IA169 Model Checking Bounded model checking and *k*-induction

Jan Strejček

Faculty of Informatics Masaryk University

- BDDs represents all models of the corresponding propositional formulas
- in LTL model checking, we want to decide whether some violating run exists
- if we represent violating runs by a formula, we need to decide its satisfiability
- SAT solvers can efficiently decide it (despite NP-completeness of the problem)

- BDDs represents all models of the corresponding propositional formulas
- in LTL model checking, we want to decide whether some violating run exists
- if we represent violating runs by a formula, we need to decide its satisfiability
- SAT solvers can efficiently decide it (despite NP-completeness of the problem)
- for satisfiable formulas, SAT solvers provide a model
- **a** formula φ is true iff $\neg \varphi$ is not satisfiable

agenda

- finite Kripke structures represented by formulas
- bounded model checking (BMC) for safety properties
- BMC for LTL properties
- completeness of BMC
- k-induction

source

Chapter 10 of E. M. Clarke, O. Grumberg, D. Kroening, D. Peled, and R. Bloem: Model Checking, Second Edition, MIT, 2018.

Finite Kripke structures represented by formulas

Finite Kripke structures represented by formulas

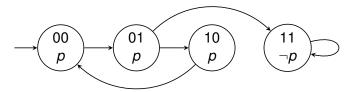
- each Kripke structure $K = (S, T, S_0, L)$ with finitely many states and a finite set of used atomic propositions can be encoded by propositional formulas
- states in *S* correspond to assignments $s : V \to \{0, 1\}$, where $V = \{x_1, \ldots, x_n\}$
- S₀ is identified with a formula $S_0(x_1, \ldots, x_n)$ satisfied by initial states
- **transition relation** $T \subseteq S \times S$ is identified with a formula

 $T(x_1,\ldots,x_n,x'_1,\ldots,x'_n)$

• we replace $L: S \to 2^{AP}$ with a formula $p(x_1, \ldots, x_n)$ for each relevant $p \in AP$

Finite Kripke structures represented by formulas

- each Kripke structure $K = (S, T, S_0, L)$ with finitely many states and a finite set of used atomic propositions can be encoded by propositional formulas
- states in *S* correspond to assignments $s : V \to \{0, 1\}$, where $V = \{x_1, \ldots, x_n\}$
- S₀ is identified with a formula $S_0(x_1, \ldots, x_n)$ satisfied by initial states
- **transition relation** $T \subseteq S \times S$ is identified with a formula
 - $T(x_1,\ldots,x_n,x'_1,\ldots,x'_n)$
- we replace $L: S \to 2^{AP}$ with a formula $p(x_1, \ldots, x_n)$ for each relevant $p \in AP$



 $\begin{array}{rcl} S_0(x_1,x_2) &=& \neg x_1 \wedge \neg x_2 \\ T(x_1,x_2,x_1',x_2') &=& (\neg x_1 \wedge \neg x_2 \wedge \neg x_1' \wedge x_2') \vee (\neg x_1 \wedge x_2 \wedge x_1') \vee \\ & & \vee (x_1 \wedge \neg x_2 \wedge \neg x_1' \wedge \neg x_2') \vee (x_1 \wedge x_2 \wedge \wedge x_1' \wedge x_2') \\ p(x_1,x_2) &=& \neg x_1 \vee \neg x_2 \end{array}$

IA169 Model Checking: Bounded model checking and k-induction

- we write \vec{x} instead of x_1, \ldots, x_n , i.e., we use $S_0(\vec{x})$, $T(\vec{x}, \vec{x}')$ and $p(\vec{x})$
- when building formulas about more than one or two states, we will use $\vec{x}_0, \vec{x}_1, \ldots$, where \vec{x}_i stands for x_{i1}, \ldots, x_{in}
- for example, models of $T(\vec{x}_0, \vec{x}_1) \wedge T(\vec{x}_1, \vec{x}_2)$ represent paths of length 2
- recall that we assume that each state has at least one successor

