ID3 Algorithm - Complete Illustration

Consider the dataset \mathcal{D} specified by the following table:

index	X	Y	Z	class
1	1	0	1	Yes
2	1	1	0	Yes
3	1	0	1	Yes
4	1	0	1	Yes
5	0	1	1	No
6	1	0	0	No
7	0	1	0	No
8	0	1	0	No
9	1	1	1	No
10	0	0	1	Yes

There are three attributes $\mathcal{A}=\{X, Y, Z\}$ and two classes $C=\{$ Yes, No $\}$. Each attribute has possible values 0 and 1 . Let us use indices $1-10$ to denote elements of the dataset \mathcal{D}. That is, write $\mathcal{D}=\{1, \ldots, 10\}$.

Let me demonstrate the execution of the algorithm ID3 with impurity decrease (Gini) to select the best-classifying attributes in every call of ID3.

The algorithm proceeds as follows:

$\operatorname{ID3}(\mathcal{D}, \mathcal{A})$

- At line 2 create the node τ_{1} (see Image 1). ${ }^{1}$
- No "if" condition is satisfied, so we continue on line 10. On line 10, identify the best classifying attribute:
- To compute the impurity decrease, we need to compute $\operatorname{Gini}(\mathcal{D})$ for $\mathcal{D}=\{1, \ldots, 10\}$ as follows:

$$
\begin{aligned}
& * p_{\mathrm{Yes}}=p_{\mathrm{No}}=1 / 2 \\
& * \operatorname{Gini}(\mathcal{D})=1-p_{\mathrm{Yes}}^{2}-p_{\mathrm{No}}^{2}=1-(1 / 2)^{2}-(1 / 2)^{2}=0.5
\end{aligned}
$$

- Consider $X \in \mathcal{A}$ and compute $\operatorname{Imp} \operatorname{Dec}(\mathcal{D}, X)$ as follows:
* Consider value 1 of X. Then $\mathcal{D}_{1}=\{1,2,3,4,6,9\}$.

index	X	Y	Z	class
1	1	0	1	Yes
2	1	1	0	Yes
3	1	0	1	Yes
4	1	0	1	Yes
6	1	0	0	No
9	1	1	1	No

[^0]- Thus $p_{\text {Yes }}=4 / 6$ and $p_{\text {No }}=2 / 6$
- $\operatorname{Gini}\left(\mathcal{D}_{1}\right)=1-p_{\text {Yes }}^{2}-p_{\text {No }}^{2}=1-(4 / 6)^{2}-(2 / 6)^{2}=0.444$
* Consider value 0 of X. Then $\mathcal{D}_{0}=\{5,7,8,10\}$.

index	X	Y	Z	class
5	0	1	1	No
7	0	1	0	No
8	0	1	0	No
10	0	0	1	Yes

- Thus $p_{\text {Yes }}=1 / 4$ and $p_{\text {No }}=3 / 4$
- $\operatorname{Gini}\left(\mathcal{D}_{0}\right)=1-p_{\text {Yes }}^{2}-p_{\text {No }}^{2}=1-(1 / 4)^{2}-(3 / 4)^{2}=0.375$

$$
\begin{aligned}
\operatorname{ImpDec}(\mathcal{D}, X) & =\operatorname{Gini}(\mathcal{D})-\left(\left|\mathcal{D}_{1}\right| /|\mathcal{D}|\right) \operatorname{Gini}\left(\mathcal{D}_{1}\right)-\left(\left|\mathcal{D}_{0}\right| /|\mathcal{D}|\right) \operatorname{Gini}\left(\mathcal{D}_{0}\right) \\
& =0.5-(6 / 10) \cdot 0.444-(4 / 10) \cdot 0.375=0.083
\end{aligned}
$$

- Consider $Y \in \mathcal{A}$ and compute $\operatorname{Imp} \operatorname{Dec}(\mathcal{D}, Y)$ as follows:
* Consider value 1 of Y. Then $\mathcal{D}_{1}=\{2,5,7,8,9\}$.

