ID3 Algorithm - Complete Illustration

Consider the dataset \mathcal{D} specified by the following table:

index	Х	Υ	Ζ	class
1	1	0	1	Yes
2	1	1	0	Yes
3	1	0	1	Yes
4	1	0	1	Yes
5	0	1	1	No
6	1	0	0	No
7	0	1	0	No
8	0	1	0	No
9	1	1	1	No
10	0	0	1	Yes

There are three attributes $\mathcal{A} = \{X, Y, Z\}$ and two classes $C = \{\text{Yes}, \text{No}\}$. Each attribute has possible values 0 and 1. Let us use indices 1 - 10 to denote elements of the dataset \mathcal{D} . That is, write $\mathcal{D} = \{1, \ldots, 10\}$.

Let me demonstrate the execution of the algorithm ID3 with impurity decrease (Gini) to select the best-classifying attributes in every call of ID3.

The algorithm proceeds as follows:

$ID3(\mathcal{D}, \mathcal{A})$

- At line 2 create the node τ_1 (see Image 1).¹
- No "if" condition is satisfied, so we continue on line 10. On line 10, identify the best classifying attribute:
 - To compute the impurity decrease, we need to compute $Gini(\mathcal{D})$ for $\mathcal{D} = \{1, \dots, 10\}$ as follows:

*
$$p_{\text{Yes}} = p_{\text{No}} = 1/2$$

* $Gini(\mathcal{D}) = 1 - p_{\text{Yes}}^2 - p_{\text{No}}^2 = 1 - (1/2)^2 - (1/2)^2 = 0.5$

– Consider $X \in \mathcal{A}$ and compute $ImpDec(\mathcal{D}, X)$ as follows:

T	01Λ . 11	lien 1	$\nu_1 -$	1 ¹ ,	2, 3, 4, 0
	index	Х	Y	Ζ	class
	1	1	0	1	Yes
	2	1	1	0	Yes
	3	1	0	1	Yes
	4	1	0	1	Yes
	6	1	0	0	No
	9	1	1	1	No

*	Consider	value 1	of X .	Then 7	$\mathcal{D}_1 = \cdot$	$\{1, 2, 3\}$	$,4,6,9\}.$
---	----------	---------	----------	--------	-------------------------	---------------	-------------

 $^{^1 \}rm Note that the nodes of the tree are numbered sequentially so that each node gets a unique index. The indices do not correspond to the indices assigned by the pseudocode.$

· Thus $p_{\text{Yes}} = 4/6$ and $p_{\text{No}} = 2/6$

•
$$Gini(\mathcal{D}_1) = 1 - p_{\text{Yes}}^2 - p_{\text{No}}^2 = 1 - (4/6)^2 - (2/6)^2 = 0.444$$

* Consider value 0 of X. Then $\mathcal{D}_0 = \{5, 7, 8, 10\}.$

index	Х	Y	Ζ	class
5	0	1	1	No
7	0	1	0	No
8	0	1	0	No
10	0	0	1	Yes
		- /		

• Thus $p_{\text{Yes}} = 1/4$ and $p_{\text{No}} = 3/4$ • $Gini(\mathcal{D}_0) = 1 - p_{\text{Yes}}^2 - p_{\text{No}}^2 = 1 - (1/4)^2 - (3/4)^2 = 0.375$

 $ImpDec(\mathcal{D}, X) = Gini(\mathcal{D}) - (|\mathcal{D}_1|/|\mathcal{D}|)Gini(\mathcal{D}_1) - (|\mathcal{D}_0|/|\mathcal{D}|)Gini(\mathcal{D}_0)$ $= 0.5 - (6/10) \cdot 0.444 - (4/10) \cdot 0.375 = 0.083$

- Consider $Y \in \mathcal{A}$ and compute $ImpDec(\mathcal{D}, Y)$ as follows:

* Consider value 1 of Y. Then $D_1 = \{2, 5, 7, 8, 9\}$	*	Consider	value 1	of Y .	Then $\mathcal{D}_1 =$	$\{2$, 5, 7	7, 8,	9}	
---	---	----------	---------	----------	------------------------	-------	--------	-------	----	--

