same as for BA.

each BA (Q,Σ, δ,Q0,F ) can be seen as a GBA (Q,Σ, δ,Q0, {F})
each GBA can be transformed into a BA representing the same language
GBAs can be more succinct
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Transformation of finite (fair) Kripke structures to (G)BA



Kripke structure→ BA

since now on, we consider only Kripke structures K with finitely many states
assume that we know the set AP(φ), which is always finite

when deciding K
?

|= φ, we can ignore atomic propositions outside AP(φ)

we transform K into a Büchi automaton AK with alphabet Σ = 2AP(φ)

representing the language

LΣ
K = {a0a1a2 . . . ∈ Σω | there exists a run s0s1s2 . . . of K such that

ai = L(si) ∩ AP(φ) for each i ≥ 0}

corresponding to runs of K projected to AP(φ)
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Kripke structure→ BA

input: a set AP(φ) and a Kripke structure K = (S,T ,S0,L)
output: a BA AK = (S,2AP(φ), δ,S0,S) representing LΣ

K , where Σ = 2AP(φ)

δ = {(p,a,q) | (p,q) ∈ T and a = L(p) ∩ AP(φ)}

go

go

go,pf pf

AP(φ) = {go}

{go}

∅
{go}{go}

{go}

∅
{go}{go}

{go}

∅
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Fair Kripke structure→ GBA

similarly, we transform a fair Kripke structure K into a generalized Büchi
automaton AK with alphabet Σ = 2AP(φ) representing the language

LΣ
K = {a0a1a2 . . . ∈ Σω | there exists a fair run s0s1s2 . . . of K such that

ai = L(si) ∩ AP(φ) for each i ≥ 0}

input: a set AP(φ) and a fair Kripke structure K = (S,T ,S0,L,F)
output: a GBA AK = (S,2AP(φ), δ,S0,F) representing LΣ

K , where Σ = 2AP(φ)

δ = {(p,a,q) | (p,q) ∈ T and a = L(p) ∩ AP(φ)}
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Translation of LTL to BA via self-loop alternating automata



LTL→ BA translations in general

translates an LTL formula φ into a BA Aφ accepting L(φ)
many LTL→ BA translations

LTL→ GBA→ BA (Spin)
LTL→ transition-based GBA (TGBA)→ BA (Spot)
LTL→ self-loop alternating BA→ TGBA→ BA (LTL2BA, LTL3BA)
LTL→ self-loop alternating BA→ BA
. . .

translations via self-loop alternating automata offer
size-reducing optimizations of self-loop alternating automata
smaller resulting BA (in some cases)
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Translation of LTL to BA via self-loop alternating automata

Alternating automata



Positive Boolean formulae

Definition (positive boolean formulae)

Positive Boolean formulae over set Q, denoted with B+(Q), are defined by

φ ::= ⊤ | ⊥ | q | φ1 ∧ φ2 | φ1 ∨ φ2

where ⊤ stands for true, ⊥ stands for false, and q ranges over Q.

S ⊆ Q is a model of φ ⇐⇒ the valuation assigning true just
to elements of S satisfies φ

S is a minimal model of φ ⇐⇒ S is a model of φ and no proper
(written S |= φ) subset of S is a model of φ
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Examples of positive Boolean formulae

formulae of B+({p,q, r}) (minimal) models

⊥ no model
⊤ ∅, {p}, {q}, {r}, {p,q}, . . .

p ∧ q {p,q}, {p,q, r}
p ∨ (q ∧ r) {p}, {p,q}, {p, r}, {q, r}, {p,q, r}
p ∧ (q ∨ r) {p,q}, {p, r}, {p,q, r}

minimal models correspond to clauses in disjunctive normal form
(without superfluous clauses)

φ ≡
∨

S|=φ

(
∧
p∈S

p)
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Alternating Büchi automaton

Definition (alternating Büchi automaton)

An alternating Büchi automaton is a tuple A = (Q,Σ, δ,Q0,F ), where
Q is a finite set of states,
Σ is a finite alphabet,
δ : Q × Σ→ B+(Q) is a transition function,
Q0 ⊆ Q is a set of initial states,
F ⊆ Q is a set of accepting states.
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Trees

Definition (tree, Q-labeled tree)

A tree is a set T ⊆ N∗
0 such that if xc ∈ T , where x ∈ N∗

0 and c ∈ N0, then also
x ∈ T and
xc′ ∈ T for all 0 ≤ c′ < c.

