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Linear vs. branching time

linear time view
Amir Pnueli, 1977
system behavior can be seen as a set of state sequences
property is a restriction applied to each such a sequence
property can be described by LTL

branching time view
Edmund M. Clarke and E. Allen Emerson, 1980
system behavior is a computation tree, i.e., a branching structure of possible
successors of each reachable state of the system
property is a restriction on the tree
property can be described by CTL or CTL*
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Example of a system and its computation tree
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Agenda and sources

agenda
computation tree logic (CTL)
CTL model checking
CTL*

source
Chapters 5 and 6 of E. M. Clarke, O. Grumberg, D. Kroening, D. Peled, and R.
Bloem: Model Checking, Second Edition, MIT, 2018.
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Computation tree logic (CTL)



Intuition for CTL

we present only state-based CTL model checking
for a given in node of a computation tree, the subtree rooted by the node
represents all possible runs from the node
CTL formula talks about runs from this node
CTL uses temporal operators X,U,F,G known from LTL, but extended with
quantifier A saying that the formula should hold on all runs or quantifier E
saying that there exists a run satisfying the formula
for example, EFa says that there exists a run from the node such that a holds
somewhere on the run
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Computation tree logic (CTL)

Definition (computation tree logic, CTL)

Formulae of Computation Tree Logic (CTL) are defined by

φ ::= ⊤ | a | ¬φ | φ1 ∧ φ2 | EXφ | E(φ1 Uφ2) | A(φ1 Uφ2)

where ⊤ stands for true and a ranges over a countable set AP.
By AP(φ) we denote the set of atomic propositions appearing in φ.

abbreviations
standard ones for ⊥,∨,⇒,⇔
EFφ ≡ E(⊤Uφ)

AFφ ≡ A(⊤Uφ)

EGφ ≡ ¬AF¬φ
AGφ ≡ ¬EF¬φ
AXφ ≡ ¬EX¬φ

IA169 Model Checking: CTL model checking 8/33



Computation tree logic (CTL)

Definition (computation tree logic, CTL)

Formulae of Computation Tree Logic (CTL) are defined by

φ ::= ⊤ | a | ¬φ | φ1 ∧ φ2 | EXφ | E(φ1 Uφ2) | A(φ1 Uφ2)

where ⊤ stands for true and a ranges over a countable set AP.
By AP(φ) we denote the set of atomic propositions appearing in φ.

abbreviations
standard ones for ⊥,∨,⇒,⇔
EFφ ≡ E(⊤Uφ)

AFφ ≡ A(⊤Uφ)

EGφ ≡ ¬AF¬φ
AGφ ≡ ¬EF¬φ
AXφ ≡ ¬EX¬φ

IA169 Model Checking: CTL model checking 9/33



Intuitive semantic of CTL

EXa AXa

E(a U b) A(a U b)

EFa AFa

EGa AGa
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Semantics of CTL

we interpret CTL over states of a Kripke structure
we assume that each state of a Kripke structure has at least one successor

Definition (path)

Let K = (S,T ,S0,L) be a Kripke structure and s ∈ S be its state. An (infinite) path
of K starting in s is an infinite sequence π = s0s1s2 . . . of states such that s0 = s
and (si , si+1) ∈ T holds for each i ≥ 0.
By π(i) we denote the state si of π.
By πi we denote the infinite path π(i)π(i + 1)π(i + 2) . . ..
By PK (s) we denote the set of all infinite paths starting in s.
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Semantics of CTL

Definition

The relation K , s |= φ, meaning that state s of a Kripke structure K = (S,T ,S0,L)
satisfies CTL formula φ, is defined inductively as follows.

K , s |= ⊤
K , s |= a iff a ∈ L(s)
K , s |= ¬φ iff K , s ̸|= φ
K , s |= φ1 ∧ φ2 iff K , s |= φ1 ∧ K , s |= φ2
K , s |= EXφ iff ∃π ∈ PK (s) . K , π(1) |= φ
K , s |= E(φ1 Uφ2) iff ∃π ∈ PK (s) . ∃i ≥ 0 . K , π(i) |= φ2 ∧

∧ ∀0 ≤ j < i . K , π(j) |= φ1
K , s |= A(φ1 Uφ2) iff ∀π ∈ PK (s) . ∃i ≥ 0 . K , π(i) |= φ2 ∧

∧ ∀0 ≤ j < i . K , π(j) |= φ1

K satisfies φ, written K |= φ, if K , s0 |= φ holds for every s0 ∈ S0.

IA169 Model Checking: CTL model checking 12/33



Semantics of CTL

Definition

The relation K , s |= φ, meaning that state s of a Kripke structure K = (S,T ,S0,L)
satisfies CTL formula φ, is defined inductively as follows.

