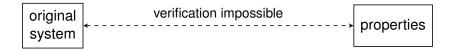
IA169 Model Checking Abstraction and CEGAR

Jan Strejček

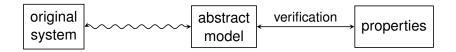
Faculty of Informatics Masaryk University Abstraction is one of the most important techniques for reducing the state explosion problem.

[CGKPV18]



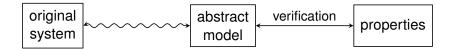
Abstraction is one of the most important techniques for reducing the state explosion problem.

[CGKPV18]



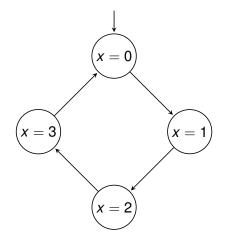
Abstraction is one of the most important techniques for reducing the state explosion problem.

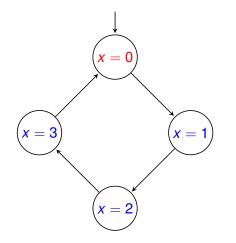
[CGKPV18]



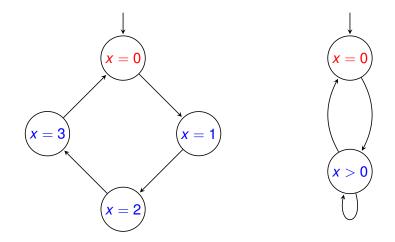
- \blacksquare large finite systems \longrightarrow smaller finite systems
- \blacksquare infinite-state systems \longrightarrow finite systems

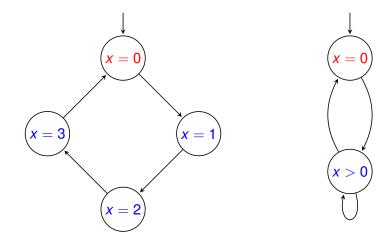
Intuition





Intuition





- equivalent with respect to F(x > 0)
- nonequivalent with respect to GF(x = 0)

Agenda and sources

agenda

- simulation
- exact abstractions
- non-exact abstractions, in particular predicate abstraction
- abstraction in practice
- CEGAR: counterexample-guided abstraction refinement

sources

- Chapter 13 of E. M. Clarke, O. Grumberg, D. Kroening, D. Peled, and H. Veith: Model Checking, Second Edition, MIT, 2018.
- R. Pelánek: Reduction and Abstraction Techniques for Model Checking, PhD thesis, FI MU, 2006.
- E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith: Counterexample-guided Abstraction Refinement for Symbolic Model Checking, J. ACM 50(5), 2003.

Simulation

Simulation

Definition (simulation)

Given two Kripke structures $M = (S, \rightarrow, S_0, L)$ and $M' = (S', \rightarrow', S'_0, L')$, we say that M' simulates M, written $M \leq M'$, if there exists a relation $R \subseteq S \times S'$ such that:

$$\blacksquare \forall s_0 \in S_0 . \exists s'_0 \in S'_0 . (s_0, s'_0) \in R$$

$$\blacksquare (s,s') \in R \implies L(s) = L'(s')$$

$$\blacksquare (s,s') \in \mathsf{R} \land s \to \mathsf{p} \implies \exists \mathsf{p}' \in S' \, . \, s' \to '\mathsf{p}' \land (\mathsf{p},\mathsf{p}') \in \mathsf{R}$$

Simulation

Definition (simulation)

Given two Kripke structures $M = (S, \rightarrow, S_0, L)$ and $M' = (S', \rightarrow', S'_0, L')$, we say that M' simulates M, written $M \leq M'$, if there exists a relation $R \subseteq S \times S'$ such that:

$$\forall s_0 \in S_0 . \exists s'_0 \in S'_0 . (s_0, s'_0) \in R$$

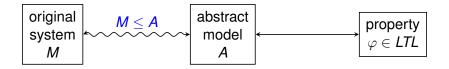
$$(s, s') \in R \implies L(s) = L'(s')$$

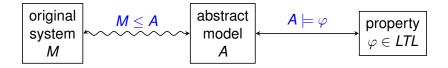
$$(s, s') \in R \land s \rightarrow p \implies \exists p' \in S' . s' \rightarrow' p' \land (p, p') \in R$$

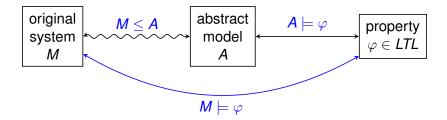
Lemma

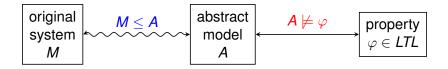
If $M \le M'$, then for every path $\sigma = s_1 s_2 \dots$ of M starting in an initial state there is a run $\sigma' = s'_1 s'_2 \dots$ of M' starting in an initial state and satisfying

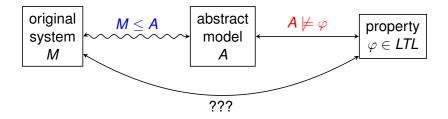
$$L(s_1)L(s_2)\ldots = L'(s_1')L'(s_2')\ldots$$





