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Motivation

BDDs represents all models of the corresponding propositional formulas
in LTL model checking, we want to decide whether some violating run exists
if we represent violating runs by a formula, we need to decide its satisfiability
SAT solvers can efficiently decide it (despite NP-completeness of the problem)

for satisfiable formulas, SAT solvers provide a model
a formula φ is true iff ¬φ is not satisfiable
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Agenda and sources

agenda
finite Kripke structures represented by formulas
bounded model checking (BMC) for safety properties
BMC for LTL properties
completeness of BMC
k -induction

source
Chapter 10 of E. M. Clarke, O. Grumberg, D. Kroening, D. Peled, and R.
Bloem: Model Checking, Second Edition, MIT, 2018.
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Finite Kripke structures represented by formulas



Finite Kripke structures represented by formulas

each Kripke structure K = (S,T ,S0,L) with finitely many states and a finite
set of used atomic propositions can be encoded by propositional formulas
states in S correspond to assignments s : V → {0,1}, where V = {x1, . . . , xn}
S0 is identified with a formula S0(x1, . . . , xn) satisfied by initial states
transition relation T ⊆ S × S is identified with a formula
T (x1, . . . , xn, x ′

1, . . . , x
′
n)

we replace L : S → 2AP with a formula p(x1, . . . , xn) for each relevant p ∈ AP

00
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p
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p

11
¬p

S0(x1, x2) = ¬x1 ∧ ¬x2

T (x1, x2, x ′
1, x

′
2) = (¬x1 ∧ ¬x2 ∧ ¬x ′

1 ∧ x ′
2) ∨ (¬x1 ∧ x2 ∧ x ′

1) ∨
∨ (x1 ∧ ¬x2 ∧ ¬x ′

1 ∧ ¬x ′
2) ∨ (x1 ∧ x2 ∧ ∧x ′

1 ∧ x ′
2)

p(x1, x2) = ¬x1 ∨ ¬x2
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Finite Kripke structures represented by formulas

we write x⃗ instead of x1, . . . , xn, i.e., we use S0(x⃗), T (x⃗ , x⃗ ′) and p(x⃗)
when building formulas about more than one or two states, we will use
x⃗0, x⃗1, . . ., where x⃗i stands for xi1, . . . , xi n

for example, models of T (x⃗0, x⃗1) ∧ T (x⃗1, x⃗2) represent paths of length 2
recall that we assume that each state has at least one successor
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Bounded model checking (BMC) for safety properties



Basic idea of bounded model checking (BMC)

if a finite system violates a given property, it often has a short counterexample
bounded model checking (BMC) analyzes runs up to the first k steps
if an erroneous run is found, we know that the system violates the property;
otherwise, we can increase k and try again

let us consider the safety property Gp
the property is violated iff some run satisfies F¬p
there is a run violating the property within the first k steps iff the following
formula is satisfiable

S0(x⃗0) ∧
k−1∧
i=0

T (x⃗i , x⃗i+1) ∧
k∨

i=0

¬p(x⃗i)

for example, for k = 3 the formula is

S0(x⃗0) ∧ T (x⃗0, x⃗1) ∧ T (x⃗1, x⃗2) ∧ T (x⃗2, x⃗3) ∧
(
¬p(x⃗0)∨¬p(x⃗1)∨¬p(x⃗2)∨¬p(x⃗3)

)

IA169 Model Checking: Bounded model checking and k -induction 10/39



Basic idea of bounded model checking (BMC)

if a finite system violates a given property, it often has a short counterexample
bounded model checking (BMC) analyzes runs up to the first k steps
if an erroneous run is found, we know that the system violates the property;
otherwise, we can increase k and try again

let us consider the safety property Gp
the property is violated iff some run satisfies F¬p
there is a run violating the property within the first k steps iff the following
formula is satisfiable

S0(x⃗0) ∧
k−1∧
i=0

T (x⃗i , x⃗i+1) ∧
k∨

i=0

¬p(x⃗i)

for example, for k = 3 the formula is

S0(x⃗0) ∧ T (x⃗0, x⃗1) ∧ T (x⃗1, x⃗2) ∧ T (x⃗2, x⃗3) ∧
(
¬p(x⃗0)∨¬p(x⃗1)∨¬p(x⃗2)∨¬p(x⃗3)