A Q-labeled tree is a pair (T , r) of a tree T and a labeling function r : T → Q.

ε

0 1 2 3

00 01 20 21 22

210

T = {ε,0,1,2,3,00,01,
20,21,22,210}
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Alternating Büchi automaton

Definition (run, language)

A run of an alternating BA A = (Q,Σ, δ,Q0,F ) on word w = a0a1 . . . ∈ Σω is a
Q-labeled tree (T , r) such that

r(ε) ∈ Q0 and
for each x ∈ T : {r(xc) | c ∈ N0, xc ∈ T} |= δ(r(x),a|x |).

A run (T , r) is accepting iff for each infinite branch σ in T it holds that infinitely
many nodes of the branch are labeled with a state in F .
A word w ∈ Σω is accepted by A iff there exists an accepting run of A over w .
A language represented by A is the set L(A) ⊆ Σω of words accepted by A.
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Example of an alternating Büchi automaton

p

q1 q2

q3

a b

a

b

a,b, c

c

c

L(A) = {a}∗.{b}.{a,b, c}∗.{c}ω
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Example of an alternating Büchi automaton
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Self-loop alternating Büchi automaton

Intuitively, an alternating BA is self-loop (or 1-weak or linear or very weak, written
SLAA or A1W or VWAA) if it contains no cycles except self-loops.

Definition (self-loop alternating BA)

Let A = (Q,Σ, δ,Q0,F ) be an alternating BA. For each p ∈ Q we define the set of
all successors of p as

Succ(p) = {q | ∃a ∈ Σ,S ⊆ Q : S ∪ {q} |= δ(p,a)}.

Automaton A is self-loop (or 1-weak or linear or very weak) if there exists a partial
order ≤ on Q such that for all p,q ∈ Q it holds:

q ∈ Succ(p) =⇒ q ≤ p
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Notes

standard Büchi automata are alternating Büchi automata where each δ(p,a)
is ⊥ or a disjunction of states
self-loop alternating BA have the same expressive power as LTL
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Translation of LTL to BA via self-loop alternating automata

LTL→ self-loop alternating BA



LTL→ self-loop alternating BA

input: an LTL formula φ
output: self-loop alternating BA A = (Q,Σ, δ, {qφ},F ) accepting L(φ)

Q = {qψ,q¬ψ | ψ is a subformula of φ}
Σ = 2AP(φ)

δ is defined as follows (where α ∈ B+(Q) satisfies α ≡ ¬α)

δ(q⊤, l) = ⊤ ⊤ = ⊥
δ(qa, l) = ⊤ if a ∈ l , ⊥ otherwise ⊥ = ⊤
δ(q¬ψ, l) = δ(qψ, l) q¬ψ = qψ
δ(qψ∧ρ, l) = δ(qψ, l) ∧ δ(qρ, l) qψ = q¬ψ
δ(qXψ, l) = qψ β ∧ γ = β ∨ γ
δ(qψUρ, l) = δ(qρ, l) ∨ (δ(qψ, l) ∧ qψUρ) β ∨ γ = β ∧ γ

F = {q¬(ψUρ) | ψU ρ is a subformula of φ}
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LTL→ self-loop alternating BA
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LTL→ self-loop alternating BA
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LTL→ self-loop alternating BA

Note that every infinite path of a run of A has a suffix labeled with a state of the
form qψUρ or q¬(ψUρ) (other states have no loops and can appear at most once on
a path). F is defined to prevent the first case: ψUρ is satisfied only if ρ eventually
holds.