Bounded model checking (BMC) for safety properties

Basic idea of bounded model checking (BMC)

- if a finite system violates a given property, it often has a short counterexample
- bounded model checking (BMC) analyzes runs up to the first k steps
- if an erroneous run is found, we know that the system violates the property; otherwise, we can increase *k* and try again

Basic idea of bounded model checking (BMC)

- if a finite system violates a given property, it often has a short counterexample
- bounded model checking (BMC) analyzes runs up to the first k steps
- if an erroneous run is found, we know that the system violates the property; otherwise, we can increase *k* and try again
- let us consider the safety property Gp
- the property is violated iff some run satisfies $F \neg p$
- there is a run violating the property within the first k steps iff the following formula is satisfiable

$$S_0(\vec{x}_0) \wedge \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \wedge \bigvee_{i=0}^k \neg p(\vec{x}_i)$$

Basic idea of bounded model checking (BMC)

- if a finite system violates a given property, it often has a short counterexample
- bounded model checking (BMC) analyzes runs up to the first k steps
- if an erroneous run is found, we know that the system violates the property; otherwise, we can increase *k* and try again
- let us consider the safety property Gp
- the property is violated iff some run satisfies F¬p
- there is a run violating the property within the first k steps iff the following formula is satisfiable

$$S_0(ec{x}_0) \wedge \bigwedge_{i=0}^{k-1} T(ec{x}_i, ec{x}_{i+1}) \wedge \bigvee_{i=0}^k \neg p(ec{x}_i)$$

• for example, for k = 3 the formula is

$$S_0(\vec{x}_0) \land T(\vec{x}_0,\vec{x}_1) \land T(\vec{x}_1,\vec{x}_2) \land T(\vec{x}_2,\vec{x}_3) \land \left(\neg p(\vec{x}_0) \lor \neg p(\vec{x}_1) \lor \neg p(\vec{x}_2) \lor \neg p(\vec{x}_3)\right)$$

BMC for safety properties

bounded model checker for safety properties

- 1 set k to some initial (relatively low) number
- 2 construct the formula

$$\psi_k = S_0(\vec{x}_0) \land \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \land \bigvee_{i=0}^k \neg p(\vec{x}_i)$$

- **3** ask a SAT solver for satisfiability of ψ_k
- 4 if ψ_k is satisfiable, then report $K \not\models Gp$ and construct a counterexample from the obtained model
- 5 if ψ_k is unsatisfiable, increase k and go to 2

BMC for safety properties

bounded model checker for safety properties

- 1 set k to some initial (relatively low) number
- 2 construct the formula

$$\psi_k = S_0(\vec{x}_0) \land \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \land \bigvee_{i=0}^k \neg p(\vec{x}_i)$$

- **3** ask a SAT solver for satisfiability of ψ_k
- 4 if ψ_k is satisfiable, then report $K \not\models Gp$ and construct a counterexample from the obtained model
- 5 if ψ_k is unsatisfiable, increase k and go to 2

- the size of ψ_k is linear in k
- the method is not complete: it never ends for correct systems

- we want to check whether a (fair) Kripke structure K satisfies an LTL formula φ
- assume that we have a generalized Büchi automaton B representing a product of K and an automaton for ¬φ
- $K \models_{(F)} \varphi$ iff $L(B) = \emptyset$
- $L(B) \neq \emptyset$ iff there exists an accepting lasso-shaped run of *B* of the form $\tau.\rho^{\omega}$
- **bounded model checking looks for accepting runs** $\tau . \rho^{\omega}$ such that $|\tau \rho| \le k$
- if such a run exists, then $L(B) \neq \emptyset$ and thus $K \not\models_{(F)} \varphi$

