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EXASCALE COMPUTING IS HERE (US, CN?)

FRONTIER @ OLCF (US): HPE/CRAY

- AMD EPYC CPUs, AMD MI250 GPUs

« 8.7 M CPU cores & GPU compute units

« 52 GFlop/s/W

« 1102 PFlop/s HPL, rank 1 in Top500 11/2022




* 1 more pre-exascale @ BSC, 2023

AND SOON IN EUROPE ...
e  “Jupiter’@Julich will be the first

European Exascale system (500 M€), 2024

LEONARDO
Bologna

~
MeluXina
Bissen

MAX PLANCK COMPUTING AND DATA FACILITY, MARKUS RAMPP 2023-01-11



Projected Performance Development
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WHAT’S NEXT - THE ZETTAFLOPS SUPERCOMPUTER?

from: https://www.nextbigfuture.com/2023/02/intel-and-amd-path-to-zettaflop-supercomputers.html

Path to Zettascale

Process
5x
Data
Movement
Power 3x
& Thermals |\
2X \
Architecture

Tech 16x
Foundation

Today



https://www.nextbigfuture.com/2023/02/intel-and-amd-path-to-zettaflop-supercomputers.html

WHAT’S NEXT - Al WILL TAKE OVER?

T ‘ Workshops March 17-21 | Al Conference and Expo March 18-21 | Keynote March 18 | San Jose, CA and Virtual @EN

Keynote Session Catalog Agend Sponsors More ~

NVIDIA GTC 2024 Keynote

Don’t Miss This Transformative Moment in Al

Watch NVIDIA CEO Jensen Huang's GTC keynote to catch all the announcements on Al advances that are shaping our future.

A GTC March 2024 Keynoteaw

Monday, March 18
1-3 p.m. PDT

Keynote

Watch on (88 Youlube
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WHAT’S NEXT — QUANTUM?

MAX



https://www.itwm.fraunhofer.de/en/departments/hpc/quantum-computing.html

12 “MYTHS” IN HPC

S. Matsuoka, J. Domke, M. Wahib, A. Drozd, and T. Hofler

https://doi.org/10.48550/arXiv.2301.02432

)1.02432v1 [cs.DC] 6 Jan 2023

Myths and Legends in High-Performance
Computing

Satoshi Matsuoka', Jens Domke', Mohamed Wahib', Aleksandr Drozd', Torsten Hoefler?

Abstract

In this humorous and thought provoking article, we discuss certain myths and legends that are folklore among members
of the high-performance computing community. We collected those myths from conversations at conferences and
meetings, product advertisements, papers, and other communications such as tweets, blogs, and news articles within
(and beyond) our community. We believe they represent the zeitgeist of the current era of massive change, driven by the
end of many scaling laws such as Dennard scaling and Moore’s law. While some laws end, new directions open up, such
as algorithmic scaling or novel architecture research. However, these myths are rarely based on scientific facts but often
on some evidence or argumentation. In fact, we believe that this is the very reascn for the existence of many myths
and why they cannot be answered clearly. While it feels like there should be clear answers for each, some may remain
endless philosophical debates such as the question whether Beethoven was better than Mozart. We would like to see
our collection of myths as a discussion of possible new directions for research and industry investment.

Keywords
Quantum; zettascale; deep learning; clouds; HPC myths

Introduction Myth 1: Quantum Computing Will Take Over
HPC!

Numerous articles are hyping the quantum computing
revolution affecting nearly all aspects of life ranging from
quantum artificial intelligence to even quantum gaming.
The whole IT industry is following the quantum trend
and conceives quickly growing expectations. The actual
development of quantum technologies, algorithms, and use-
cases is on a very different time-scale. Most practitioners
wonld not exnect anantiim comnnterse to ontnerform clageieral

Any human society has their myths and legends—this also
applies to the high-performance computing (HPC) community.
HPC drives the largest and most powerful computers and
latest computing and acceleration technologies forward. One
may think that it’s scientific reasoning all the way down in
such an advanced field. Yet, we find many persistent myths
revolving around trends of the moment.



THE 12 ‘MYTHS’ IN HPC

Myth 1: Quantum Computing Will Take Over
HPC!

Myth 2: Everything Will Be Deep Learning!

Myth 3: Extreme Specialization as Seen in
Smartphones Will Push Supercomputers
Beyond Moore’s Law!

Myth 4: Everything Will Run on Some
Accelerator!

Myth 5: Reconfigurable Hardware Will Give
You 100X Speedup!

Myth 6: We Will Soon Run at Zettascale!