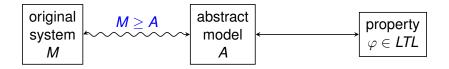


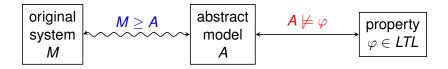


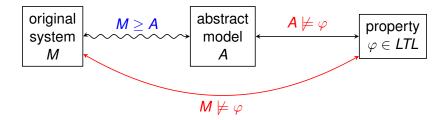


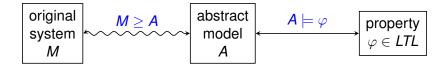
If *A* has a behaviour violating φ (i.e. $A \not\models \varphi$), then either

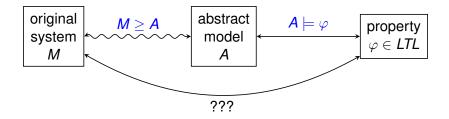
- **1** *M* has this behaviour as well (i.e. $M \not\models \varphi$), or
- 2 *M* does not have this behaviour, which is then called false positive or spurious counterexample
 (*M* ⊨ φ or *M* ⊭ φ due to another behaviour violating φ).

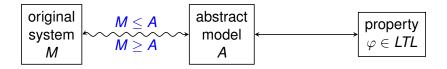






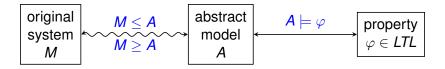






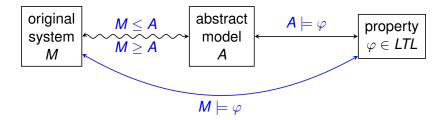
 $M \le A \le M \implies A$ and M have the same behaviours A is an exact abstraction of M

note: A and M are bisimilar $\implies M \le A \le M$



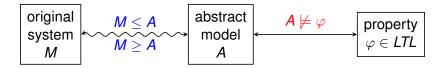
 $M \le A \le M \implies A$ and M have the same behaviours A is an exact abstraction of M

note: A and M are bisimilar $\implies M \le A \le M$ \Leftarrow



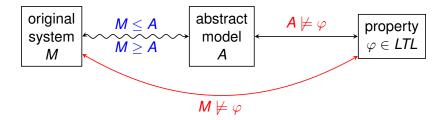
 $M \le A \le M \implies A$ and M have the same behaviours A is an exact abstraction of M

note: A and M are bisimilar $\implies M \le A \le M$



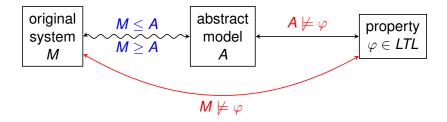
 $M \le A \le M \implies A$ and M have the same behaviours A is an exact abstraction of M

note: A and M are bisimilar $\implies M \le A \le M$



 $M \le A \le M \implies A$ and M have the same behaviours A is an exact abstraction of M

note: A and M are bisimilar $\implies M \le A \le M$



All these relations hold even for $\varphi \in \mathsf{CTL}^*$.

Exact abstractions

Idea

We eliminate the state variables that do not influence the variables in the specification.

- assume that our system is a program
- let *V* be the set of variables appearing in specification
- cone of influence *C* of *V* is the minimal set of variables such that
 - $V \subseteq C$
 - if v occurs in a test affecting the control flow, then $v \in C$
 - if there is an assignment v := e for some v ∈ C, then all variables occurring in the expression e are also in C
- C can be computed by the source code analysis
- variables that are not in C can be eliminated from the code together with all commands they participate in

```
S: v = getinput();
   x = getinput();
   y = 1;
   z = 1;
   while (v > 0) {
     z = z * x;
     x = x - 1;
     y = y \star v;
     v = v - 1;
   }
   z = z \star y;
E:
```

specification: F(pc = E)

```
S: v = getinput();
   x = getinput();
   y = 1;
   z = 1;
   while (v > 0) {
     z = z * x;
     x = x - 1;
     y = y \star v;
     v = v - 1;
   }
   z = z \star y;
E:
```

specification: F(pc = E) $V = \emptyset, C = \{v\}$

Cone of influence: example

specification: F(pc = E) $V = \emptyset, C = \{v\}$

symmetry reduction

 in systems with more identical parallel components, their order is not important

equivalent values

- if the set of behaviours starting in a state s is the same for values a, b of a variable v, then the two values can be replaced by one
- applicable to larger sets of values as well
- used in timed automata for timer values

Non-exact abstractions, in particular predicate abstraction

we face two problems

- 1 to find a suitable set of abstract states (called abstract domain) and a mapping between the original states and the abstract ones
- 2 to compute a transition relation on abstract states

abstract states are usually defined in one of the following ways

1 for each variable x, we replace the original variable domain D_x by an abstract variable domain A_x and we define a total function $h_x : D_x \to A_x$

a state $s = (v_1, ..., v_m) \in D_{x_1} \times ... \times D_{x_m}$ given by values of all variables corresponds to an abstract state

$$h(s) = (h_{x_1}(v_1), \ldots, h_{x_m}(v_m)) \in A_{x_1} \times \ldots \times A_{x_m}$$

predicate abstraction - we choose a finite set Φ = {φ₁,...,φ_n} of predicates over the set of variables;
 we have several choices of an abstract domain

The first approach can be seen as a special case the latter one.