assume that the GBA B is described by propositional formulas

- **S**₀(\vec{x}) is satisfied by initial states
- **T** (\vec{x}, \vec{x}') represents the transiton relation (the letters on transitions are ignored as they have no influence on the existence of accepting runs)
- for each $F_l \in \mathcal{F}$, $F_l(\vec{x})$ represents the elements of accepting set F_l

assume that the GBA B is described by propositional formulas

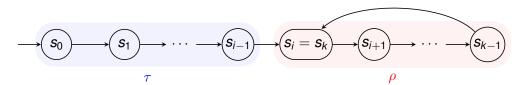
- **S**₀(\vec{x}) is satisfied by initial states
- **T** (\vec{x}, \vec{x}') represents the transiton relation (the letters on transitions are ignored as they have no influence on the existence of accepting runs)
- for each $F_l \in \mathcal{F}$, $F_l(\vec{x})$ represents the elements of accepting set F_l
- there exists an accepting run $\tau . \rho^{\omega}$ such that $|\tau \rho| = k$ iff the following formula is satisfiable

$$S_0(ec{x}_0) \wedge \bigwedge_{i=0}^{k-1} T(ec{x}_i, ec{x}_{i+1}) \wedge \bigvee_{i=0}^{k-1} \left(ec{x}_i = ec{x}_k \wedge \bigwedge_{F_l \in \mathcal{F}} \bigvee_{j=i}^{k-1} F_l(ec{x}_j)
ight)$$

assume that the GBA B is described by propositional formulas

- **S**₀(\vec{x}) is satisfied by initial states
- $T(\vec{x}, \vec{x}')$ represents the transiton relation (the letters on transitions are ignored as they have no influence on the existence of accepting runs)
- for each $F_l \in \mathcal{F}$, $F_l(\vec{x})$ represents the elements of accepting set F_l
- there exists an accepting run $\tau . \rho^{\omega}$ such that $|\tau \rho| = k$ iff the following formula is satisfiable

$$S_0(\vec{x}_0) \wedge \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \wedge \bigvee_{i=0}^{k-1} \left(\vec{x}_i = \vec{x}_k \wedge \bigwedge_{F_l \in \mathcal{F}} \bigvee_{j=i}^{k-1} F_l(\vec{x}_j) \right)$$



- **assume that there exists an accepting run** τ . ρ^{ω} such that $|\tau \rho| < k$
- then $\tau.\rho^{\omega} = \tau'.\rho'^{\omega}$ where $\tau'\rho'$ is the prefix of $\tau.\rho^{\omega}$ such that $|\tau'\rho'| = k$ and $|\rho'| = |\rho|$
- hence, there exists an accepting run $\tau . \rho^{\omega}$ such that $|\tau \rho| \le k$ iff ψ_k is satisfiable

$$\psi_k = S_0(\vec{x}_0) \land \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \land \bigvee_{i=0}^{k-1} \left(\vec{x}_i = \vec{x}_k \land \bigwedge_{F_l \in \mathcal{F}} \bigvee_{j=i}^{k-1} F_l(\vec{x}_j) \right)$$

- **assume that there exists an accepting run** τ . ρ^{ω} such that $|\tau \rho| < k$
- then $\tau . \rho^{\omega} = \tau' . \rho'^{\omega}$ where $\tau' \rho'$ is the prefix of $\tau . \rho^{\omega}$ such that $|\tau' \rho'| = k$ and $|\rho'| = |\rho|$
- hence, there exists an accepting run $\tau . \rho^{\omega}$ such that $|\tau \rho| \le k$ iff ψ_k is satisfiable

$$\psi_k = S_0(\vec{x}_0) \land \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \land \bigvee_{i=0}^{k-1} \left(\vec{x}_i = \vec{x}_k \land \bigwedge_{F_i \in \mathcal{F}} \bigvee_{j=i}^{k-1} F_i(\vec{x}_j) \right)$$

bounded model checker for LTL properties

- set *k* to some initial (relatively low) number
- **2** construct the formula ψ_k and ask a SAT solver for its satisfiability
- 3 if ψ_k is satisfiable, then report $K \not\models_{(F)} \varphi$ and construct a counterexample from the obtained model
- 4 if ψ_k is unsatisfiable, increase k and go to 2