Myth 7: Next-Generation Systems Need
More Memory per Core!

Myth 8: Everything Will Be Disaggregated!

Myth 9: Applications Continue to Improve,
Even on Stagnating Hardware!

Myth 10: Fortran Is Dead, Long Live the DSL!

Myth 11: HPC Will Pivot to Low or Mixed
Precision!

Myth 12: All HPC Will Be Subsumed by the
Clouds!

10



MYTH 9: APPLICATIONS CONTINUE TO IMPROVE
EVEN ON STAGNATING HARDWARE

11
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STAGNATING HARDWARE?
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Performance per Watt (normalized to Raven
Intel ICL & NVidia A100)

AN INCONVENIENT TRUTH
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ALGORITHMIC MOORE'’S LAW

8 arXiv preprints
108 it
ARK integrat .
Q improved improved compllr:af %Lae%r o <
o 107 electron _linear solver f s’
O models AMR higher J -’
— order AMR 2
106 : s . .
(-CD Zlgehng:tif e Fuson Energy Sutton « Should we dramatically increase
. (Global MHD) . .
= 105 deltat  lowMach e - investments in software?
8 magneti - \ wn Energy Simulation
: semi-implici * (Micro-turbulence) . p . . y
o 10 coordinates 7 auto-code B « Will the “Algorithmic Moore’s
Q. w .7 Combustion Simu]atiqn L » d ”,?
(j) 103 Kinetics I (Complex Kinetics) aw end soon as well ¢
8 Combustion Simulation - .
= 102 B (cFp) » Are we willing to refactor/rewrite
§ COSMO Climate Model legacy codebases?
(g 101 Moore’s Law
U) 100 L= d 1 1 1 1
1980 1990 2000 2010 2020

Figure 3. Examples of “Algorithmic Moore’s Law” for different areas in HPC; Fusion energy and combustion simulations data
by Keyes (2022) and climate simulation data by Schulthess (2016)

https://doi.org/10.48550/arXiv.2301.02432 14



MYTH 4: EVERYTHING WILL RUN ON SOME
ACCELERATOR!

15



LARGE UNEXPLORED TERRITORY — WILL IT BE TAKEN UP?

4 arXiv preprints

Compute Bound (C) Memory-Bandwidth Bound (B)  Memory-Latency Bound (L)

(aka Top500) (aka HPCG) (aka Graph500)
N\ J
v Classic Vector (Qg. Earth Simulator) ~90s )
Y

COTS-CPU based clusters late 90s — late 2000s (ASCI XXX, Tsubame1/T2K, Jaguar, K)
Standard Memory Technologies (DDR DRAM), Massiyc‘aly Parallel

N -

\ GPU CPU )
Y
GPU-Based “Heterogeneous” Machines: high (compute & BW & latency) for GPU
% Tsubame?2/3, ABCIl, Summit, Piz-Daint, Fronter, Aurora, ... )
Y
Fujitsu A64FX (Fugaku), Intel Sapphire Rapids: incs)rporating high bandwidth vectors & good SW ecosystem ,
“ - ~- s
Y . y
v GPU/Matrix CPU )
Y
Unexplored but good? (programmability, performance, industry adopti'on, or)
i \ ! - A p; J
Y \ Y
v Strong Scaling CGRA/Matrix CPU/PIM Strong Scaling CGRA Y

~
CPU/PIM for BW bound, Strong Scaling CGRA for compute- & latency-bound

Figure 1. Classification of Compute Kernels and Supercomputing Architecture
https://doi.org/10.48550/arXiv.2301.02432
16



MYTH 2: EVERYTHING WILL BE DEEP LEARNING!

17



Original slide courtesy Rick Stevens, ANL, 2023

Al for Science w/HPC Foundations and Appllcatlons
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Search ptimization
Augmented
Simulations
Controlling

complex systems
and simulations of
digital twins

Manufacturing
sSurgery
y Reactors™

Simulation Mobility

Distillation

Integration

Materials

Foundational
Models for Science

;::l Developing
H'” Scientific Codes

Synthesis Debugging/ Coding
Writing ~ / Security _
Protocols Q+A Optimization Translation

=
Ar onn;: 4

% |ENERGY
(nteD) @ =~

AGI Scientist
w/Foundational

Design &
Optimization Models
/N‘ Sl?rduucstgrizls Experiments& Discovery &
Devices Simulations Instruments & Evaluation
Proteins Planning HPC Control

Oa
% 04K Rinss

5 ENERG) ™ I&yjl* o 1-1A
g:._;__‘,_, ,—“_—'

AMDI




Slide from FugakuGPT/Rio Yokota

@ Al Training is Now the Forefront of High End HPC &M
(And thus Free Ride on HPC is Over)