sign abstraction

$$A_{x} = \{a_{+}, a_{-}, a_{0}\}$$

$$h_{x}(v) = \begin{cases} a_{-} & \text{if } v < 0 \\ a_{0} & \text{if } v = 0 \\ a_{+} & \text{if } v > 0 \end{cases}$$

parity abstraction

- $A_x = \{a_e, a_o\}$ $h_x(v) = \begin{cases} a_e & \text{if } v \text{ is even} \\ a_o & \text{if } v \text{ is odd} \end{cases}$
- good for verification of properties related to the last bit of binary representation

congruence modulo an integer

- $A_x = \{0, 1, \dots, m-1\}$ for some m > 1
- $\blacksquare h_x(v) = v \bmod m$
- nice properties

$$\begin{array}{rcl} ((x \mod m) + (y \mod m)) \mod m &=& (x + y) \mod m \\ ((x \mod m) - (y \mod m)) \mod m &=& (x - y) \mod m \\ ((x \mod m) \cdot (y \mod m)) \mod m &=& (x \cdot y) \mod m \end{array}$$

representation by logarithm

- $\square h_x(v) = \lceil \log_2(v+1) \rceil$
- the number of bits needed to represent v
- good for verification of properties related to overflow problems

single bit abstraction

•
$$A_x = \{0, 1\}$$

• $h_x(v)$ =the *i*-th bit of *v* for a fixed *i*

single value abstraction

$$A_x = \{0, 1\}$$

$$h_x(v) = \begin{cases} 1 & \text{if } v = c \\ 0 & \text{otherwise} \end{cases}$$

...and others

Let $\Phi = \{\phi_1, \dots, \phi_n\}$ be a set of predicates over the set of variables.

abstract domain $\{0, 1\}^n$

■ a state s = (v₁,..., v_m) corresponds to an abstract state given by a vector of truth values of {φ₁,..., φ_n}, i.e.,

$$h(s) = (\phi_1(v_1, \ldots, v_m), \ldots, \phi_n(v_1, \ldots, v_m)) \in \{0, 1\}^n$$

example:
$$\phi_1 = (x_1 > 3)$$
 $\phi_2 = (x_1 < x_2)$ $\phi_3 = (x_2 > 10)$
 $s = (5,7)$
 $h(s) = (1,1,0)$

assume that

- we have an original Kripke structure $M = (S, \rightarrow, S_0, L)$
- we have an abstract domain A and a mapping $h: S \rightarrow A$

we define an abstract model as a Kripke structure $(A, \rightarrow', A_0, L_A)$, where

$$A_0 = \{h(s_0) \mid s_0 \in S_0\}$$

- $L_A: A \to 2^{AP}$ has to be correctly defined, i.e.,
 - for abstraction based on variable domains, validity of atomic propositions is determined by abstract states in $A_{x_1} \times \ldots \times A_{x_m}$
 - for predicate abstraction, validity of atomic propositions is determined by abstraction predicates {φ₁,...,φ_n} (AP is typically a subset of it)

and L_A has to agree with L, i.e., $L(s) = L_A(h(s))$

 $\blacksquare \to'$ is defined in one of the following ways

May abstraction

may abstraction produces $M_{may} = (A, \rightarrow_{may}, A_0, L_A)$

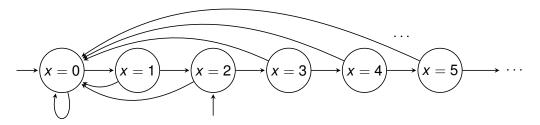
a₁ \rightarrow_{may} a_2 iff there exist $s_1, s_2 \in S$ such that $h(s_1) = a_1, h(s_2) = a_2, s_1 \rightarrow s_2$

May abstraction

may abstraction produces $M_{may} = (A, \rightarrow_{may}, A_0, L_A)$

a₁ \rightarrow_{may} a_2 iff there exist $s_1, s_2 \in S$ such that $h(s_1) = a_1, h(s_2) = a_2, s_1 \rightarrow s_2$

• example: construct M_{may} for the following system using predicate abstraction with predicates $\phi_1 = (x > 0)$ and $\phi_2 = (x > 2)$ and abstract domain $\{0, 1\}^2$

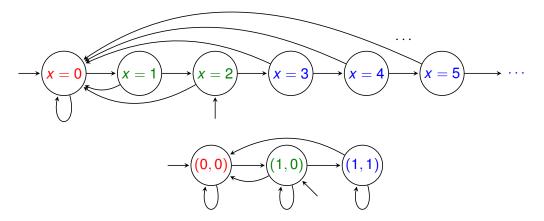


May abstraction

may abstraction produces $M_{may} = (A, \rightarrow_{may}, A_0, L_A)$

a₁ \rightarrow_{may} a_2 iff there exist $s_1, s_2 \in S$ such that $h(s_1) = a_1, h(s_2) = a_2, s_1 \rightarrow s_2$

• example: construct M_{may} for the following system using predicate abstraction with predicates $\phi_1 = (x > 0)$ and $\phi_2 = (x > 2)$ and abstract domain $\{0, 1\}^2$



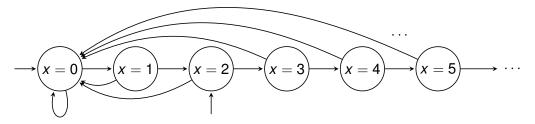
must abstraction produces $M_{must} = (A, \rightarrow_{must}, A_0, L_A)$

■ $a_1 \rightarrow_{must} a_2$ iff for each $s_1 \in S$ satisfying $h(s_1) = a_1$ there exists $s_2 \in S$ such that $h(s_2) = a_2$ and $s_1 \rightarrow s_2$