index	X	Y	Z	class
2	1	1	0	Yes
5	0	1	1	No
7	0	1	0	No
8	0	1	0	No
9	1	1	1	No

- Thus $p_{\text {Yes }}=1 / 5$ and $p_{\mathrm{No}}=4 / 5$
- $\operatorname{Gini}\left(\mathcal{D}_{1}\right)=1-p_{\text {Yes }}^{2}-p_{\text {No }}^{2}=1-(1 / 5)^{2}-(4 / 5)^{2}=0.320$
* Consider value 0 of Y. Then $\mathcal{D}_{0}=\{1,3,4,6,10\}$.

index	X	Y	Z	class
1	1	0	1	Yes
3	1	0	1	Yes
4	1	0	1	Yes
6	1	0	0	No
10	0	0	1	Yes

- Thus $p_{\text {Yes }}=4 / 5$ and $p_{\text {No }}=1 / 5$
- $\operatorname{Gini}\left(\mathcal{D}_{0}\right)=1-p_{\text {Yes }}^{2}-p_{\text {No }}^{2}=1-(4 / 5)^{2}-(1 / 5)^{2}=0.320$

$$
\begin{aligned}
\operatorname{Imp} \operatorname{Dec}(\mathcal{D}, Y) & =\operatorname{Gini}(\mathcal{D})-\left(\left|\mathcal{D}_{1}\right| /|\mathcal{D}|\right) \operatorname{Gini}\left(\mathcal{D}_{1}\right)-\left(\left|\mathcal{D}_{0}\right| /|\mathcal{D}|\right) \operatorname{Gini}\left(\mathcal{D}_{0}\right) \\
& =0.500-(5 / 10) \cdot 0.320-(5 / 10) \cdot 0.320=0.180
\end{aligned}
$$

- Consider $Z \in \mathcal{A}$ and compute $\operatorname{Imp} \operatorname{Dec}(\mathcal{D}, Z)$ as follows:
* Consider value 1 of Z. Then $\mathcal{D}_{1}=\{1,3,4,5,9,10\}$.

index	X	Y	Z	class
1	1	0	1	Yes
3	1	0	1	Yes
4	1	0	1	Yes
5	0	1	1	No
9	1	1	1	No
10	0	0	1	Yes

- Thus $p_{\text {Yes }}=4 / 6$ and $p_{\text {No }}=2 / 6$
- $\operatorname{Gini}\left(\mathcal{D}_{1}\right)=1-p_{\text {Yes }}^{2}-p_{\text {No }}^{2}=1-(4 / 6)^{2}-(2 / 6)^{2}=0.444$
* Consider value 0 of Y. Then $\mathcal{D}_{0}=\{2,6,7,8\}$.

index	X	Y	Z	class
2	1	1	0	Yes
6	1	0	0	No
7	0	1	0	No
8	0	1	0	No

- Thus $p_{\text {Yes }}=1 / 4$ and $p_{\text {No }}=3 / 4$
- $\operatorname{Gini}\left(\mathcal{D}_{0}\right)=1-p_{\text {Yes }}^{2}-p_{\text {No }}^{2}=1-(1 / 4)^{2}-(3 / 4)^{2}=0.375$

$$
\begin{aligned}
\operatorname{Imp} \operatorname{Dec}(\mathcal{D}, Z) & =\operatorname{Gini}(\mathcal{D})-\left(\left|\mathcal{D}_{1}\right| /|\mathcal{D}|\right) \operatorname{Gini}\left(\mathcal{D}_{1}\right)-\left(\left|\mathcal{D}_{0}\right| /|\mathcal{D}|\right) \operatorname{Gini}\left(\mathcal{D}_{0}\right) \\
& =0.500-(6 / 10) \cdot 0.444-(4 / 10) \cdot 0.375=0.083
\end{aligned}
$$

So, the attribute Y maximizes the decrease in impurity.