- **assume that there exists an accepting run** $\tau . \rho^{\omega}$ such that $|\tau \rho| < k$
- then $\tau.\rho^{\omega} = \tau'.\rho'^{\omega}$ where $\tau'\rho'$ is the prefix of $\tau.\rho^{\omega}$ such that $|\tau'\rho'| = k$ and $|\rho'| = |\rho|$
- hence, there exists an accepting run $\tau . \rho^{\omega}$ such that $|\tau \rho| \le k$ iff ψ_k is satisfiable

$$\psi_k = S_0(\vec{x}_0) \land \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \land \bigvee_{i=0}^{k-1} \left(\vec{x}_i = \vec{x}_k \land \bigwedge_{F_i \in \mathcal{F}} \bigvee_{j=i}^{k-1} F_i(\vec{x}_j) \right)$$

bounded model checker for LTL properties

- set *k* to some initial (relatively low) number
- **2** construct the formula ψ_k and ask a SAT solver for its satisfiability
- 3 if ψ_k is satisfiable, then report $K \not\models_{(F)} \varphi$ and construct a counterexample from the obtained model
- 4 if ψ_k is unsatisfiable, increase k and go to 2

• the size of ψ_k (when counting all common subformulas only once) is linear in k

the method is not complete: it never ends for correct systems

IA169 Model Checking: Bounded model checking and k-induction

Completeness of BMC

- is there any *k* such that if BMC does not find any erroneous path using *k* then the system has to be safe?
- we will study this question for safety property Gp

- is there any *k* such that if BMC does not find any erroneous path using *k* then the system has to be safe?
- we will study this question for safety property Gp

the number of states

- a state satisfying $\neg p$ is reachable from initial states iff it is reachable in |S| 1 steps
- if the formula ψ_k for k = |S| 1 is not satisfiable, then $K \models Gp$
- if states are modeled by Boolean variables x_1, \ldots, x_n then $|S| \le 2^n$
- this bound is too large to be practical

diametr of the system graph

- graph diametr d is the maximal length of all shortest paths between any two graph nodes
- **a** state satisfying $\neg p$ is reachable from initial states iff it is reachable in *d* steps
- if the formula ψ_k for k = d is not satisfiable, then $K \models Gp$

diametr of the system graph

- graph diametr d is the maximal length of all shortest paths between any two graph nodes
- **a** state satisfying $\neg p$ is reachable from initial states iff it is reachable in *d* steps
- if the formula ψ_k for k = d is not satisfiable, then $K \models Gp$
- how to determine *d* without constructing the graph?
- asking the user is not realistic
- safe upper bounds (like $d \le |S| 1$) are extremely overstated

Proof of correctness by induction

- another way to prove that $K \models Gp$ with SAT solvers
- we need to prove that p holds in all states reachable from the initial states

induction

- **1** base case: all initial states satisfy p, i.e., $S_0(\vec{x}) \land \neg p(\vec{x})$ is unsatisfiable
- 2 induction step: if a state satisfies p, then each its successor satisfies p, i.e., the following formula is unsatisfiable

$$p(\vec{x}) \wedge T(\vec{x}, \vec{x}') \wedge \neg p(\vec{x}')$$

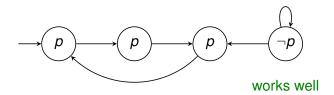
Proof of correctness by induction

- another way to prove that $K \models Gp$ with SAT solvers
- we need to prove that p holds in all states reachable from the initial states

induction

- **1** base case: all initial states satisfy p, i.e., $S_0(\vec{x}) \land \neg p(\vec{x})$ is unsatisfiable
- induction step: if a state satisfies p, then each its successor satisfies p, i.e., the following formula is unsatisfiable