Must abstraction

must abstraction produces $M_{must} = (A, \rightarrow_{must}, A_0, L_A)$

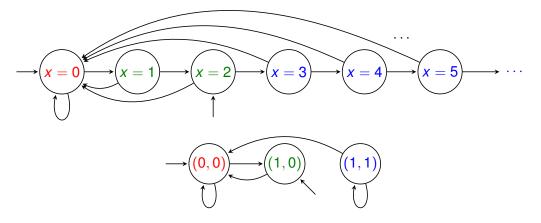
- $a_1 \rightarrow_{must} a_2$ iff for each $s_1 \in S$ satisfying $h(s_1) = a_1$ there exists $s_2 \in S$ such that $h(s_2) = a_2$ and $s_1 \rightarrow s_2$
- example: construct M_{must} for the following system using predicate abstraction with predicates $\phi_1 = (x > 0)$ and $\phi_2 = (x > 2)$ and abstract domain $\{0, 1\}^2$



Must abstraction

must abstraction produces $M_{must} = (A, \rightarrow_{must}, A_0, L_A)$

- $a_1 \rightarrow_{must} a_2$ iff for each $s_1 \in S$ satisfying $h(s_1) = a_1$ there exists $s_2 \in S$ such that $h(s_2) = a_2$ and $s_1 \rightarrow s_2$
- example: construct M_{must} for the following system using predicate abstraction with predicates $\phi_1 = (x > 0)$ and $\phi_2 = (x > 2)$ and abstract domain $\{0, 1\}^2$



Lemma

For every Kripke structure M, abstract domain A with a mapping function h it holds

 $M_{must} \leq M \leq M_{may}$.

Lemma

For every Kripke structure M, abstract domain A with a mapping function h it holds

 $M_{must} \leq M \leq M_{may}$.

- computing M_{must} or M_{may} requires constructing M first (recall that M can be very large or even infinite)
- we rather compute an under-approximation M'_{must} of M_{must} or an over-approximation M'_{may} of M_{may} directly from the implicit representation of M

■ it holds that
$$M'_{must} \le M_{must} \le M \le M_{may} \le M'_{may}$$

Abstract domain $\{0,1\}^n$ can lead to too many transitions \implies it is sometimes better to assign a single abstract state to a set of original states.

abstract domain $2^{\{0,1\}^n}$

let
$$\vec{b} = \langle b_1, \dots, b_n \rangle$$
 be a vector of $b_i \in \{0, 1\}$

• we set
$$[\vec{b}, \Phi] = b_1 \cdot \phi_1 \wedge \ldots \wedge b_n \cdot \phi_n$$
, where $0 \cdot \phi_i = \neg \phi_i$ and $1 \cdot \phi_i = \phi_i$

let X denotes the set of original states

$$h(X) = \{ \vec{b} \in \{0,1\}^n \mid \exists s \in X : s \models [\vec{b}, \Phi] \}$$

• example:
$$\phi_1 = (x_1 > 3)$$
 $\phi_2 = (x_1 < x_2)$ $\phi_3 = (x_2 > 10)$
 $X = \{(5,7), (4,5), (2,9)\}$
 $h(X) = \{(1,1,0), (0,1,0)\}$

nice theoretical properties

not used in practice (this abstract domain grows too fast)

abstract domain $\{0, 1, *\}^n$ (predicate-cartesian abstraction)

- let $\vec{b} = \langle b_1, \dots, b_n \rangle$ be a vector of $b_i \in \{0, 1, *\}$
- we set $[\vec{b}, \Phi] = b_1 \cdot \phi_1 \wedge \ldots \wedge b_n \cdot \phi_n$, where $0 \cdot \phi_i = \neg \phi_i$, $1 \cdot \phi_i = \phi_i$, $* \cdot \phi_i = \top$
- $h(X) = \min\{\vec{b} \in \{0, 1, *\}^n \mid \forall s \in X : s \models [\vec{b}, \Phi]\}$, where min means "the most specific"

• example:
$$\phi_1 = (x_1 > 3)$$
 $\phi_2 = (x_1 < x_2)$ $\phi_3 = (x_2 > 10)$
 $X = \{(5,7), (4,5), (2,9)\}$
 $h(X) = (*,1,0)$

this one is sometimes used in practice

Guarded command language

syntax

- let *V* be a finite set of integer variables
- Act is a set of action names
- model is a pair M = (V, E), where $E = \{t_1, \dots, t_m\}$ is a finite set of transitions of the form $t_i = (a_i, g_i, u_i)$, where
 - $a_i \in Act$
 - *g_i* is a first-order formula called guard and built with *V*, integers, standard binary operations (+, -, ·, …) and relations (=, <, >, …)
 - *u_i* is a finite sequence of assignments *x* := *e*, where *x* ∈ *V* and *e* is an expression built with *V*, integers, and standard binary operations (+, -, ·, ...)