- Set the decision attribute of τ_{1} to Y and continue recursively by calling
- ID3(\{2, 5, 7, 8, 9\}, $\{X, Z\})$ giving a node τ_{2}
- ID3(\{1, 3, 4, 6, 10\}, $\{X, Z\})$ giving a node τ_{3}.
- Connect τ_{1} with τ_{2} by an edge assigned 1 , and τ_{1} with τ_{3} using an edge assigned 0 .

Now, let us demonstrate the recursive calls.

ID3(\{2, $5,7,8,9\},\{X, Z\})$
Now $\mathcal{D}=\{2,5,7,8,9\}$ and $\mathcal{A}=\{X, Z\}$.

index	X	Z	class
2	1	0	Yes
5	0	1	No
7	0	0	No
8	0	0	No
9	1	1	No

- At line 2 , create the node τ_{2}.
- No "if" condition is satisfied, so we continue on line 10 . On line 10 , identify the best classifying attribute:
- We have already computed

$$
\operatorname{Gini}(\mathcal{D})=0.320
$$

- Consider $X \in \mathcal{A}$ and compute $\operatorname{Imp} \operatorname{Dec}(\mathcal{D}, X)$ as follows:
* Consider value 1 of X. Then $\mathcal{D}_{1}=\{2,9\}$.

index	X	Z	class
2	1	0	Yes
9	1	1	No

- Thus $p_{\text {Yes }}=1 / 2$ and $p_{\mathrm{No}}=1 / 2$
- $\operatorname{Gini}\left(\mathcal{D}_{1}\right)=1-p_{\text {Yes }}^{2}-p_{\text {No }}^{2}=1-(1 / 2)^{2}-(1 / 2)^{2}=0.500$
* Consider value 0 of X. Then $\mathcal{D}_{0}=\{5,7,8\}$.

index	X	Z	class
5	0	1	No
7	0	0	No
8	0	0	No

- Thus $p_{\text {Yes }}=0$ and $p_{\text {No }}=1$
- $\operatorname{Gini}\left(\mathcal{D}_{0}\right)=1-p_{\text {Yes }}^{2}-p_{\text {No }}^{2}=1-0^{2}-1^{2}=0$

$$
\begin{aligned}
\operatorname{Imp} \operatorname{Dec}(\mathcal{D}, X) & =\operatorname{Gini}(\mathcal{D})-\left(\left|\mathcal{D}_{1}\right| /|\mathcal{D}|\right) \operatorname{Gini}\left(\mathcal{D}_{1}\right)-\left(\left|\mathcal{D}_{0}\right| /|\mathcal{D}|\right) \operatorname{Gini}\left(\mathcal{D}_{0}\right) \\
& =0.320-(2 / 5) \cdot 0.500-(3 / 5) \cdot 0.000=0.120
\end{aligned}
$$

- Consider $Z \in \mathcal{A}$ and compute $\operatorname{Imp} \operatorname{Dec}(\mathcal{D}, Z)$ as follows:
* Consider value 1 of Z. Then $\mathcal{D}_{1}=\{5,9\}$.

index	X	Z	class
5	0	1	No
9	1	1	No

- Thus $p_{\text {Yes }}=0$ and $p_{\mathrm{No}}=1$
- $\operatorname{Gini}\left(\mathcal{D}_{1}\right)=1-p_{\text {Yes }}^{2}-p_{\text {No }}^{2}=1-0^{2}-1^{2}=0$
* Consider value 0 of Z. Then $\mathcal{D}_{0}=\{2,7,8\}$.

index	X	Z	class
2	1	0	Yes
7	0	0	No
8	0	0	No
3 and $p_{\text {No }}=2 / 3$			

- Thus $p_{\text {Yes }}=1 / 3$ and $p_{\text {No }}=2 / 3$
- $\operatorname{Gini}\left(\mathcal{D}_{0}\right)=1-p_{\text {Yes }}^{2}-p_{\text {No }}^{2}=1-(1 / 3)^{2}-(2 / 3)^{2}=0.444$
$\operatorname{Imp} \operatorname{Dec}(\mathcal{D}, X)=\operatorname{Gini}(\mathcal{D})-\left(\left|\mathcal{D}_{1}\right| /|\mathcal{D}|\right) \operatorname{Gini}\left(\mathcal{D}_{1}\right)-\left(\left|\mathcal{D}_{0}\right| /|\mathcal{D}|\right) \operatorname{Gini}\left(\mathcal{D}_{0}\right)$ $=0.320-(2 / 5) \cdot 0.000-(3 / 5) \cdot 0.444=0.053$

So, the attribute X maximizes the decrease in impurity.