K , s |= ⊤
K , s |= a iff a ∈ L(s)
K , s |= ¬φ iff K , s ̸|= φ
K , s |= φ1 ∧ φ2 iff K , s |= φ1 ∧ K , s |= φ2
K , s |= EXφ iff ∃π ∈ PK (s) . K , π(1) |= φ
K , s |= E(φ1 Uφ2) iff ∃π ∈ PK (s) . ∃i ≥ 0 . K , π(i) |= φ2 ∧

∧ ∀0 ≤ j < i . K , π(j) |= φ1
K , s |= A(φ1 Uφ2) iff ∀π ∈ PK (s) . ∃i ≥ 0 . K , π(i) |= φ2 ∧

∧ ∀0 ≤ j < i . K , π(j) |= φ1

K satisfies φ, written K |= φ, if K , s0 |= φ holds for every s0 ∈ S0.

IA169 Model Checking: CTL model checking 13/33



Exercise

condsider a Kripke structure with atomic propositions {a,b, r , restart}
express the following properties by CTL formulae

1 it is possible to reach a state where a holds and b does not
2 whenever request r is received, the system eventually generates

acknowledgment a
3 whenever b holds, it is possible that b will never hold again
4 there is always an option to reset by system, i.e., to reach a state where restart

holds
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CTL model checking



CTL model checking problems

Let K = (S,T ,S0,L) be a Kripke structure and φ be a CTL formula. We can
consider the following problems.

to decide whether K |= φ

local CTL model checking problem: to decide whether K , s |= φ holds for a
given state s ∈ S
global CTL model checking problem: to compute the set of states where φ
holds, i.e., the set {s ∈ S | K , s |= φ}.

We present an algorithm that can decide all the problems on finite Kripke
structures. Since now on, we consider only Kripke structures with finitely many
states.
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Idea of the algorithm

let K = (S,T ,S0,L) be a Kripke structure and φ be a CTL formula
we transform φ to the form that uses only existentially quantified temporal
operators EX,EG,EU (i.e., not AU) using the equivalence

A(φUψ) ≡ ¬EG¬ψ ∧ ¬E(¬ψU (¬φ ∧ ¬ψ))

hence, we assume that φ is of the form

φ ::= ⊤ | a | ¬φ | φ1 ∧ φ2 | EXφ | EGφ | E(φ1 Uφ2)

let subf (φ) denote all subformulae of φ, for example
subf (E(¬a U EG(b ∧ c))) = {E(¬a U EG(b ∧ c)),¬a,a,EG(b ∧ c),b ∧ c,b, c}
the algorithm computes function label : S → 2subf (φ) assigning to each state s
the set of all subformulae ψ satisfying K , s |= ψ

the function is built gradually, starting with the atomic proposition of φ and
proceeding towards more complex subformulae, ending with φ itself
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CTL model checking algorithm

input : a Kripke structure K = (S,T ,S0,L) and a CTL formula φ
output: function label : S → 2subf (φ) satisfying φ ∈ label(s) iff K , s |= φ for each s ∈ S

procedure CTLmc(K , φ)
forall s ∈ S do label(s)← (L(s) ∩ AP(φ)) ∪ ({⊤} ∩ subf (φ))
solved ← AP(φ) ∪ ({⊤,⊥} ∩ subf (φ))
while φ ̸∈ solved do

choose ψ ∈ subf (φ)∖ solved such that subf (ψ)∖ {ψ} ⊆ solved
updateLabel(ψ)
solved← solved ∪ {ψ}

return label

procedure updateLabel(ψ)
if ψ ≡ E(ρ1 U ρ2) then checkEU(ρ1, ρ2)
if ψ ≡ EGρ then checkEG(ρ)
forall s ∈ S do

if ψ ≡ ¬ρ and ρ ̸∈ label(s) then label(s)← label(s) ∪ {ψ}
if ψ ≡ ρ1 ∧ ρ2 and ρ1, ρ2 ∈ label(s) then label(s)← label(s) ∪ {ψ}
if ψ ≡ EXρ and there exists s′ ∈ S such that (s, s′) ∈ T and ρ ∈ label(s′) then

label(s)← label(s) ∪ {ψ}
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CTL model checking algorithm

procedure checkEU(ρ1, ρ2)
Q ← {s | ρ2 ∈ label(s)}
forall s ∈ Q do label(s)← label(s) ∪ {E(ρ1 U ρ2)}
while Q ̸= ∅ do