)

IA169 Model Checking: Bounded model checking and k -induction 11/39



Basic idea of bounded model checking (BMC)

if a finite system violates a given property, it often has a short counterexample
bounded model checking (BMC) analyzes runs up to the first k steps
if an erroneous run is found, we know that the system violates the property;
otherwise, we can increase k and try again

let us consider the safety property Gp
the property is violated iff some run satisfies F¬p
there is a run violating the property within the first k steps iff the following
formula is satisfiable

S0(x⃗0) ∧
k−1∧
i=0

T (x⃗i , x⃗i+1) ∧
k∨

i=0

¬p(x⃗i)

for example, for k = 3 the formula is

S0(x⃗0) ∧ T (x⃗0, x⃗1) ∧ T (x⃗1, x⃗2) ∧ T (x⃗2, x⃗3) ∧
(
¬p(x⃗0)∨¬p(x⃗1)∨¬p(x⃗2)∨¬p(x⃗3)

)
IA169 Model Checking: Bounded model checking and k -induction 12/39



BMC for safety properties

bounded model checker for safety properties
1 set k to some initial (relatively low) number
2 construct the formula

ψk = S0(x⃗0) ∧
k−1∧
i=0

T (x⃗i , x⃗i+1) ∧
k∨

i=0

¬p(x⃗i)

3 ask a SAT solver for satisfiability of ψk

4 if ψk is satisfiable, then report K ̸|= Gp and construct a counterexample from
the obtained model

5 if ψk is unsatisfiable, increase k and go to 2

the size of ψk is linear in k
the method is not complete: it never ends for correct systems
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BMC for LTL properties



BMC for LTL properties

we want to check whether a (fair) Kripke structure K satisfies an LTL formula φ
assume that we have a generalized Büchi automaton B representing a
product of K and an automaton for ¬φ
K |=(F ) φ iff L(B) = ∅
L(B) ̸= ∅ iff there exists an accepting lasso-shaped run of B of the form τ.ρω

bounded model checking looks for accepting runs τ.ρω such that |τρ| ≤ k
if such a run exists, then L(B) ̸= ∅ and thus K ̸|=(F ) φ
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BMC for LTL properties

assume that the GBA B is described by propositional formulas
S0(x⃗) is satisfied by initial states
T (x⃗ , x⃗ ′) represents the transiton relation (the letters on transitions are ignored
as they have no influence on the existence of accepting runs)
for each Fl ∈ F , Fl(x⃗) represents the elements of accepting set Fl

there exists an accepting run τ.ρω such that |τρ| = k iff the following formula is
satisfiable

S0(x⃗0) ∧
k−1∧
i=0

T (x⃗i , x⃗i+1) ∧
k−1∨
i=0

(
x⃗i = x⃗k ∧

∧
Fl∈F

k−1∨
j=i

Fl(x⃗j)
)

τ ρ

s0 s1 · · · si−1 si = sk si+1 · · · sk−1
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BMC for LTL properties

assume that there exists an accepting run τ.ρω such that |τρ| < k
then τ.ρω = τ ′.ρ′ω where τ ′ρ′ is the prefix of τ.ρω such that |τ ′ρ′| = k and
|ρ′| = |ρ|
hence, there exists an accepting run τ.ρω such that |τρ| ≤ k iff ψk is satisfiable

ψk = S0(x⃗0) ∧
k−1∧
i=0

T (x⃗i , x⃗i+1) ∧
k−1∨
i=0

(
x⃗i = x⃗k ∧

∧
Fl∈F

k−1∨
j=i

Fl(x⃗j)
)

bounded model checker for LTL properties
1 set k to some initial (relatively low) number
2 construct the formula ψk and ask a SAT solver for its satisfiability
3 if ψk is satisfiable, then report K ̸|=(F ) φ and construct a counterexample from

the obtained model
4 if ψk is unsatisfiable, increase k and go to 2

the size of ψk (when counting all common subformulas only once) is linear in k
the method is not complete: it never ends for correct systems
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Completeness of BMC