Theorem

Given an LTL formula φ, one can construct an self-loop alternating BA A accepting
L(φ) and such that the number of states of A is linear in the length of φ.
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Translation of LTL to BA via self-loop alternating automata

Self-loop alternating BA→ BA



Self-loop alternating BA→ BA

input: a self-loop alternating BA A = (Q,Σ, δ,Q0,F )
output: a BA A′ = (Q′,Σ, δ′,Q′

0,F
′) accepting L(A)
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Self-loop alternating BA→ BA

input: a self-loop alternating BA A = (Q,Σ, δ,Q0,F )
output: a BA A′ = (Q′,Σ, δ′,Q′

0,F
′) accepting L(A)

Intuitively, A′ tracks states on each level of the computation tree of A. Moreover, A′

has to divide the set of states into two sets: states labeling paths with recent
occurrence of an accepting state, and states labeling the other paths.
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Self-loop alternating BA→ BA

input: a self-loop alternating BA A = (Q,Σ, δ,Q0,F )
output: a BA A′ = (Q′,Σ, δ′,Q′

0,F
′) accepting L(A)

Q′ = 2Q × 2Q

Q′
0 = {({q0}, ∅) | q0 ∈ Q0}

δ′((U,V ), l) is defined as:
if U ̸= ∅ then

δ′((U,V ), l) = {(U ′,V ′) | ∃X ,Y ⊆ Q such that
X |=

∧
q∈U δ(q, l) and

Y |=
∧

q∈V δ(q, l) and
U ′ = X ∖ F and V ′ = Y ∪ (X ∩ F )}

if U = ∅ then
δ′((∅,V ), l) = {(U ′,V ′) | ∃Y ⊆ Q such that

Y |=
∧

q∈V δ(q, l) and
U ′ = Y ∖ F and V ′ = Y ∩ F )}

F ′ = {∅} × 2Q
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Self-loop alternating BA→ BA

Theorem

Given a self-loop alternating BA A = (Q,Σ, δ,Q0,F ), one can construct a BA A′

accepting L(A) and such that the number of states of A′ is 2O(|Q|).

Corollary

Given an LTL formula φ and an alphabet Σ, one can construct a BA A′ accepting
L(φ) and such that the number of states of A′ is 2O(|φ|).
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Algorithms checking disjointness of AK and A¬φ



Automata-based LTL model checking

(fair) Kripke structure K LTL formula φ

(generalized) Büchi automaton AK
representing (fair) runs of K

Büchi automaton A¬φ

representing runs violating φ

YES,
K |=(F ) φ

NO + counterexample,
i.e. a (fair) run π of K such that π ̸|= φ

L(Ak ) ∩ L(A¬φ)
?
= ∅
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Automata-based LTL model checking

(fair) Kripke structure K LTL formula φ

(generalized) Büchi automaton AK
representing (fair) runs of K

Büchi automaton A¬φ

representing runs violating φ

YES,
K |=(F ) φ

NO + counterexample,
i.e. a (fair) run π of K such that π ̸|= φ

product generalized Büchi automaton B
L(B) = L(AK ) ∩ L(A¬φ)

L(B)
?
= ∅
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Construction of product automaton

input: GBAs A1 = (Q1,Σ, δ1,Q01,F1) and A2 = (Q2,Σ, δ2,Q02,F2)
output: a GBA B = (Q1 ×Q2,Σ, δ,Q01 ×Q02,F) representing L(A1) ∩ L(A2)

δ = {((p1,p2),a, (q1,q2)) | (p1,a,q1) ∈ δ1 and (p2,a,q2) ∈ δ2}
F = {F1i ×Q2 | F1i ∈ F1} ∪ {Q1 × F2i | F2i ∈ F2}
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Construction of product automaton

input: GBAs A1 = (Q1,Σ, δ1,Q01,F1) and A2 = (Q2,Σ, δ2,Q02,F2)
output: a GBA B = (Q1 ×Q2,Σ, δ,Q01 ×Q02,F) representing L(A1) ∩ L(A2)

δ = {((p1,p2),a, (q1,q2)) | (p1,a,q1) ∈ δ1 and (p2,a,q2) ∈ δ2}
F = {F1i ×Q2 | F1i ∈ F1} ∪ {Q1 × F2i | F2i ∈ F2}