* Consider value 1 o	of Y . The	nen I	$y_1 =$	$\{2,\}$	5, 7, 8, 9	•				
	index	Х	Y	Ζ	class					
	2	1	1	0	Yes					
	5	0	1	1	No					
	7		1		No					
	8	0	1	0	No					
	9	1	1	1	No					
• Thus $p_{\text{Yes}} = 1$	/5 and f	p _{No} =	= 4/5	5						
$\cdot \ Gini(\mathcal{D}_1) = 1$	$-p_{\mathrm{Yes}}^2$ -	$p_{\rm No}^2$	= 1	- (1	$(1/5)^2 - (-1/5)^2$	$(4/5)^2 = 0.320$				
* Consider value 0 α	of Y . The	nen 1	$D_0 =$	$\{1,$	3, 4, 6, 10	}.				
	index	X	Y	Ζ	class					
	1	1	0	1	Yes					
	3	1	0	1	Yes					
	4	1	0	1	Yes					
	6	1	0	0	No					
	10	0	0	1	Yes					
• Thus $p_{\text{Yes}} = 4$	· Thus $p_{\text{Yes}} = 4/5$ and $p_{\text{No}} = 1/5$									
• $Gini(\mathcal{D}_0) = 1 - p_{Yes}^2 - p_{No}^2 = 1 - (4/5)^2 - (1/5)^2 = 0.320$										
$ImpDec(\mathcal{D}, Y) = Gini(\mathcal{D}) - (\mathcal{D}_1 / \mathcal{D})Gini(\mathcal{D}_1) - (\mathcal{D}_0 / \mathcal{D})Gini(\mathcal{D}_0)$										
$= 0.500 - (5/10) \cdot 0.320 - (5/10) \cdot 0.320 = 0.180$										

– Consider $Z \in \mathcal{A}$ and compute $ImpDec(\mathcal{D}, Z)$ as follows: * Consider value 1 of Z. Then $\mathcal{D}_1 = \{1, 3, 4, 5, 9, 10\}.$

index	Х	Υ	Ζ	class
1	1	0	1	Yes
3	1	0	1	Yes
4	1	0	1	Yes
5	0	1	1	No
9	1	1	1	No
10	0	0	1	Yes

 $\begin{array}{r} \cdot \text{ Thus } p_{\text{Yes}} = 4/6 \text{ and } p_{\text{No}} = 2/6 \\ \cdot \ Gini(\mathcal{D}_1) = 1 - p_{\text{Yes}}^2 - p_{\text{No}}^2 = 1 - (4/6)^2 - (2/6)^2 = 0.444 \\ * \text{ Consider value 0 of } Y. \text{ Then } \mathcal{D}_0 = \{2, 6, 7, 8\}. \\ \hline \begin{array}{r} \hline \text{index} & \textbf{X} & \textbf{Y} & \textbf{Z} & \text{class} \\ \hline 2 & 1 & 1 & 0 & \text{Yes} \\ \hline 6 & 1 & 0 & 0 & \text{No} \\ \hline 7 & 0 & 1 & 0 & \text{No} \\ \hline 8 & 0 & 1 & 0 & \text{No} \end{array}$

• Thus $p_{\text{Yes}} = 1/4$ and $p_{\text{No}} = 3/4$ • $Gini(\mathcal{D}_0) = 1 - p_{\text{Yes}}^2 - p_{\text{No}}^2 = 1 - (1/4)^2 - (3/4)^2 = 0.375$

$$ImpDec(\mathcal{D}, Z) = Gini(\mathcal{D}) - (|\mathcal{D}_1|/|\mathcal{D}|)Gini(\mathcal{D}_1) - (|\mathcal{D}_0|/|\mathcal{D}|)Gini(\mathcal{D}_0) = 0.500 - (6/10) \cdot 0.444 - (4/10) \cdot 0.375 = 0.083$$

So, the attribute Y maximizes the decrease in impurity.

- Set the decision attribute of τ_1 to Y and continue recursively by calling
 - **ID3**($\{2, 5, 7, 8, 9\}, \{X, Z\}$) giving a node τ_2 - **ID3**($\{1, 3, 4, 6, 10\}, \{X, Z\}$) giving a node τ_3 .
- Connect τ_1 with τ_2 by an edge assigned 1, and τ_1 with τ_3 using an edge assigned 0.

Now, let us demonstrate the recursive calls.

$ID3(\{2, 5, 7, 8, 9\}, \{X, Z\})$

Now $\mathcal{D} = \{2, 5, 7, 8, 9\}$ and $\mathcal{A} = \{X, Z\}.$

index	Х	\mathbf{Z}	class
2	1	0	Yes
5	0	1	No
7	0	0	No
8	0	0	No
9	1	1	No

• At line 2, create the node τ_2 .

