IA169 Model Checking

CTL model checking

Jan Strejček

Faculty of Informatics Masaryk University linear time view

- Amir Pnueli, 1977
- system behavior can be seen as a set of state sequences
- property is a restriction applied to each such a sequence
- property can be described by LTL

linear time view

- Amir Pnueli, 1977
- system behavior can be seen as a set of state sequences
- property is a restriction applied to each such a sequence
- property can be described by LTL

branching time view

- Edmund M. Clarke and E. Allen Emerson, 1980
- system behavior is a computation tree, i.e., a branching structure of possible successors of each reachable state of the system
- property is a restriction on the tree
- property can be described by CTL or CTL*

Example of a system and its computation tree

agenda

- computation tree logic (CTL)
- CTL model checking
- CTL*

source

Chapters 5 and 6 of *E. M. Clarke, O. Grumberg, D. Kroening, D. Peled, and R. Bloem: Model Checking, Second Edition, MIT, 2018.*

Computation tree logic (CTL)

- we present only state-based CTL model checking
- for a given in node of a computation tree, the subtree rooted by the node represents all possible runs from the node
- CTL formula talks about runs from this node
- CTL uses temporal operators X, U, F, G known from LTL, but extended with quantifier A saying that the formula should hold on all runs or quantifier E saying that there exists a run satisfying the formula
- for example, EF*a* says that there exists a run from the node such that *a* holds somewhere on the run

Computation tree logic (CTL)

Definition (computation tree logic, CTL)

Formulae of Computation Tree Logic (CTL) are defined by

```
\varphi ::= \top \mid a \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \mathsf{EX}\varphi \mid \mathsf{E}(\varphi_1 \,\mathsf{U}\,\varphi_2) \mid \mathsf{A}(\varphi_1 \,\mathsf{U}\,\varphi_2)
```

where \top stands for true and *a* ranges over a countable set *AP*. By $AP(\varphi)$ we denote the set of atomic propositions appearing in φ .

Computation tree logic (CTL)

Definition (computation tree logic, CTL)

Formulae of Computation Tree Logic (CTL) are defined by

```
\varphi ::= \top \mid a \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \mathsf{EX}\varphi \mid \mathsf{E}(\varphi_1 \,\mathsf{U}\,\varphi_2) \mid \mathsf{A}(\varphi_1 \,\mathsf{U}\,\varphi_2)
```

where \top stands for true and *a* ranges over a countable set *AP*. By $AP(\varphi)$ we denote the set of atomic propositions appearing in φ .

abbreviations

- standard ones for $\bot, \lor, \Rightarrow, \Leftrightarrow$
- $\blacksquare \mathsf{EF}\varphi \equiv \mathsf{E}(\top \mathsf{U}\varphi)$
- $\blacksquare \mathsf{AF}\varphi \equiv \mathsf{A}(\top \mathsf{U}\varphi)$

$$\blacksquare \mathsf{E}\mathsf{G}\varphi \equiv \neg \mathsf{A}\mathsf{F}\neg\varphi$$

$$\blacksquare \mathsf{AG}\varphi \equiv \neg \mathsf{EF}\neg \varphi$$

$$\blacksquare \mathsf{AX}\varphi \equiv \neg \mathsf{EX}\neg \varphi$$

IA169 Model Checking: CTL model checking

EX <i>a</i>	AX <i>a</i>
E(aUb)	A(aUb)
EFa	AF <i>a</i>
EG <i>a</i>	AG <i>a</i>

we interpret CTL over states of a Kripke structure

we assume that each state of a Kripke structure has at least one successor

Definition (path)

Let $K = (S, T, S_0, L)$ be a Kripke structure and $s \in S$ be its state. An (infinite) path of K starting in s is an infinite sequence $\pi = s_0 s_1 s_2 \dots$ of states such that $s_0 = s$ and $(s_i, s_{i+1}) \in T$ holds for each $i \ge 0$.

By $\pi(i)$ we denote the state s_i of π .

By π_i we denote the infinite path $\pi(i)\pi(i+1)\pi(i+2)\dots$

By $P_{\kappa}(s)$ we denote the set of all infinite paths starting in *s*.

Definition

The relation $K, s \models \varphi$, meaning that state *s* of a Kripke structure $K = (S, T, S_0, L)$ satisfies CTL formula φ , is defined inductively as follows.