1

2

F1 = {{1}, {2}}

a

b, c

b

a, c

p q r F2 = {{p, r}}a, c
a, c

a,b, c c

c
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Construction of product automaton

input: GBAs A1 = (Q1,Σ, δ1,Q01,F1) and A2 = (Q2,Σ, δ2,Q02,F2)
output: a GBA B = (Q1 ×Q2,Σ, δ,Q01 ×Q02,F) representing L(A1) ∩ L(A2)

δ = {((p1,p2),a, (q1,q2)) | (p1,a,q1) ∈ δ1 and (p2,a,q2) ∈ δ2}
F = {F1i ×Q2 | F1i ∈ F1} ∪ {Q1 × F2i | F2i ∈ F2}

Lemma

L(B) = L(A1) ∩ L(A2).
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Emptiness of a GBA

Theorem

Let B = (Q,Σ, δ,Q0,F) be a GBA. The following conditions are equivalent.
1 L(B) ̸= ∅
2 There exists a nontrivial SCC of B reachable from Q0 and such that the SCC

contains at least one state of each Fi ∈ F .
3 There exists an accepting run of B of the form τ.ρω (so-called lasso-shaped).

Proof.
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Emptiness of a GBA

Theorem

Let B = (Q,Σ, δ,Q0,F) be a GBA. The following conditions are equivalent.
1 L(B) ̸= ∅
2 There exists a nontrivial SCC of B reachable from Q0 and such that the SCC

contains at least one state of each Fi ∈ F .
3 There exists an accepting run of B of the form τ.ρω (so-called lasso-shaped).

Proof.

1 =⇒ 2 Assume that L(B) ̸= ∅. Hence, there exists an accepting run π. The
run has to contain an infinite suffix contained in a single nontrivial
SCC of B reachable form Q0. As the run visits each Fi ∈ F infinitely
often, this SCC has to contain at least one state of each Fi ∈ F .
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Emptiness of a GBA

Theorem

Let B = (Q,Σ, δ,Q0,F) be a GBA. The following conditions are equivalent.
1 L(B) ̸= ∅
2 There exists a nontrivial SCC of B reachable from Q0 and such that the SCC

contains at least one state of each Fi ∈ F .
3 There exists an accepting run of B of the form τ.ρω (so-called lasso-shaped).

Proof.

2 =⇒ 3 Assume that B has a nontrivial SCC reachable from Q0 and
containing at least one state of each Fi ∈ F . Let τ be a sequence of
successive states starting in Q0 and leading to a state q of the SCC.
Due to the properties of the SCC, there exists a sequence ρ of states
of the SCC which starts in some successor of q, ends in q, and
contains some state of each Fi ∈ F . Then τ.ρω is an accepting run.
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Emptiness of a GBA

Theorem

Let B = (Q,Σ, δ,Q0,F) be a GBA. The following conditions are equivalent.
1 L(B) ̸= ∅
2 There exists a nontrivial SCC of B reachable from Q0 and such that the SCC

contains at least one state of each Fi ∈ F .
3 There exists an accepting run of B of the form τ.ρω (so-called lasso-shaped).

Proof.

3 =⇒ 1 Obvious.
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Algorithms checking disjointness of AK and A¬φ

Algorithm based on SCC decomposition



Emptiness check by SCC decomposition

input : a GBA B = (Q,Σ, δ,Q0,F)
output: true if L(B) = ∅; false otherwise

procedure isGBAempty
remove unreachable states from the automaton
decompose the automaton into SCCs
if some nontrivial SCC contains at least one state of each Fi ∈ F then

return false
else

return true

if L(B) ̸= ∅, a counterexample accepted by a lasso-shaped run τ.ρω can be
constructed such that τ reaches the found SCC from Q0 and ρ is a loop
containing all states of the SCC
the corresponding accepted word u.vω ∈ L(B) is also lasso-shaped
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Emptiness check by SCC decomposition

pros
simple
SCC decomposition can be done in time O(|Q|+ |δ|)

cons
the whole GBA has to be known before the procedure starts
in model checking, GBA is a product of AK and A¬φ, where AK is typically
very large and described implicitly

on-the-fly model checking algorithms
the emptiness check explores the product automaton gradually and can
detect nonemptiness without knowing the whole product
the states and transitions of the product are constructed from A¬φ and the
implicit description of AK only on demand
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Algorithms checking disjointness of AK and A¬φ