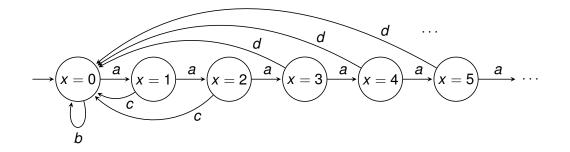
Guarded command language

syntax

- let *V* be a finite set of integer variables
- Act is a set of action names
- model is a pair M = (V, E), where $E = \{t_1, \dots, t_m\}$ is a finite set of transitions of the form $t_i = (a_i, g_i, u_i)$, where
 - $a_i \in Act$
 - *g_i* is a first-order formula called guard and built with *V*, integers, standard binary operations (+, -, ·, …) and relations (=, <, >, …)
 - *u_i* is a finite sequence of assignments *x* := *e*, where *x* ∈ *V* and *e* is an expression built with *V*, integers, and standard binary operations (+, -, ·, ...)

semantics

- M defines a labelled transition system where
 - states are valuations of variables $S = 2^{V \to \mathbb{Z}}$
 - initial state is the zero valuation $s_0(v) = 0$ for all $v \in V$
 - $s \stackrel{a_i}{\rightarrow} s'$ whenever $s \models g_i$ and s' arises from s by applying the assignments in u_i
- *M* can also describe a Kripke structure if we add a labelling function



implicit description in guarded command language by model (V, E), where

$$\begin{array}{ll} V = \{x\} \\ E = \{(a, \ \top, & x := x+1), \\ (b, \ \neg(x > 0), & x := 0), \\ (c, \ (x > 0) \land (x \le 2), & x := 0), \\ (d, \ (x > 2), & x := 0)\} \end{array}$$

• we use predicate abstraction with domain $\{0, 1, *\}^n$

given a formula φ with free variables \vec{x} from *V*, we set

 $pre(a_i, \varphi) = (g_i \implies \varphi[\vec{x}/u_i(\vec{x})])$

where $\varphi[\vec{x}/u_i(\vec{x})]$ denotes the formula φ with each free variable *x* replaced by $u_i(x)$, which is the expression representing the value of *x* after the assignments in u_i

- intuitively, pre(a_i, φ) transforms the condition φ to the situation before taking the transition (a_i, g_i, u_i)
- we use a sound (potentially not complete) decision procedure *is_valid*, i.e.,

$$is_valid(\varphi) = \top \implies \varphi$$
 is a tautology

for every abstract state $\vec{b} \in \{0, 1, *\}^n$ and for every transition $t_i = (a_i, g_i, u_i)$, we compute an over-approximation of a *may*-successor of \vec{b} under t_i as

• if $is_valid([\vec{b}, \Phi] \implies \neg g_i)$ then there is no successor

• otherwise, the successor $\vec{b'}$ is given by

$$b'_{j} = \begin{cases} 1 & \text{if } is_valid([\vec{b}, \Phi] \implies pre(a_{i}, \phi_{j})) \\ 0 & \text{if } is_valid([\vec{b}, \Phi] \implies pre(a_{i}, \neg\phi_{j})) \\ * & \text{otherwise} \end{cases}$$

for every abstract state $\vec{b} \in \{0, 1, *\}^n$ and for every transition $t_i = (a_i, g_i, u_i)$, we compute an over-approximation of a *may*-successor of \vec{b} under t_i as

• if $is_valid([\vec{b}, \Phi] \implies \neg g_i)$ then there is no successor

• otherwise, the successor $\vec{b'}$ is given by

$$b'_{j} = \begin{cases} 1 & \text{if } is_valid([\vec{b}, \Phi] \implies pre(a_{i}, \phi_{j})) \\ 0 & \text{if } is_valid([\vec{b}, \Phi] \implies pre(a_{i}, \neg\phi_{j})) \\ * & \text{otherwise} \end{cases}$$

• example: consider the abstract state $\vec{b} = (1,0)$ where $\phi_1 = (x > 0)$ and $\phi_2 = (x > 2)$ and compute the successor corresponding to $(a, \top, x := x + 1)$

$$(1,0) \stackrel{a}{
ightarrow}_{may'} (\ ,\)$$

for every abstract state $\vec{b} \in \{0, 1, *\}^n$ and for every transition $t_i = (a_i, g_i, u_i)$, we compute an over-approximation of a *may*-successor of \vec{b} under t_i as

• if $is_valid([\vec{b}, \Phi] \implies \neg g_i)$ then there is no successor

• otherwise, the successor $\vec{b'}$ is given by

$$b'_{j} = \begin{cases} 1 & \text{if } is_valid([\vec{b}, \Phi] \implies pre(a_{i}, \phi_{j})) \\ 0 & \text{if } is_valid([\vec{b}, \Phi] \implies pre(a_{i}, \neg\phi_{j})) \\ * & \text{otherwise} \end{cases}$$

• example: consider the abstract state $\vec{b} = (1,0)$ where $\phi_1 = (x > 0)$ and $\phi_2 = (x > 2)$ and compute the successor corresponding to $(a, \top, x := x + 1)$

$$(1,0) \stackrel{a}{\rightarrow}_{may'} (1,)$$

•
$$(x > 0) \land (x \le 2) \implies (\top \implies (x + 1 > 0))$$
 is true

for every abstract state $\vec{b} \in \{0, 1, *\}^n$ and for every transition $t_i = (a_i, g_i, u_i)$, we compute an over-approximation of a *may*-successor of \vec{b} under t_i as

• if $is_valid([\vec{b}, \Phi] \implies \neg g_i)$ then there is no successor

• otherwise, the successor $\vec{b'}$ is given by

$$b'_{j} = \begin{cases} 1 & \text{if } is_valid([\vec{b}, \Phi] \implies pre(a_{i}, \phi_{j})) \\ 0 & \text{if } is_valid([\vec{b}, \Phi] \implies pre(a_{i}, \neg\phi_{j})) \\ * & \text{otherwise} \end{cases}$$