 $\begin{array}{lll} \mathcal{K}, \boldsymbol{s} \models \top \\ \mathcal{K}, \boldsymbol{s} \models \boldsymbol{a} & \text{iff} & \boldsymbol{a} \in \mathcal{L}(\boldsymbol{s}) \\ \mathcal{K}, \boldsymbol{s} \models \neg \varphi & \text{iff} & \mathcal{K}, \boldsymbol{s} \not\models \varphi \\ \mathcal{K}, \boldsymbol{s} \models \varphi_1 \land \varphi_2 & \text{iff} & \mathcal{K}, \boldsymbol{s} \models \varphi_1 \land \mathcal{K}, \boldsymbol{s} \models \varphi_2 \\ \mathcal{K}, \boldsymbol{s} \models \mathsf{EX}\varphi & \text{iff} & \exists \pi \in \mathcal{P}_{\mathcal{K}}(\boldsymbol{s}) \cdot \mathcal{K}, \pi(1) \models \varphi \\ \mathcal{K}, \boldsymbol{s} \models \mathsf{E}(\varphi_1 \cup \varphi_2) & \text{iff} & \exists \pi \in \mathcal{P}_{\mathcal{K}}(\boldsymbol{s}) \cdot \exists i \geq \mathbf{0} \cdot \mathcal{K}, \pi(i) \models \varphi_2 \land \\ & \land \forall \mathbf{0} \leq j < i \cdot \mathcal{K}, \pi(j) \models \varphi_1 \\ \mathcal{K}, \boldsymbol{s} \models \mathsf{A}(\varphi_1 \cup \varphi_2) & \text{iff} & \forall \pi \in \mathcal{P}_{\mathcal{K}}(\boldsymbol{s}) \cdot \exists i \geq \mathbf{0} \cdot \mathcal{K}, \pi(i) \models \varphi_2 \land \\ & \land \forall \mathbf{0} \leq j < i \cdot \mathcal{K}, \pi(j) \models \varphi_1 \end{array}$

Definition

The relation $K, s \models \varphi$, meaning that state *s* of a Kripke structure $K = (S, T, S_0, L)$ satisfies CTL formula φ , is defined inductively as follows.

 $\begin{array}{ll} \mathsf{K}, \mathbf{s} \models \top \\ \mathsf{K}, \mathbf{s} \models \mathbf{a} & \text{iff} \quad \mathbf{a} \in \mathsf{L}(\mathbf{s}) \\ \mathsf{K}, \mathbf{s} \models \neg \varphi & \text{iff} \quad \mathsf{K}, \mathbf{s} \not\models \varphi \\ \mathsf{K}, \mathbf{s} \models \varphi_1 \land \varphi_2 & \text{iff} \quad \mathsf{K}, \mathbf{s} \models \varphi_1 \land \mathsf{K}, \mathbf{s} \models \varphi_2 \\ \mathsf{K}, \mathbf{s} \models \mathsf{EX}\varphi & \text{iff} \quad \exists \pi \in \mathsf{P}_{\mathsf{K}}(\mathbf{s}) \cdot \mathsf{K}, \pi(1) \models \varphi \\ \mathsf{K}, \mathbf{s} \models \mathsf{E}(\varphi_1 \cup \varphi_2) & \text{iff} \quad \exists \pi \in \mathsf{P}_{\mathsf{K}}(\mathbf{s}) \cdot \exists i \ge \mathbf{0} \cdot \mathsf{K}, \pi(i) \models \varphi_2 \land \\ \land \forall \mathbf{0} \le j < i \cdot \mathsf{K}, \pi(j) \models \varphi_1 \\ \mathsf{K}, \mathbf{s} \models \mathsf{A}(\varphi_1 \cup \varphi_2) & \text{iff} \quad \forall \pi \in \mathsf{P}_{\mathsf{K}}(\mathbf{s}) \cdot \exists i \ge \mathbf{0} \cdot \mathsf{K}, \pi(i) \models \varphi_2 \land \\ \land \forall \mathbf{0} \le j < i \cdot \mathsf{K}, \pi(j) \models \varphi_1 \end{array}$

K satisfies φ , written $K \models \varphi$, if $K, s_0 \models \varphi$ holds for every $s_0 \in S_0$.

IA169 Model Checking: CTL model checking

- condsider a Kripke structure with atomic propositions {*a*, *b*, *r*, *restart*}
- express the following properties by CTL formulae
 - 1 it is possible to reach a state where *a* holds and *b* does not
 - 2 whenever request r is received, the system eventually generates acknowledgment a
 - 3 whenever *b* holds, it is possible that *b* will never hold again
 - 4 there is always an option to reset by system, i.e., to reach a state where *restart* holds

CTL model checking

Let $K = (S, T, S_0, L)$ be a Kripke structure and φ be a CTL formula. We can consider the following problems.