- No "if" condition is satisfied, so we continue on line 10. On line 10, identify the best classifying attribute:
 - We have already computed

$$Gini(\mathcal{D}) = 0.320$$

– Consider $X \in \mathcal{A}$ and compute $ImpDec(\mathcal{D}, X)$ as follows:

* Consider value 1 of X. Then $\mathcal{D}_1 = \{2, 9\}.$

index	Х	Ζ	class					
2	1	0	Yes					
9	1	1	No					
2 and $p_{\rm No} = 1/2$								

• Thus $p_{\text{Yes}} = 1/2$ and $p_{\text{No}} = 1/2$ • $Gini(\mathcal{D}_1) = 1 - p_{\text{Yes}}^2 - p_{\text{No}}^2 = 1 - (1/2)^2 - (1/2)^2 = 0.500$

*	Consider	value	0	of X .	Then	$\mathcal{D}_0 = \cdot$	$\{5, 7, 8\}$	•.
---	----------	-------	---	----------	------	-------------------------	---------------	----

			_
index	X	Ζ	class
5	0	1	No
7	0	0	No
8	0	0	No
0 and n	_ 1		

• Thus $p_{\text{Yes}} = 0$ and $p_{\text{No}} = 1$

•
$$Gini(\mathcal{D}_0) = 1 - p_{Yes}^2 - p_{No}^2 = 1 - 0^2 - 1^2 = 0$$

 $ImpDec(\mathcal{D}, X) = Gini(\mathcal{D}) - (|\mathcal{D}_1|/|\mathcal{D}|)Gini(\mathcal{D}_1) - (|\mathcal{D}_0|/|\mathcal{D}|)Gini(\mathcal{D}_0)$ $= 0.320 - (2/5) \cdot 0.500 - (3/5) \cdot 0.000 = 0.120$

– Consider $Z \in \mathcal{A}$ and compute $ImpDec(\mathcal{D}, Z)$ as follows:

* Consider value 1 of	Z. Ther	h \mathcal{D}_1	= {!	$5, 9\}.$	
	index	Х	Ζ	class	
	5	0	1	No	
	9	1	1	No	
• Thus $p_{\text{Yes}} = 0$ a	nd $p_{\rm No}$ =	= 1			
$\cdot Gini(\mathcal{D}_1) = 1 -$	$p_{\rm Yes}^2 - p$	$^2_{\rm No} =$	1 –	$0^2 - 1^2$	= 0
\ast Consider value 0 of	Z. Ther	n \mathcal{D}_0	= {:	$2, 7, 8\}.$	
	index	Х	Ζ	class	
	2	1	0	Yes	
	7	0	0	No	
	8	0	0	No	
• Thus $p_{\text{Yes}} = 1/3$	and $p_{\rm N}$	$_{\rm o}=2$	2/3		
$\cdot \ Gini(\mathcal{D}_0) = 1 -$	$p_{\rm Yes}^2 - p$	$^2_{\rm No} =$	1 –	$(1/3)^2$	$-(2/3)^2 = 0.444$
$ImpDec(\mathcal{D}, X) = Gini(\mathcal{I})$	$\mathcal{D}) - (\mathcal{D})$	$ / \mathcal{D}$	$)G_i$	$ini(\mathcal{D}_1)$	$-\left(\mathcal{D}_0 / \mathcal{D} \right)Gini$

$$mpDec(\mathcal{D}, X) = Gini(\mathcal{D}) - (|\mathcal{D}_1|/|\mathcal{D}|)Gini(\mathcal{D}_1) - (|\mathcal{D}_0|/|\mathcal{D}|)Gini(\mathcal{D}_0)$$

= 0.320 - (2/5) \cdot 0.000 - (3/5) \cdot 0.444 = 0.053

So, the attribute X maximizes the decrease in impurity.

- Set the decision attribute of τ_2 to X and continue recursively by calling
 - * **ID3**($\{2, 9\}, \{Z\}$) giving a node τ_4
 - * **ID3**($\{5, 7, 8\}, \{Z\}$) giving a node τ_5 .
- Connect τ_2 with τ_4 by an edge assigned 1, and τ_1 with τ_5 using an edge assigned 0.

$ID3(\{2,9\},\{Z\})$

Now $\mathcal{D} = \{2, 9\}$ and $\mathcal{A} = \{Z\}$.

index	Ζ	class
2	0	Yes
9	1	No

- At line 2, create the node τ_4
- No "if" condition is satisfied, so we continue on line 10. On line 10, identify the best classifying attribute:

There is only Z, which is automatically selected.

- Set the decision attribute of τ_2 to Z and continue recursively by calling
 - **ID3**($\{9\}, \{\}$) giving a node τ_6
 - **ID3**($\{2\}, \{\}$) giving a node τ_7 .
- Connect τ_4 with τ_6 by an edge assigned 1, and τ_4 with τ_7 using an edge assigned 0.