• example: consider the abstract state $\vec{b} = (1,0)$ where $\phi_1 = (x > 0)$ and $\phi_2 = (x > 2)$ and compute the successor corresponding to $(a, \top, x := x + 1)$

$$(1,0) \stackrel{a}{\rightarrow}_{\textit{may}'} (1,\,*\,)$$

■
$$(x > 0) \land (x \le 2) \implies (\top \implies (x + 1 > 0))$$
 is true
■ $(x > 0) \land (x \le 2) \implies (\top \implies (x + 1 > 2))$ is not true
■ $(x > 0) \land (x \le 2) \implies (\top \implies (x + 1 \le 2))$ is not true

IA169 Model Checking: Abstraction and CEGAR

- for every transition, we compute successors of all abstract states
- based on the successors, we transform the original implicit representation of a system into a Boolean program
- it is very similar to a model in guarded command language, but instead of integers it uses only Boolean variables *b* representing the validity of abstraction predicates Φ
- Boolean program is an implicit representation of an over-approximation of M_{may}
- Boolean program can be used as an input for a suitable model checker (of finite-state systems)

Example

• consider the model (V, E), where

$$V = \{x\}$$

$$E = \{(a, \top, x := x + 1), (b, \neg(x > 0), x := 0), (c, (x > 0) \land (x \le 2), x := 0), (d, (x > 2), x := 0)\}$$

■ using the predicates $\phi_1 = (x > 0)$, $\phi_2 = (x > 2)$, we get the following Boolean program defining an over-approximation of M_{may}

$$\begin{array}{ll} V = \{b_1, b_2\}, \text{ where } b_1, b_2 \text{ represents the validity of } \phi_1, \phi_2 \\ E = \{(a, \ \top, & b_1 := \textit{if } b_1 \textit{ then 1 else } *; \\ b_2 := \textit{if } b_2 \textit{ then 1 else if } b_1 \textit{ then * else 0}\}, \\ (b, \ \neg b_1, & b_1 := 0; \ b_2 := 0), \\ (c, \ b_1 \land \neg b_2, \ b_1 := 0; \ b_2 := 0), \\ (d, \ b_2, & b_1 := 0; \ b_2 := 0)\} \end{array}$$

Example of a real NQC code and its absraction

```
task light_sensor_control() {
  int x = 0;
  while (true) {
    if (LIGHT > LIGHT_THRESHOLD) {
      PlaySound(SOUND_CLICK);
      Wait(30);
      x = x + 1;
    } else {
      if (x > 2) {
        PlaySound(SOUND_UP);
        ClearTimer(0);
        brick = LONG;
      } else if (x > 0) {
        PlaySound(SOUND_DOUBLE_BEEP);
        ClearTimer(0);
        brick = SHORT;
      x = 0;
```

Example of a real NQC code and its absraction

```
task light_sensor_control() { task A_light_sensor_control() {
  int x = 0;
  while (true) {
    if (LIGHT > LIGHT_THRESHOLD) {
     PlaySound(SOUND_CLICK);
     Wait(30);
     x = x + 1;
    } else {
      if (x > 2) {
        PlaySound(SOUND_UP);
       ClearTimer(0);
       brick = LONG;
      else if (x > 0) \{
        PlaySound(SOUND_DOUBLE_BEEP);
       ClearTimer(0);
       brick = SHORT;
     x = 0:
```

```
bool b = false;
while (true) {
if (*) {
```

```
b = b? true : * :
} else {
  if (b) {
```

```
brick = LONG;
} else if (b ? true : *) {
```

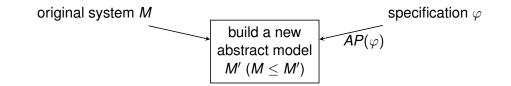
```
brick = SHORT;
b = false;
```

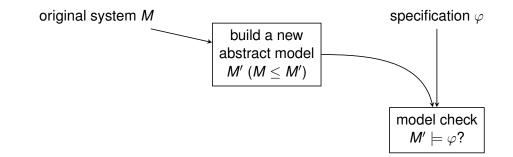
CEGAR: counterexample-guided abstraction refinement

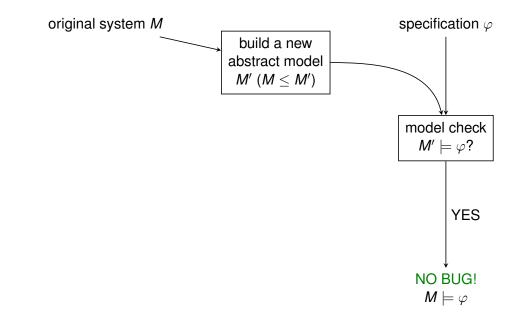
- it is hard to find a small and valuable abstraction
- abstraction predicates were originally provided by a user
- CEGAR tries to find a suitable abstraction automatically
- implemented in SLAM, BLAST, Static Driver Verifier (SDV), and many others
- incomplete method, but very successfull in practice