- to decide whether $K \models \varphi$
- local CTL model checking problem: to decide whether $K, s \models \varphi$ holds for a given state $s \in S$
- global CTL model checking problem: to compute the set of states where φ holds, i.e., the set { $s \in S \mid K, s \models \varphi$ }.

Let $K = (S, T, S_0, L)$ be a Kripke structure and φ be a CTL formula. We can consider the following problems.

- to decide whether $K \models \varphi$
- local CTL model checking problem: to decide whether $K, s \models \varphi$ holds for a given state $s \in S$
- global CTL model checking problem: to compute the set of states where φ holds, i.e., the set { $s \in S \mid K, s \models \varphi$ }.

We present an algorithm that can decide all the problems on finite Kripke structures. Since now on, we consider only Kripke structures with finitely many states.

Idea of the algorithm

let $K = (S, T, S_0, L)$ be a Kripke structure and φ be a CTL formula

we transform φ to the form that uses only existentially quantified temporal operators EX, EG, EU (i.e., not AU) using the equivalence

$$\mathsf{A}(\varphi \,\mathsf{U}\,\psi) \ \equiv \ \neg\mathsf{E}\mathsf{G}\neg\psi \ \land \ \neg\mathsf{E}(\neg\psi \,\mathsf{U}\,(\neg\varphi \land \neg\psi))$$

• hence, we assume that φ is of the form

$$\varphi ::= \top \mid a \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \mathsf{EX}\varphi \mid \mathsf{EG}\varphi \mid \mathsf{E}(\varphi_1 \,\mathsf{U}\,\varphi_2)$$

- let $subf(\varphi)$ denote all subformulae of φ , for example $subf(E(\neg a \cup EG(b \land c))) = \{E(\neg a \cup EG(b \land c)), \neg a, a, EG(b \land c), b \land c, b, c\}$
- the algorithm computes function label : S → 2^{subf(φ)} assigning to each state s the set of all subformulae ψ satisfying K, s ⊨ ψ
- the function is built gradually, starting with the atomic proposition of φ and proceeding towards more complex subformulae, ending with φ itself

CTL model checking algorithm

input : a Kripke structure $K = (S, T, S_0, L)$ and a CTL formula φ **output:** function label : $S \rightarrow 2^{subf(\varphi)}$ satisfying $\varphi \in label(s)$ iff $K, s \models \varphi$ for each $s \in S$

```
\begin{array}{l|l} \textbf{procedure } \mathsf{CTLmc}(K,\varphi) \\ \hline \textbf{forall } s \in S \ \textbf{do} \ label(s) \leftarrow (L(s) \cap AP(\varphi)) \cup (\{\top\} \cap subf(\varphi)) \\ solved \leftarrow AP(\varphi) \cup (\{\top, \bot\} \cap subf(\varphi)) \\ \textbf{while } \varphi \notin solved \ \textbf{do} \\ \hline \textbf{choose } \psi \in subf(\varphi) \smallsetminus solved \ such \ that \ subf(\psi) \smallsetminus \{\psi\} \subseteq solved \\ updateLabel(\psi) \\ solved \leftarrow solved \cup \{\psi\} \\ \textbf{return } label \end{array}
```

```
procedure updateLabel(\psi)

if \psi \equiv E(\rho_1 \cup \rho_2) then checkEU(\rho_1, \rho_2)

if \psi \equiv EG\rho then checkEG(\rho)

forall s \in S do

if \psi \equiv \neg \rho and \rho \notin label(s) then label(s) \leftarrow label(s) \cup \{\psi\}

if \psi \equiv \rho_1 \land \rho_2 and \rho_1, \rho_2 \in label(s) then label(s) \leftarrow label(s) \cup \{\psi\}

if \psi \equiv EX\rho and there exists s' \in S such that (s, s') \in T and \rho \in label(s') then

\mid label(s) \leftarrow label(s) \cup \{\psi\}
```

```
\begin{array}{c|c} \textbf{procedure checkEU}(\rho_1, \rho_2) \\ Q \leftarrow \{s \mid \rho_2 \in label(s)\} \\ \textbf{forall } s \in Q \text{ do } label(s) \leftarrow label(s) \cup \{E(\rho_1 \cup \rho_2)\} \\ \textbf{while } Q \neq \emptyset \text{ do} \\ \\ choose \ s \in Q \\ Q \leftarrow Q \smallsetminus \{s\} \\ \textbf{forall } s' \text{ such that } (s', s) \in T \text{ do} \\ \\ if \ \rho_1 \in label(s') \text{ and } E(\rho_1 \cup \rho_2) \notin label(s') \text{ then} \\ \\ label(s') \leftarrow label(s') \cup \{E(\rho_1 \cup \rho_2)\} \\ Q \leftarrow Q \cup \{s'\} \end{array}
```