- Set the decision attribute of τ_{2} to X and continue recursively by calling
* ID3($\{2,9\},\{Z\})$ giving a node τ_{4}
* ID3 $(\{5,7,8\},\{Z\})$ giving a node τ_{5}.
- Connect τ_{2} with τ_{4} by an edge assigned 1 , and τ_{1} with τ_{5} using an edge assigned 0 .

ID3($\{2,9\},\{Z\})$
Now $\mathcal{D}=\{2,9\}$ and $\mathcal{A}=\{Z\}$.

index	Z	class
2	0	Yes
9	1	No

- At line 2 , create the node τ_{4}
- No "if" condition is satisfied, so we continue on line 10 . On line 10 , identify the best classifying attribute:

There is only Z, which is automatically selected.

- Set the decision attribute of τ_{2} to Z and continue recursively by calling
- ID3(\{9\}, $\})$ giving a node τ_{6}
$-\operatorname{ID3}(\{2\},\{ \})$ giving a node τ_{7}.
- Connect τ_{4} with τ_{6} by an edge assigned 1 , and τ_{4} with τ_{7} using an edge assigned 0 .

ID3(\{9\}, $\}$)
Now $\mathcal{D}=\{9\}$ and $\mathcal{A}=\{ \}$.

- At line 2 , create the node τ_{6}
- The "if" at line 5 is satisfied since all elements of \mathcal{D} are of class No. Assign No to τ_{6} and return τ_{6}.

ID3(\{2\}, $\})$
Now $\mathcal{D}=\{2\}$ and $\mathcal{A}=\{ \}$.

- At line 2 , create the node τ_{7}
- The "if" at line 5 is satisfied since all elements of \mathcal{D} are of class Yes. Assign Yes to τ_{7} and return τ_{7}.

ID3 $(\{5,7,8\},\{Z\})$
Now $\mathcal{D}=\{5,7,8\}$ and $\mathcal{A}=\{X, Z\}$.

- At line 2 , create the node τ_{5}
- The "if" at line 5 is satisfied since all elements of \mathcal{D} are of class No. Assign No to τ_{5} and return τ_{5}.

ID3($\{1,3,4,6,10\},\{X, Z\})$
Now $\mathcal{D}=\{1,3,4,6,10\}$ and $\mathcal{A}=\{X, Z\}$.

index	X	Z	class
1	1	1	Yes
3	1	1	Yes
4	1	1	Yes
6	1	0	No
10	0	1	Yes

- At line 2 , create the node τ_{3}.
- No "if" condition is satisfied, so we continue on line 10. On line 10, identify the best classifying attribute:
- We have already computed

$$
\operatorname{Gini}(\mathcal{D})=0.320
$$

- Consider $X \in \mathcal{A}$ and compute $\operatorname{Imp} \operatorname{Dec}(\mathcal{D}, X)$ as follows:
* Consider value 1 of X. Then $\mathcal{D}_{1}=\{1,3,4,6\}$.

index	X	Z	class
1	1	1	Yes
3	1	1	Yes
4	1	1	Yes
6	1	0	No

- Thus $p_{\text {Yes }}=3 / 4$ and $p_{\mathrm{No}}=1 / 4$
- $\operatorname{Gini}\left(\mathcal{D}_{1}\right)=1-p_{\text {Yes }}^{2}-p_{\text {No }}^{2}=1-(3 / 4)^{2}-(1 / 4)^{2}=0.375$
* Consider value 0 of X. Then $\mathcal{D}_{0}=\{10\}$.