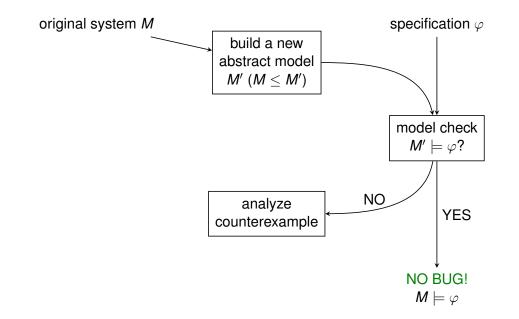
original system M

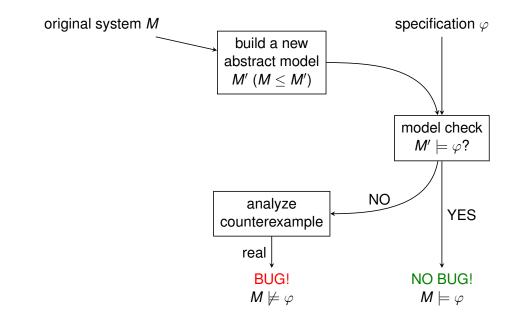
specification φ

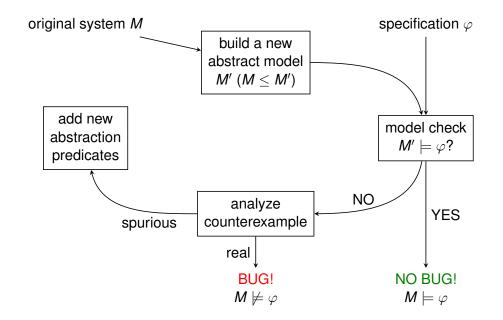


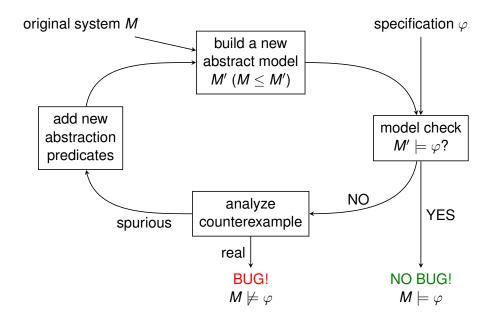








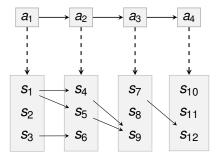




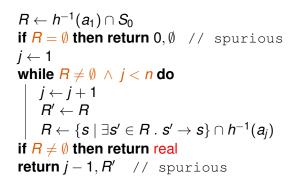
- added abstraction predicates ensure that the new abstract model M' does not have the behaviour corresponding to the spurious counterexample of the previous M'
- the analysis of an abstract counterexample and finding new abstract predicates are nontrivial tasks
- the method is sound but incomplete: the algorithm can run in the cycle forever or fail to find new abstraction predicates

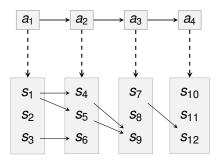
Counterexample analysis

- an abstract path is a finite or infinite path in an abstract model
- an abstract path $a_1 a_2 \dots$ is real if there exists a path $s_1 s_2 \dots$ in the original system *M* of the same length such that s_1 is initial and $s_i \in h^{-1}(a_i)$ for all *i*
- an abstract path that is not real is called spurious

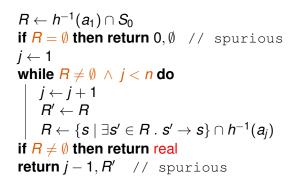


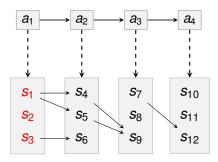
input : a nonempty abstract path $a_1
dots a_n$, an original system $M = (S, \rightarrow, S_0, L)$, an abstraction function h**output:** "real" if the path is real; j, R' otherwise, where j is the length of the maximal real prefix of the path and R' is the set of the last states of the paths in M corresponding to the prefix



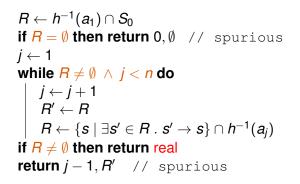


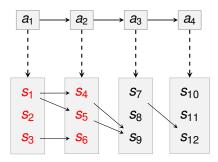
input : a nonempty abstract path $a_1
dots a_n$, an original system $M = (S, \rightarrow, S_0, L)$, an abstraction function h**output:** "real" if the path is real; j, R' otherwise, where j is the length of the maximal real prefix of the path and R' is the set of the last states of the paths in M corresponding to the prefix



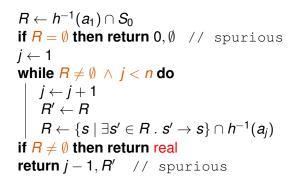


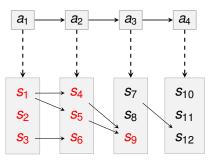
input : a nonempty abstract path $a_1
dots a_n$, an original system $M = (S, \rightarrow, S_0, L)$, an abstraction function h**output:** "real" if the path is real; j, R' otherwise, where j is the length of the maximal real prefix of the path and R' is the set of the last states of the paths in M corresponding to the prefix



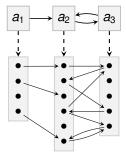


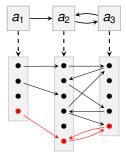
input : a nonempty abstract path $a_1
dots a_n$, an original system $M = (S, \rightarrow, S_0, L)$, an abstraction function h**output:** "real" if the path is real; j, R' otherwise, where j is the length of the maximal real prefix of the path and R' is the set of the last states of the paths in M corresponding to the prefix