procedure checkEG(ρ)

```
\begin{array}{l} S' \leftarrow \{s \mid \rho \in \mathsf{label}(s)\} \\ Q \leftarrow \{s \mid s \text{ is a node of some nontrivial SCC of graph } (S', T \cap (S' \times S'))\} \\ \texttt{forall } s \in Q \text{ do } \mathsf{label}(s) \leftarrow \mathsf{label}(s) \cup \{\mathsf{EG}\rho\} \\ \texttt{while } Q \neq \emptyset \text{ do} \\ | \begin{array}{c} \mathsf{choose } s \in Q \\ Q \leftarrow Q \setminus \{s\} \\ \texttt{forall } s' \text{ such that } (s', s) \in T \text{ do} \\ | \begin{array}{c} \mathsf{if } \rho \in \mathsf{label}(s') \text{ and } \mathsf{EG}\rho \notin \mathsf{label}(s') \text{ then} \\ | \begin{array}{c} \mathsf{label}(s') \leftarrow \mathsf{label}(s') \cup \{\mathsf{EG}\rho\} \\ Q \leftarrow Q \cup \{s'\} \end{array} \end{array}
```

Example

IA169 Model Checking: CTL model checking

Transformation of formula $AG(Start \Rightarrow AF Heat)$

$$\begin{array}{ll} \mathsf{AG}(\mathsf{Start} \Rightarrow \mathsf{AF}\,\mathsf{Heat}) & \equiv \neg\mathsf{EF}(\neg(\mathsf{Start} \Rightarrow \mathsf{AF}\,\mathsf{Heat})) \\ & \equiv \neg\mathsf{EF}(\mathsf{Start} \land \neg\mathsf{AF}\,\mathsf{Heat}) \\ & \equiv \neg\mathsf{EF}(\mathsf{Start} \land \mathsf{EG}\neg\mathsf{Heat}) \\ & \equiv \neg\mathsf{E}(\top \,\mathsf{U}\,(\mathsf{Start} \land \mathsf{EG}\neg\mathsf{Heat})) \end{array}$$

Transformation of formula $AG(Start \Rightarrow AF Heat)$

$$\begin{array}{ll} \mathsf{AG}(\mathsf{Start} \Rightarrow \mathsf{AF}\,\mathsf{Heat}) & \equiv \neg\mathsf{EF}(\neg(\mathsf{Start} \Rightarrow \mathsf{AF}\,\mathsf{Heat})) \\ & \equiv \neg\mathsf{EF}(\mathsf{Start} \land \neg\mathsf{AF}\,\mathsf{Heat}) \\ & \equiv \neg\mathsf{EF}(\mathsf{Start} \land \mathsf{EG}\neg\mathsf{Heat}) \\ & \equiv \neg\mathsf{E}(\top \,\mathsf{U}\,(\mathsf{Start} \land \mathsf{EG}\neg\mathsf{Heat})) \end{array}$$

subformuala $ ho$	states satisfying ρ , i.e. $\{\boldsymbol{s} \mid \boldsymbol{K}, \boldsymbol{s} \models \rho\}$
Τ	$\{1, 2, 3, 4, 5, 6, 7\}$
Start	{2,5,6,7}
Heat	{4,7}
⊸Heat	$\{1, 2, 3, 5, 6\}$
EG⊣Heat	{ 1 , 2 , 3 , 5 }
Start \land EG \neg Heat	{2,5}
$ op$ U (Start \wedge EG $ eg$ Heat)	$\{1, 2, 3, 4, 5, 6, 7\}$
$\neg E(\top U(Start \land EG \neg Heat))$	Ø

Complexity of the CTL model checking algorithm

- **\blacksquare** each formula φ has at most $|\varphi|$ subformulae
- decomposition of every subgraph (S', T ∩ (S' × S')) of K into SCCs can be done in time O(|S| + |T|)
- every call of updateLabel(ψ) terminates in time $\mathcal{O}(|S| + |T|)$
- CTLmc runs in time $\mathcal{O}(|\varphi| \cdot (|S| + |T|))$ and in space $\mathcal{O}(|\varphi| \cdot |S|)$

- **each** formula φ has at most $|\varphi|$ subformulae
- decomposition of every subgraph (S', T ∩ (S' × S')) of K into SCCs can be done in time O(|S| + |T|)
- every call of updateLabel(ψ) terminates in time $\mathcal{O}(|S| + |T|)$
- **CTLmc** runs in time $\mathcal{O}(|\varphi| \cdot (|S| + |T|))$ and in space $\mathcal{O}(|\varphi| \cdot |S|)$