Nested DFS algorithm



Nested DFS check

also called double DFS
allows on-the-fly model checking
checks emptiness of a BA (not generalized)
can be easily used for model checking of a (not fair) Kripke structure K
such K is transformed into a BA AK where all states are accepting

construction of product BA for a BA with all states accepting and another BA

input: a BA A1 = (Q1,Σ, δ1,Q01,Q1) and a BA A2 = (Q2,Σ, δ2,Q02,F2)
output: a BA B = (Q1 ×Q2,Σ, δ,Q01 ×Q02,F ) representing L(A1) ∩ L(A2)

δ = {((p1,p2),a, (q1,q2)) | (p1,a,q1) ∈ δ1 and (p2,a,q2) ∈ δ2}
F = Q1 × F2
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Emptiness of a BA

Theorem

Let B = (Q,Σ, δ,Q0,F ) be a BA. The L(B) ̸= ∅ ⇐⇒ there exist a run of the form
τ.ρω where ρ starts with a state of F .

Proof.

⇐= Follows directly from the fact that τ.ρω is an accepting run of B.
=⇒ Assume that L(B) ̸= ∅. There exists an accepting run

π = s0s1 . . . ∈ Qω. As π is accepting, there exists a state
q ∈ inf(π) ∩ F . Let i < j be such that si , sj are the first two
occurrences of q in π. Further, let τ = s0s1 . . . si−1 and
ρ = sisi+1 . . . sj−1. Then τ.ρω = s0s1 . . . si−1.(sisi+1 . . . sj−1)

ω is a run
of B and ρ starts with si ∈ F .
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Nested DFS algorithm

the algorithm uses two nested instances of depth-first search
the first DFS searches for reachable accepting states
the nested DFS looks for a cycle from accepting states
the algorithm terminates when a cycle from an accepting state is found
all executions of the nested DFS share the information about visited states:
without this feature, the overall complexity of nested DFS executions would be
O(|F | · (|Q|+ |δ|))
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Nested DFS algorithm

input : a BA B = (Q,Σ, δ,Q0,F )
output: true if L(B) = ∅;

false otherwise

procedure isBAempty
visited1← ∅
visited2← ∅
onStack← ∅
forall q0 ∈ Q0 do

dfs1(q0)
terminate true

procedure dfs1(q)
visited1← visited1 ∪ {q}
onStack← onStack ∪ {q}
forall successors q′ of q do

if q′ ̸∈ visited1 then dfs1(q′)
if q ∈ F then dfs2(q)
onStack← onStack ∖ {q}

procedure dfs2(q)
visited2← visited2 ∪ {q}
forall successors q′ of q do

if q′ ∈ onStack then terminate false
if q′ ̸∈ visited2 then dfs2(q′)
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Example

A B C

D E F

G H I

J K
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Nested DFS algorithm

if the algorithm returns false, it can produce a counterexample corresponding
to the lasso-shaped accepting run given by the current content of DFS stacks
let q be the accepting state from which the last nested DFS was executed
let q′ be the state on stack discovered by the nested DFS

q0

q′

q

stack of the first DFS
stack of the nested DFS

accepting lasso-shaped run:
q099Kq′99K(q99Kq′99K)ω
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Correctness of the nested DFS algorithm

Theorem

The nested DFS algorithm returns false ⇐⇒ L(B) ̸= ∅.

Proof.

=⇒ is obvious. We prove⇐= by contradiction. Assume that L(B) ̸= ∅ and the
algorithm returns true. As L(B) ̸= ∅, there is a run τ.ρω where ρ starts with a state
q ∈ F . When the nested DFS is started from q, there has to be a state q′ on the
stack of the first DFS reachable from q. Nested DFS has not found the cycle
because q′ is reachable only via r ∈ visited2. Assume that q is the first such a
state and that r is added to visited2 during the nested DFS started from q′′ ∈ F .