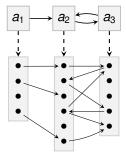


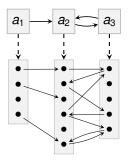


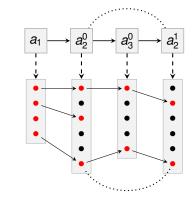
produced output: $3, \{s_9\}$

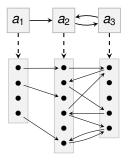


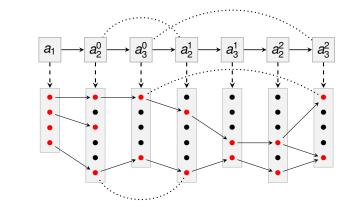


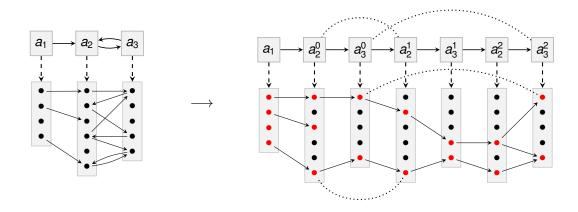












- an abstract loop may correspond to loops of different size and starting at different stages of the unwinding
- the unwinding eventually becomes periodic, the size of the period is the least common multiple of the size of individual loops

Analysis of a lasso-shaped counterexample can be reduced to analysis of a finite path counterexample.

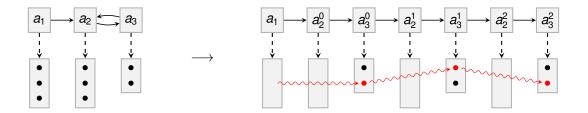
Theorem

An abstract lasso-shaped path $a_1 \dots a_i (a_{i+1} \dots a_n)^{\omega}$ is real iff the abstract path $a_1 \dots a_i (a_{i+1} \dots a_n)^{m+1}$ is real, where $m = \min_{i+1 \le j \le n} |h^{-1}(a_j)|$.

Analysis of a lasso-shaped counterexample can be reduced to analysis of a finite path counterexample.

Theorem

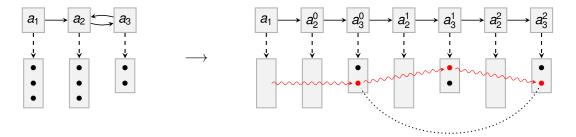
An abstract lasso-shaped path $a_1 \dots a_i(a_{i+1} \dots a_n)^{\omega}$ is real iff the abstract path $a_1 \dots a_i(a_{i+1} \dots a_n)^{m+1}$ is real, where $m = \min_{i+1 \le j \le n} |h^{-1}(a_j)|$.

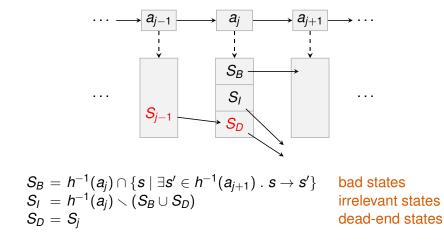


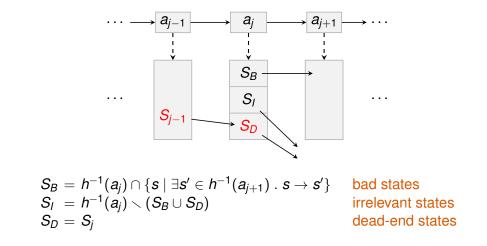
Analysis of a lasso-shaped counterexample can be reduced to analysis of a finite path counterexample.

Theorem

An abstract lasso-shaped path $a_1 \dots a_i(a_{i+1} \dots a_n)^{\omega}$ is real iff the abstract path $a_1 \dots a_i(a_{i+1} \dots a_n)^{m+1}$ is real, where $m = \min_{i+1 \le j \le n} |h^{-1}(a_j)|$.

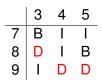




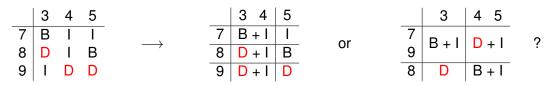


- to eliminate the spurious counterexample, we need to refine the abstraction such that no abstract state contains states from both S_B and S_D
- typically, we add an abstraction predicate that is an interpolant of S_B and S_D

Consider abstract state $(3 \le x \le 5) \land (7 \le y \le 9)$ and S_B, S_I, S_D :



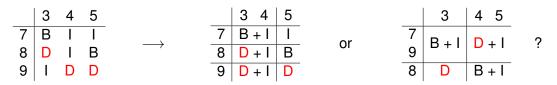
Consider abstract state $(3 \le x \le 5) \land (7 \le y \le 9)$ and S_B, S_I, S_D :



there could be more possible abstraction refinements

we want the coarsest refinement (i.e., with the least number of abstract states)

Consider abstract state $(3 \le x \le 5) \land (7 \le y \le 9)$ and S_B, S_I, S_D :



there could be more possible abstraction refinements

we want the coarsest refinement (i.e., with the least number of abstract states)

Theorem

The problem of finding the coarsest refinement is NP-hard.

there are heuristics that select suitable refinements