$$p(ec{x}) \wedge T(ec{x}, ec{x}') \wedge
eg p(ec{x}')$$



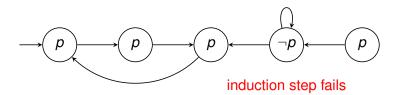
Proof of correctness by induction

- another way to prove that $K \models Gp$ with SAT solvers
- we need to prove that p holds in all states reachable from the initial states

induction

- **1** base case: all initial states satisfy p, i.e., $S_0(\vec{x}) \land \neg p(\vec{x})$ is unsatisfiable
- induction step: if a state satisfies p, then each its successor satisfies p, i.e., the following formula is unsatisfiable

$$p(ec{x}) \wedge T(ec{x}, ec{x}') \wedge
eg p(ec{x}')$$



k-induction

1 base case: each path of length *k* starting in an initial state does not reach any state satisfying $\neg p$, i.e., the following formula is unsatisfiable

$$S_0(ec{x}_0) \ \land \ \bigwedge_{i=0}^{k-1} T(ec{x}_i, ec{x}_{i+1}) \ \land \ \bigvee_{i=0}^k \neg p(ec{x}_i)$$

induction step: if we prolong any path of length k over states satisfying p by one step, we reach a state satisfying p, i.e., the following formula is unsatisfiable

$$\bigwedge_{i=0}^{k} \left(p(ec{x_{i}}) \wedge T(ec{x_{i}}, ec{x_{i+1}})
ight) \ \wedge \
eg p(ec{x_{k+1}})$$

• the base case uses the formula from BMC: if it is satisfiable then $K \not\models Gp$

k-induction

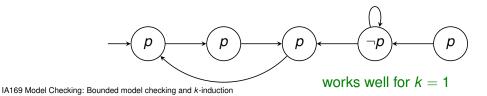
1 base case: each path of length *k* starting in an initial state does not reach any state satisfying $\neg p$, i.e., the following formula is unsatisfiable

$$S_0(ec{x}_0) \ \land \ \bigwedge_{i=0}^{k-1} T(ec{x}_i, ec{x}_{i+1}) \ \land \ \bigvee_{i=0}^k \neg p(ec{x}_i)$$

induction step: if we prolong any path of length k over states satisfying p by one step, we reach a state satisfying p, i.e., the following formula is unsatisfiable

$$\bigwedge_{i=0}^{k} \left(p(ec{x_{i}}) \wedge T(ec{x_{i}}, ec{x_{i+1}})
ight) \ \wedge \
eg p(ec{x_{k+1}})$$

• the base case uses the formula from BMC: if it is satisfiable then $K \not\models Gp$



k-induction

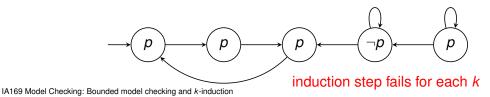
1 base case: each path of length *k* starting in an initial state does not reach any state satisfying $\neg p$, i.e., the following formula is unsatisfiable

$$S_0(ec{x}_0) \ \land \ \bigwedge_{i=0}^{k-1} T(ec{x}_i, ec{x}_{i+1}) \ \land \ \bigvee_{i=0}^k \neg p(ec{x}_i)$$

induction step: if we prolong any path of length k over states satisfying p by one step, we reach a state satisfying p, i.e., the following formula is unsatisfiable

$$\bigwedge_{i=0}^k \left(p(\vec{x}_i) \land T(\vec{x}_i, \vec{x}_{i+1}) \right) \land \neg p(\vec{x}_{k+1})$$

• the base case uses the formula from BMC: if it is satisfiable then $K \not\models Gp$