index	X	Z	class
10	0	1	Yes

- Thus $p_{\text {Yes }}=1$ and $p_{\text {No }}=0$
- $\operatorname{Gini}\left(\mathcal{D}_{0}\right)=1-p_{\text {Yes }}^{2}-p_{\text {No }}^{2}=1-1^{2}-0^{2}=0$

$$
\begin{aligned}
\operatorname{Imp} \operatorname{Dec}(\mathcal{D}, X) & =\operatorname{Gini}(\mathcal{D})-\left(\left|\mathcal{D}_{1}\right| /|\mathcal{D}|\right) \operatorname{Gini}\left(\mathcal{D}_{1}\right)-\left(\left|\mathcal{D}_{0}\right| /|\mathcal{D}|\right) \operatorname{Gini}\left(\mathcal{D}_{0}\right) \\
& =0.320-(4 / 5) \cdot 0.375-(1 / 5) \cdot 0.000=0.020
\end{aligned}
$$

- Consider $Z \in \mathcal{A}$ and compute $\operatorname{Imp} \operatorname{Dec}(\mathcal{D}, Z)$ as follows:
* Consider value 1 of Z. Then $\mathcal{D}_{1}=\{1,3,4,10\}$.

index	X	Z	class
1	1	1	Yes
3	1	1	Yes
4	1	1	Yes
10	0	1	Yes

- Thus $p_{\text {Yes }}=1$ and $p_{\text {No }}=0$
- $\operatorname{Gini}\left(\mathcal{D}_{1}\right)=1-p_{\mathrm{Yes}}^{2}-p_{\mathrm{No}}^{2}=1-1^{2}-0^{2}=0$
* Consider value 0 of Z. Then $\mathcal{D}_{0}=\{6\}$.

index	X	Z	class
6	1	0	No

- Thus $p_{\text {Yes }}=0$ and $p_{\text {No }}=1$
- $\operatorname{Gini}\left(\mathcal{D}_{0}\right)=1-p_{\mathrm{Yes}}^{2}-p_{\mathrm{No}}^{2}=1-0^{2}-1^{2}=0$

$$
\begin{aligned}
\operatorname{Imp} \operatorname{Dec}(\mathcal{D}, X) & =\operatorname{Gini}(\mathcal{D})-\left(\left|\mathcal{D}_{1}\right| /|\mathcal{D}|\right) \operatorname{Gini}\left(\mathcal{D}_{1}\right)-\left(\left|\mathcal{D}_{0}\right| /|\mathcal{D}|\right) \operatorname{Gini}\left(\mathcal{D}_{0}\right) \\
& =0.320-(4 / 5) \cdot 0.000-(1 / 5) \cdot 0.000=0.320
\end{aligned}
$$

So, the attribute Z maximizes the decrease in impurity.

- Set the decision attribute of τ_{3} to Z and continue recursively by calling
* ID3($\{1,3,4,10\},\{X\})$ giving a node τ_{8}
* ID3($\{6\},\{X\})$ giving a node τ_{9}.
- Connect τ_{3} with τ_{8} by an edge assigned 1 , and τ_{3} with τ_{9} using an edge assigned 0 .

ID3 $(\{1,3,4,10\},\{X\})$
Now $\mathcal{D}=\{1,3,4,10\}$ and $\mathcal{A}=\{X\}$.

- At line 2 , create the node τ_{8}
- The "if" at line 5 is satisfied since all elements of \mathcal{D} are of class Yes. Assign Yes to τ_{8} and return τ_{8}.

ID3(\{6\}, $\{X\}$)
Now $\mathcal{D}=\{6\}$ and $\mathcal{A}=\{X\}$.

- At line 2 , create the node τ_{9}
- The "if" at line 5 is satisfied since all elements of \mathcal{D} are of class No. Assign No to τ_{9} and return τ_{9}.

Figure 1: The tree

[^0]: ${ }^{1}$ Note that the nodes of the tree are numbered sequentially so that each node gets a unique index. The indices do not correspond to the indices assigned by the pseudocode.