- despite its linear complexity, the algorithm also suffers from state-space explosion as the Kripke structure can be extremely large
- in fact, the problem is common for all explicit-state model checking algorithms, where states are handled individually

CTL*

LTL and CTL are expressively incomparable

• there is no CTL formula φ such that $K \models \varphi \iff K \models FG a$ for each K

• there is no LTL formula φ such that $K \models \varphi \iff K \models \mathsf{AGEF} a$ for each K

LTL and CTL are expressively incomparable

- there is no CTL formula φ such that $K \models \varphi \iff K \models FG a$ for each K
- there is no LTL formula φ such that $K \models \varphi \iff K \models \mathsf{AGEF} a$ for each K

CTL*

- a common generalization of both CTL and LTL
- a branching time logic
- the main idea is to decouple temporal operators and quantifiers
- for example, $A(a \land FG b)$ is a CTL* formula, but not CTL formula

the syntax distinguishes two types of formulae: path and state formulae
 aplication of quantifiers E, A on a path formula results in a state formula

Definition (CTL*)

Formulae of CTL* are inductively defined by

$$\varphi ::= \top \mid a \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \mathsf{E}\psi$$
 (state formulae)

 $\psi ::= \varphi \mid \neg \psi \mid \psi_1 \land \psi_2 \mid X \psi \mid \psi_1 \cup \psi_2$ (path formulae)

where \top stands for true and *a* ranges over a countable set *AP*, φ represents state formulae and ψ represents path formulae.

the syntax distinguishes two types of formulae: path and state formulae
 aplication of quantifiers E, A on a path formula results in a state formula

Definition (CTL*)

Formulae of CTL* are inductively defined by

$$\varphi ::= \top \mid a \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \mathsf{E}\psi$$
 (state formulae)

 $\psi ::= \varphi \mid \neg \psi \mid \psi_1 \land \psi_2 \mid X \psi \mid \psi_1 \cup \psi_2$ (path formulae)

where \top stands for true and *a* ranges over a countable set *AP*, φ represents state formulae and ψ represents path formulae.

similar abbreviations can be defined as for LTL and CTL

the syntax distinguishes two types of formulae: path and state formulae
 aplication of quantifiers E, A on a path formula results in a state formula

Definition (CTL*)

Formulae of CTL* are inductively defined by

$$\varphi ::= \top | a | \neg \varphi | \varphi_1 \land \varphi_2 | E\psi$$
 (state formulae)

 $\psi ::= \varphi \mid \neg \psi \mid \psi_1 \land \psi_2 \mid X \psi \mid \psi_1 \cup \psi_2$ (path formulae)

where \top stands for true and *a* ranges over a countable set *AP*, φ represents state formulae and ψ represents path formulae.

similar abbreviations can be defined as for LTL and CTL

path/state formulae are interpreted over paths/states in a Kripke structure
we assume that each state of a Kripke structure has at least one successor

Semantics of CTL*

• $\pi(i)$ denotes the (i + 1)-st state of π and π_i denotes the path $\pi(i)\pi(i + 1)\dots$

Definition

Let *K* be a Kripke structure, *s* be its state, and π be its infinite path. The relations $K, s \models \varphi$, meaning that state *s* satisfies a state formula φ , and $K, \pi \models \psi$, meaning that path π satisfies a path formula ψ , are defined inductively as follows.

$K, s \models \top$		
$K, s \models a$	iff	$a \in L(s)$
$K, \boldsymbol{s} \models \neg \varphi$	iff	$K, oldsymbol{s} ot \!$
$K, \boldsymbol{s} \models \varphi_1 \land \varphi_2$	iff	$K, oldsymbol{s} \models arphi_1 \wedge K, oldsymbol{s} \models arphi_2$
$K, oldsymbol{s} \models E\psi$	iff	$\exists \pi \in \mathcal{P}_{\mathcal{K}}(\boldsymbol{s})$. $\mathcal{K}, \pi \models \psi$
$K, \pi \models \varphi$	iff	$\mathcal{K}, \pi(0) \models arphi$
$K, \pi \models \neg \psi$	iff	$K,\pi ot\equiv\psi$
$K, \pi \models \psi_1 \land \psi_2$	iff	$K, \pi \models \psi_1 \land K, \pi \models \psi_2$
$K, \pi \models X\psi$	iff	$K, \pi_1 \models \psi$
$\mathbf{K}, \pi \models \psi_1 U \psi_2$	iff	$\exists i \geq 0 . K, \pi_i \models \psi_{2} \; \land \; \forall 0 \leq j < i . K, \pi_j \models \psi_{1}$