 $ID3({9}, {})$

Now $\mathcal{D} = \{9\}$ and $\mathcal{A} = \{\}$.

- At line 2, create the node τ_6
- The "if" at line 5 is satisfied since all elements of D are of class No. Assign No to τ₆ and return τ₆.

 $ID3(\{2\}, \{\})$

Now $\mathcal{D} = \{2\}$ and $\mathcal{A} = \{\}$.

- At line 2, create the node τ_7
- The "if" at line 5 is satisfied since all elements of \mathcal{D} are of class Yes. Assign Yes to τ_7 and return τ_7 .

$\mathbf{ID3}(\{5,7,8\},\{Z\})$

Now $\mathcal{D} = \{5, 7, 8\}$ and $\mathcal{A} = \{X, Z\}.$

- At line 2, create the node τ_5
- The "if" at line 5 is satisfied since all elements of D are of class No. Assign No to τ₅ and return τ₅.

$ID3(\{1, 3, 4, 6, 10\}, \{X, Z\})$

Now $\mathcal{D} = \{1, 3, 4, 6, 10\}$ and $\mathcal{A} = \{X, Z\}.$

index	X	Ζ	class
1	1	1	Yes
3	1	1	Yes
4	1	1	Yes
6	1	0	No
10	0	1	Yes

- At line 2, create the node τ_3 .
- No "if" condition is satisfied, so we continue on line 10. On line 10, identify the best classifying attribute:
 - We have already computed

$$Gini(\mathcal{D}) = 0.320$$

– Consider $X \in \mathcal{A}$ and compute $ImpDec(\mathcal{D}, X)$ as follows:

* Consider value 1 of	X. The	n \mathcal{D}_1	= {	$1, 3, 4, 6\}.$
	index	Х	Ζ	class
	1	1	1	Yes
				Yes
	4	1	1	Yes
	6	1	0	No
· Thus $p_{\text{Yes}} = 3/4$	and $p_{\rm N}$	$_{o} = 1$	l/4	
$\cdot Gini(\mathcal{D}_1) = 1 -$	$p_{\rm Yes}^2 - p$	$P_{\rm No}^2 =$:1-	$(3/4)^2 - (1/4)^2 = 0.375$
* Consider value 0 of	X. The	n \mathcal{D}_0	= {	10}.
	index	Х	Ζ	class
	10	0	1	Yes
• Thus $p_{\text{Yes}} = 1$ a	nd $p_{\rm No}$ =	= 0		
$\cdot \ Gini(\mathcal{D}_0) = 1 -$	$p_{\rm Yes}^2 - p$	$P_{\rm No}^2 =$:1-	$1^2 - 0^2 = 0$
$ImpDec(\mathcal{D}, X) = Gini(\mathcal{I})$	$\mathcal{D}) - (\mathcal{D}_1 $	$_1 / \mathcal{D}$	P)G	$ini(\mathcal{D}_1) - (\mathcal{D}_0 / \mathcal{D})Gini(\mathcal{D}_0)$
= 0.320 -	$-(4/5) \cdot$	0.37!	5 – ($(1/5) \cdot 0.000 = 0.020$

- Consider $Z \in \mathcal{A}$ and compute $ImpDec(\mathcal{D}, Z)$ as follows:

onsider value 1 of Z. Then $\mathcal{D}_{1} = \{1, 3, 4, \frac{ }{ } \text{index} X Z \text{class}}{1 1 1 \text{Yes}} \\ \frac{ }{3 1 1 \text{Yes}}{3 $		-	-	`	. ,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Consider value 1 of	Z. Then	n \mathcal{D}_1	= {	1, 3, 4, 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		index	X	Ζ	class
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1	1	1	Yes
$10 0 1 \text{Yes}$ $\cdot \text{ Thus } p_{\text{Yes}} = 1 \text{ and } p_{\text{No}} = 0$ $\cdot \text{ Gini}(\mathcal{D}_1) = 1 - p_{\text{Yes}}^2 - p_{\text{No}}^2 = 1 - 1^2 - 0$ onsider value 0 of Z. Then $\mathcal{D}_0 = \{6\}$. $\boxed{\text{index} X Z \text{class}}_{6 1 0 \text{No}}$ $\cdot \text{ Thus } p_{\text{Yes}} = 0 \text{ and } p_{\text{No}} = 1$		3	1	1	Yes
$ \begin{array}{r} & \text{Thus } p_{\text{Yes}} = 1 \text{ and } p_{\text{No}} = 0 \\ & \text{Gini}(\mathcal{D}_1) = 1 - p_{\text{Yes}}^2 - p_{\text{No}}^2 = 1 - 1^2 - 0 \\ & \text{onsider value 0 of } Z. \text{ Then } \mathcal{D}_0 = \{6\}. \\ & \hline \begin{array}{r} & \text{index} & \text{X} & \text{Z} & \text{class} \\ \hline & 6 & 1 & 0 & \text{No} \end{array} \\ & & \text{\cdot Thus } p_{\text{Yes}} = 0 \text{ and } p_{\text{No}} = 1 \end{array} $		4	1	1	Yes
$ Gini(\mathcal{D}_1) = 1 - p_{\text{Yes}}^2 - p_{\text{No}}^2 = 1 - 1^2 - 0 $ onsider value 0 of Z. Then $\mathcal{D}_0 = \{6\}.$ $ \underline{index \ X \ Z \ class} $ $ 6 \ 1 \ 0 \ \text{No} $ $ \cdot \text{ Thus } p_{\text{Yes}} = 0 \text{ and } p_{\text{No}} = 1 $		10	0	1	Yes
onsider value 0 of Z. Then $\mathcal{D}_0 = \{6\}$. \cdot Thus $p_{\text{Yes}} = 0$ and $p_{\text{No}} = 1$	• Thus $p_{\text{Yes}} = 1$ a	and $p_{\rm No}$ =	= 0		
$ \begin{array}{c c} \hline \text{index} & \textbf{X} & \textbf{Z} & \text{class} \\ \hline 6 & 1 & 0 & \text{No} \\ \hline \end{array} \\ \hline \end{array} $ $ \cdot \text{ Thus } p_{\text{Yes}} = 0 \text{ and } p_{\text{No}} = 1 $	$\cdot Gini(\mathcal{D}_1) = 1 -$	$p_{\rm Yes}^2 - p$	$p_{No}^2 =$	= 1 -	$1^2 - 0^2$
· Thus $p_{\text{Yes}} = 0$ and $p_{\text{No}} = 1$	Consider value 0 of	Z. Then	n \mathcal{D}_0	= {	$6\}.$
• Thus $p_{\text{Yes}} = 0$ and $p_{\text{No}} = 1$		index	X	Ζ	class
		6	1	0	No
$C_{imi}(\mathcal{D}) = 1 m^2 = m^2 = 1 0^2$	• Thus $p_{\text{Yes}} = 0$ a	and $p_{\rm No}$ =	= 1		
$\cdot Gim(D_0) = 1 - p_{\text{Yes}} - p_{\text{No}} = 1 - 0 - 1$	$Gini(\mathcal{D}_{0}) - 1 -$	$p_{\rm Yes}^2 - p$	$p_{No}^2 =$	= 1 -	$0^2 - 1^2$
	$Gum(\nu_0) = 1$		1.0		
$ec(\mathcal{D}, X) = Gini(\mathcal{D}) - (\mathcal{D}_1 / \mathcal{D})Gini(\mathcal{D}_1)$	$Gim(\mathcal{D}_0) = 1$				

$$ImpDec(\mathcal{D}, X) = Gini(\mathcal{D}) - (|\mathcal{D}_1|/|\mathcal{D}|)Gini(\mathcal{D}_1) - (|\mathcal{D}_0|/|\mathcal{D}|)Gini(\mathcal{D}_0) = 0.320 - (4/5) \cdot 0.000 - (1/5) \cdot 0.000 = 0.320$$

So, the attribute Z maximizes the decrease in impurity.

- Set the decision attribute of τ_3 to Z and continue recursively by calling
 - * **ID3**($\{1, 3, 4, 10\}, \{X\}$) giving a node τ_8
 - * **ID3**($\{6\}, \{X\}$) giving a node τ_9 .
- Connect τ_3 with τ_8 by an edge assigned 1, and τ_3 with τ_9 using an edge assigned 0.

 $ID3(\{1, 3, 4, 10\}, \{X\})$

Now $\mathcal{D} = \{1, 3, 4, 10\}$ and $\mathcal{A} = \{X\}.$

- At line 2, create the node τ_8
- The "if" at line 5 is satisfied since all elements of \mathcal{D} are of class Yes. Assign Yes to τ_8 and return τ_8 .

 $ID3(\{6\}, \{X\})$

Now $\mathcal{D} = \{6\}$ and $\mathcal{A} = \{X\}$.

- At line 2, create the node τ_9
- The "if" at line 5 is satisfied since all elements of D are of class No. Assign No to τ₉ and return τ₉.