1 If q′′ is reachable from q, then there is a cycle q′′ 99K r 99K q 99K q′′ which is
the contradiction with the assumption that q is the first such state.

2 If q′′ is not reachable from q, then q is reachable from q′′ via q′′ 99K r 99K q.
We have the contradiction with the fact that the first DFS backtracks from a
state only after it backtracks from all states reachable from them and thus
nested DFS from q′′ cannot be executed before the nested DFS from q.
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Complexity of the nested DFS algorithm

complexity of the first DFS
time: O(|Q|+ |δ|)
space: O(|Q|)

complexity of the nested DFS (all executions)
time: O(|Q|+ |δ|)
space: O(|Q|)

overall complexity
time: O(|Q|+ |δ|)
space: O(|Q|)
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Algorithms checking disjointness of AK and A¬φ

Optimizations



Terminal and weak BA

Definition (terminal BA, weak BA)

Let B be a Büchi automaton with alphabet Σ. A Büchi automaton is terminal if
each accepting state has a loop transition under each a ∈ Σ.
A Büchi automaton is weak if each strongly connected component consists either
of accepting states or of nonaccepting states.

many LTL properties translate to terminal or weak BA
if this is the case, simpler emptiness checks can be used
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Optimization for terminal automata

assume that A¬φ is a terminal BA and each state of BA AK is accepting and
has a successor
let B be the product BA of A¬φ and AK

L(B) ̸= ∅ iff B has a reachable accepting state
instead of nested DFS, emptiness of L(B) can be decided by a single DFS
checking the reachability of an accepting state
properties φ with terminal A¬φ are called safety properties
typical safety property: G¬err
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Optimization for weak automata

assume that A¬φ is a weak BA and each state of BA AK is accepting
let B be the product BA of A¬φ and a BA AK

each cycle of B contains either only accepting states or no accepting state
instead of nested DFS, emptiness of L(B) can be decided by a single DFS
that looks for a cycle and if a cycle is found, it checks whether the current
state is accepting
typical property φ with weak A¬φ: G(a =⇒ Fb) (responsivity)
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Extending LTL with release

another derived LTL operator release: φRψ ≡ ¬(¬φU¬ψ)
equivalently: φRψ ≡ Gψ ∨ ψU (ψ ∧ φ)

a R b b b b b . . . or b b . . . b (ab) . . .

by adding ⊥, ∨, and R to the basic syntax of LTL, we can push all negations
towards atomic propositions using equivalences

¬(φUψ) ≡ ¬φR¬ψ
¬(φRψ) ≡ ¬φU¬ψ
¬Xφ ≡ X¬φ

¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ
¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ

¬¬a ≡ a
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Hierarchy of LTL classes

Definition (hierarchy of LTL classes)

Σ0 = Π0 is the smallest set of LTL formulas containing all atomic propositions
and closed under application of ∧, ∨, ¬, and X.
Σi+1 is the smallest set of LTL formulas containing Πi and closed under
application of ∧, ∨, X, and U.
Πi+1 is the smallest set of LTL formulas containing Σi and closed under
application of ∧, ∨, X, and R.

for each φ ∈ Πi , ¬φ can be transformed (by pushing negations towards atomic
propositions) to an equivalent formula ψ ∈ Σi

for each φ ∈ Σi , ¬φ can be transformed (by pushing negations towards atomic
propositions) to an equivalent formula ψ ∈ Πi

IA169 Model Checking: Automata-based LTL model checking 112/130



Hierarchy of LTL classes

Definition (hierarchy of LTL classes)

Σ0 = Π0 is the smallest set of LTL formulas containing all atomic propositions
and closed under application of ∧, ∨, ¬, and X.
Σi+1 is the smallest set of LTL formulas containing Πi and closed under
application of ∧, ∨, X, and U.
Πi+1 is the smallest set of LTL formulas containing Σi and closed under
application of ∧, ∨, X, and R.