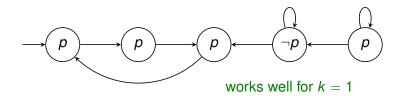


- **a** state satisfying $\neg p$ is reachable iff it is reachable by an acyclic path
- hence, the induction step can consider only acyclic paths
- induction step: if we prolong any path of length k over states satisfying p by one step such that we get an acyclic path, we reach a state satisfying p, i.e., the following formula is unsatifiable

$$\bigwedge_{i=0}^{k} \left(p(\vec{x}_i) \land T(\vec{x}_i, \vec{x}_{i+1}) \right) \land \bigwedge_{0 \leq i < j \leq k+1} \vec{x}_i \neq \vec{x}_j \land \neg p(\vec{x}_{k+1})$$

- **a** state satisfying $\neg p$ is reachable iff it is reachable by an acyclic path
- hence, the induction step can consider only acyclic paths
- induction step: if we prolong any path of length k over states satisfying p by one step such that we get an acyclic path, we reach a state satisfying p, i.e., the following formula is unsatifiable

$$\bigwedge_{i=0}^{k} \left(p(\vec{x}_i) \land T(\vec{x}_i, \vec{x}_{i+1}) \right) \land \bigwedge_{0 \le i < j \le k+1} \vec{x}_i \neq \vec{x}_j \land \neg p(\vec{x}_{k+1})$$



k-induction algorithm

k-induction algorithm for safety properties

- set k to some initial (relatively low) number
- 2 construct the formulas

$$\psi_{k} = S_{0}(\vec{x}_{0}) \wedge \bigwedge_{i=0}^{k-1} T(\vec{x}_{i}, \vec{x}_{i+1}) \wedge \bigvee_{i=0}^{k} \neg p(\vec{x}_{i})$$
$$\eta_{k} = \bigwedge_{i=0}^{k} \left(p(\vec{x}_{i}) \wedge T(\vec{x}_{i}, \vec{x}_{i+1}) \right) \wedge \bigwedge_{0 \leq i < j \leq k+1} \vec{x}_{i} \neq \vec{x}_{j} \wedge \neg p(\vec{x}_{k+1})$$

- **3** ask a SAT solver for satisfiability of ψ_k
- 4 if ψ_k is satisfiable, then report $K \not\models Gp$ and construct a counterexample from the obtained model
- **5** if ψ_k is unsatisfiable, ask a SAT solver for satisfiability of η_k
- **6** if η_k is unsatisfiable, report $K \models Gp$
- **7** if η_k is satisfiable, increase k and go to 2

k-induction algorithm

k-induction algorithm for safety properties

- set k to some initial (relatively low) number
- 2 construct the formulas

$$\psi_{k} = S_{0}(\vec{x}_{0}) \land \bigwedge_{i=0}^{k-1} T(\vec{x}_{i}, \vec{x}_{i+1}) \land \bigvee_{i=0}^{k} \neg p(\vec{x}_{i})$$
$$\eta_{k} = \bigwedge_{i=0}^{k} \left(p(\vec{x}_{i}) \land T(\vec{x}_{i}, \vec{x}_{i+1}) \right) \land \bigwedge_{0 \le i < j \le k+1} \vec{x}_{i} \ne \vec{x}_{j} \land \neg p(\vec{x}_{k+1})$$

- **3** ask a SAT solver for satisfiability of ψ_k
- 4 if ψ_k is satisfiable, then report $K \not\models Gp$ and construct a counterexample from the obtained model
- **5** if ψ_k is unsatisfiable, ask a SAT solver for satisfiability of η_k
- **6** if η_k is unsatisfiable, report $K \models \mathsf{G}p$
- **7** if η_k is satisfiable, increase k and go to 2

■ it terminates as each finite system has a bound on the length of acyclic paths

IA169 Model Checking: Bounded model checking and k-induction

- BMC and k-induction are used in practice
- tools CBMC, ESBMC, and ESBMC-kind are successful in SV-COMP
- systems can be described not only by propositional formulas, but also by predicate formulas over a suitable theory
- SMT solvers are then used instead of SAT solvers