Completeness of BMC

is there any k such that if BMC does not find any erroneous path using k then
the system has to be safe?
we will study this question for safety property Gp

the number of states
a state satisfying ¬p is reachable from initial states iff it is reachable in |S| − 1
steps
if the formula ψk for k = |S| − 1 is not satisfiable, then K |= Gp
if states are modeled by Boolean variables x1, . . . , xn then |S| ≤ 2n

this bound is too large to be practical
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Completeness of BMC

diametr of the system graph
graph diametr d is the maximal length of all shortest paths between any two
graph nodes
a state satisfying ¬p is reachable from initial states iff it is reachable in d steps
if the formula ψk for k = d is not satisfiable, then K |= Gp

how to determine d without constructing the graph?
asking the user is not realistic
safe upper bounds (like d ≤ |S| − 1) are extremely overstated
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k -induction



Proof of correctness by induction

another way to prove that K |= Gp with SAT solvers
we need to prove that p holds in all states reachable from the initial states

induction
1 base case: all initial states satisfy p, i.e., S0(x⃗) ∧ ¬p(x⃗) is unsatisfiable
2 induction step: if a state satisfies p, then each its successor satisfies p, i.e.,

the following formula is unsatisfiable

p(x⃗) ∧ T (x⃗ , x⃗ ′) ∧ ¬p(x⃗ ′)

p p p ¬p

p

induction step fails
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k -induction

k -induction
1 base case: each path of length k starting in an initial state does not reach any

state satisfying ¬p, i.e., the following formula is unsatisfiable

S0(x⃗0) ∧
k−1∧
i=0

T (x⃗i , x⃗i+1) ∧
k∨

i=0

¬p(x⃗i)

2 induction step: if we prolong any path of length k over states satisfying p by
one step, we reach a state satisfying p, i.e., the following formula is
unsatisfiable

k∧
i=0

(
p(x⃗i) ∧ T (x⃗i , x⃗i+1)

)
∧ ¬p(x⃗k+1)

the base case uses the formula from BMC: if it is satisfiable then K ̸|= Gp

p p p ¬p p

induction step fails for each k
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k -induction

a state satisfying ¬p is reachable iff it is reachable by an acyclic path
hence, the induction step can consider only acyclic paths

2 induction step: if we prolong any path of length k over states satisfying p by
one step such that we get an acyclic path, we reach a state satisfying p, i.e.,
the following formula is unsatifiable

k∧
i=0

(
p(x⃗i) ∧ T (x⃗i , x⃗i+1)

)
∧

∧
0≤i<j≤k+1

x⃗i ̸= x⃗j ∧ ¬p(x⃗k+1)

p p p ¬p p

works well for k = 1
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k -induction algorithm

k -induction algorithm for safety properties
1 set k to some initial (relatively low) number
2 construct the formulas

ψk = S0(x⃗0) ∧
k−1∧
i=0

T (x⃗i , x⃗i+1) ∧
k∨

i=0

¬p(x⃗i)

ηk =
k∧

i=0

(
p(x⃗i) ∧ T (x⃗i , x⃗i+1)

)
∧

∧
0≤i<j≤k+1

x⃗i ̸= x⃗j ∧ ¬p(x⃗k+1)

3 ask a SAT solver for satisfiability of ψk
4 if ψk is satisfiable, then report K ̸|= Gp and construct a counterexample from

the obtained model
5 if ψk is unsatisfiable, ask a SAT solver for satisfiability of ηk
6 if ηk is unsatisfiable, report K |= Gp
7 if ηk is satisfiable, increase k and go to 2

it terminates as each finite system has a bound on the length of acyclic paths
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Final notes

BMC and k -induction are used in practice
tools CBMC, ESBMC, and ESBMC-kind are successful in SV-COMP
systems can be described not only by propositional formulas, but also by
predicate formulas over a suitable theory
SMT solvers are then used instead of SAT solvers
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