for each φ ∈ Πi , ¬φ can be transformed (by pushing negations towards atomic
propositions) to an equivalent formula ψ ∈ Σi

for each φ ∈ Σi , ¬φ can be transformed (by pushing negations towards atomic
propositions) to an equivalent formula ψ ∈ Πi

IA169 Model Checking: Automata-based LTL model checking 113/130



Properties corresponding to LTL classes

Σ1 describes guarantee properties
Π1 describes safety properties
B+(Σ1 ∪ Π1) describes obligation properties
Σ2 describes persistence properties
Π2 describes recurrence (or response) properties
B+(Σ2 ∪ Π2) describes reactivity properties
the LTL classes are sometimes called guarantee, safety, . . . formulae
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Hierarchy of properties

safety
Π1

recurrence
Π2

guarantee
Σ1

recurrence
Σ2

obligation
B+(Σ1 ∪ Π1)

reactivity
B+(Σ2 ∪ Π2)

Σ0 = Π0

terminal BA

weak BA

each language definable in LTL is definable in B+(Σ2 ∪ Π2)

formulae of Σ1 can be translated to terminal BA
formulae of Σ2 can be translated to weak BA
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Fighting state-space explosion

state-space explosion problem
Kripke structure (and thus also the product automaton) can have enormous
number of states, often exponential in the size of its implicit description
model checking algorithms often run out of memory

methods fighting the problem
low-level techniques for saving memory

lossless compression of states in memory
heuristics based on lossy compression
forgetting some visited states

on-the-fly approaches
can help to find a counterexample, but does not help for correct systems

state-space reduction methods
partial order reduction (only for LTL properties without X operators)
symmetry reduction (avoids exploration of symmetric parts)
abstraction

symbolic representation of sets of states (by formulae or BDDs)
parallel and distributed algorithms
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Action-based version of LTL model checking



Action-based LTL model checking

actions
basic observable information attached to each transition of the system
for example: gate openning, process P entered critical section
Act denotes a countable set of actions

basic formalism for action-based systems is a labeled transition system
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Labeled transition system

Definition (labeled transition system, LTS)

A labeled transition systems (LTS) is a tuple M = (S,Act ′, δ,S0), where
S is a set of states,
Act ′ ⊆ Act is a finite set of actions,
δ ⊆ S × Act ′ × S is a transition relation,
S0 ⊆ S is a set of initial states.

Definition (run, trace)

Let M = (S,Act ′, δ,S0) be an LTS. A run of M is an infinite sequence
π = (s0,a0, s1)(s1,a1, s2)(s2,a2, s3) . . . ∈ δω of adjacent transitions such that
s0 ∈ S0.
The trace of π is then the infinite word σ(π) = a0a1a2 . . ..
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Modified syntax and semantics of LTL

modified syntax of LTL
the only change is that a ranges over Act (instead of AP)

modified semantics of LTL
we interpret LTL on infinite words w = w(0)w(1) . . . ∈ Actω

the only change in the inductive definition of w |= φ is the line
w |= a iff a = w(0) (instead of w |= a iff a ∈ w(0))
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The goal of action-based LTL model checking

Definition

Let M = (S,Act ′, δ,S0) be an LTS and φ be an LTL formula.
A run π of M satisfies φ, written π |= φ, if σ(π) |= φ.
M satisfies φ, written M |= φ, if π |= φ holds for every run π of M.

The goal of action-based LTL model checking is to decide whether a given LTS M
satisfies a given LTL formula φ. In the negative case, model checking should
provide a counterexample, i.e., a run π of M such that π ̸|= φ.
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Automata-based approach to action-based LTL model checking

The automata-based approach to LTL model checking of finite LTS is basically
identical as for finite Kripke structures.

changes
Büchi automata use the alphabet Σ = Act ′ given by the LTS
we assume that φ contains only actions from Act ′ (otherwise, we extend Act ′)
LTS M = (S,Act ′, δ,S0) is transformed into a BA AM = (S,Act ′, δ,S0,S)

modification of LTL→ self-loop alternating BA translation

δ(qa, l) = ⊤ if a = l , ⊥ otherwise (instead of δ(qa, l) = ⊤ if a ∈ l , ⊥ otherwise)
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