choose s ∈ Q
Q ← Q ∖ {s}
forall s′ such that (s′, s) ∈ T do

if ρ1 ∈ label(s′) and E(ρ1 U ρ2) ̸∈ label(s′) then
label(s′)← label(s′) ∪ {E(ρ1 U ρ2)}
Q ← Q ∪ {s′}
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CTL model checking algorithm

procedure checkEG(ρ)
S′ ← {s | ρ ∈ label(s)}
Q ← {s | s is a node of some nontrivial SCC of graph (S′,T ∩ (S′ × S′))}
forall s ∈ Q do label(s)← label(s) ∪ {EGρ}
while Q ̸= ∅ do

choose s ∈ Q
Q ← Q ∖ {s}
forall s′ such that (s′, s) ∈ T do

if ρ ∈ label(s′) and EGρ ̸∈ label(s′) then
label(s′)← label(s′) ∪ {EGρ}
Q ← Q ∪ {s′}
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Example

check if microwave oven satisfies
AG(Start⇒ AF Heat)
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Transformation of formula AG(Start⇒ AF Heat)

AG(Start⇒ AF Heat) ≡ ¬EF(¬(Start⇒ AF Heat))
≡ ¬EF(Start ∧ ¬AF Heat)
≡ ¬EF(Start ∧ EG¬Heat)
≡ ¬E(⊤U (Start ∧ EG¬Heat))

subformuala ρ states satisfying ρ, i.e. {s | K , s |= ρ}
⊤ {1,2,3,4,5,6,7}

Start {2,5,6,7}
Heat {4,7}
¬Heat {1,2,3,5,6}

EG¬Heat {1,2,3,5}
Start ∧ EG¬Heat {2,5}

⊤U (Start ∧ EG¬Heat) {1,2,3,4,5,6,7}
¬E(⊤U (Start ∧ EG¬Heat)) ∅
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Complexity of the CTL model checking algorithm

each formula φ has at most |φ| subformulae
decomposition of every subgraph (S′,T ∩ (S′ × S′)) of K into SCCs can be
done in time O(|S|+ |T |)
every call of updateLabel(ψ) terminates in time O(|S|+ |T |)
CTLmc runs in time O(|φ| · (|S|+ |T |)) and in space O(|φ| · |S|)

despite its linear complexity, the algorithm also suffers from state-space
explosion as the Kripke structure can be extremely large
in fact, the problem is common for all explicit-state model checking algorithms,
where states are handled individually
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CTL*



Comparison of LTL and CTL

LTL and CTL are expressively incomparable
there is no CTL formula φ such that K |= φ ⇐⇒ K |= FG a for each K
there is no LTL formula φ such that K |= φ ⇐⇒ K |= AGEF a for each K

CTL*
a common generalization of both CTL and LTL
a branching time logic
the main idea is to decouple temporal operators and quantifiers
for example, A(a ∧ FG b) is a CTL* formula, but not CTL formula
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CTL*

the syntax distinguishes two types of formulae: path and state formulae
aplication of quantifiers E,A on a path formula results in a state formula

Definition (CTL*)

Formulae of CTL* are inductively defined by

φ ::= ⊤ | a | ¬φ | φ1 ∧ φ2 | Eψ (state formuale)

ψ ::= φ | ¬ψ | ψ1 ∧ ψ2 | Xψ | ψ1 Uψ2 (path formulae)

where ⊤ stands for true and a ranges over a countable set AP, φ represents state
formulae and ψ represents path formulae.

similar abbreviations can be defined as for LTL and CTL

path/state formulae are interpreted over paths/states in a Kripke structure
we assume that each state of a Kripke structure has at least one successor
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Semantics of CTL*

π(i) denotes the (i + 1)-st state of π and πi denotes the path π(i)π(i + 1) . . .

Definition

Let K be a Kripke structure, s be its state, and π be its infinite path. The relations
K , s |= φ, meaning that state s satisfies a state formula φ, and K , π |= ψ, meaning
that path π satisfies a path formula ψ, are defined inductively as follows.

K , s |= ⊤
K , s |= a iff a ∈ L(s)
K , s |= ¬φ iff K , s ̸|= φ
K , s |= φ1 ∧ φ2 iff K , s |= φ1 ∧ K , s |= φ2
K , s |= Eψ iff ∃π ∈ PK (s) . K , π |= ψ
K , π |= φ iff K , π(0) |= φ
K , π |= ¬ψ iff K , π ̸|= ψ
K , π |= ψ1 ∧ ψ2 iff K , π |= ψ1 ∧ K , π |= ψ2
K , π |= Xψ iff K , π1 |= ψ
K , π |= ψ1 Uψ2 iff ∃i ≥ 0 . K , πi |= ψ2 ∧ ∀ 0 ≤ j < i . K , πj |= ψ1
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