GPT4: requiring Top500

ORNL Frontier
Top -5 capabilities

1o¢ 100 trillion parameters TOPSOO#]' 1100 PF 4%%%3{”_.....0> The rapid evolution of large language models
Su nway f ‘mcreaSe 5 years SR e (LLMs) leading up to GPT-4 can be attributed
Talhunght 12x per to scaling, which in turn has been supported
9§PF by "free ride" or "low-hanging fruit"

Mhec20  olam advancements in supercomputer technologies,

. S e e el such as weak scaling, low-precision arithmetic

B 10¢ 1 trillion parameters ‘.’%Q% ° e 0 GPU tri tiplicat ) hieh
c -
5 ’ o Megatrg%u&ngm. ~ in s, matrix multiplication engines, hig
E (((\\ Gopher bandwidth memory (HBM), and high
2 o5 100 billion parameters ,ase ] panGua 4096 TPUv3s bandwidth interconnects, etc.
- e 175000 200000 JUI’aSSIC 1 ._ Chinchilla
£ (\C( \ . 2048 Ascend 910s 178000 Lawon 70000 o .
& . e\ xe 120 17600 e Coincidentally, the GPT-3.5/4.0 revolution
o S\’L « CA© e occurred when utilizing computational

10° \,\}l\ O et o ® . & P )

; 60 V100571 wesk Megatron resources equivalent to those of top-tier
l 512 V100s/2 days/epoch %‘é’g{(g_ su percom puterS.
10° 1 billion parameters BERT RoBERTa 256 TPUv3s/2 weeks
Transformer 340 355 .
213 64 TPUV3s/4 days 1024 V100s/5 days e The development of models eg GPT-5 will slow
8 P100s/3.5 days GPT o ? ([ ALBERT " RPN, . .
° Cuo & P1000 month 4 e I - down as the era of "free ride” ending, causing
10° Y ® Transformer-XL 349 Collected and shared by progress to be proportional to the evolution of
512 TPUv3s/2.5 days leOll Dryden (LLNL)
supercomputers.
oS S° oS o o S oS

e Moving forward, it is important to focus on

. research in large-scale supercomputer Al
_ 1,000’000)( IN 5 yea s ! — systems, along with how to incorporate
' _ domain-specific knowledge in the
slide curtesy Satoshi Matsuoka foundational models 19
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PREDICION OF 3D PROTEIN STRUCTURES

ENABLING Al SYSTEMS IN COMPUTATIONAL BIOLOGY FOR A BROAD USER BASE

AlphaFold2 [1]

« Deep learning system to predict the 3d structure of proteins based on their linear sequence of amino acids

« Adapted and optimized by MPCDF early on for use on supercomputers with GPU acceleration

 High demand and extreme 10 requirements, mitigated by using dedicated NVMe-based storage systems

« Very large and broad user base, encompassing theoretical, interdisciplinary, and experimental groups
>T1037 SO0A2C3d4, , 404 residues|

SKINFYTTTIETLETEDONNTLTTFKVONVSNASTIFSNGK -~
TYWNFARPSYISNRINTFKNNPGVLRQLLNTSYGQSSLWAK ‘ i:

* HLLGEEKNVTGDFVLAGNARESASENRLKSLELSIFNSLOQE
og KDKGAEGNDNGSISIVDQLADKLNKVLRGGTKNGTSIYSTV : A A TS
\ TPGDKSTLHEIKIDHFIPETISSFSNGTMIFNDKIVNAFTD |:> Ve
‘\o HFVSEVNRMKEAYQELETLPESKRVVHYHTDARGNVMKDGK T1037/ 6vra T1049 / Gyaf
e LAGNAFKSGHILSELSFDQITQDDNEMLKLYNEDGSPINPK i salpnamemiomsiid P
GAVSNEQKILIKQTINKVLNQRIKENIRYFKDQGLVIDTVN
KDGNKGFHFHGLDKSIMSEYTDDIQLTEFDISHVVSDETLN T 2]

SILASIEYTKLFTGDPANYKNMVDEFFKRVPATYTN ®Computational prediction

[1] Jumper, John, et al. "Highly accurate protein structure prediction with AlphaFold." Nature 596.7873 (2021): 583-589.
[2] https://github.com/deepmind/alphafold

MAX PLANCK COMPUTING AND DATA FACILITY



https://github.com/deepmind/alphafold

RECOGNITION OF CRYSTAL STRUCTURES

A COLLABORATION OF MPI FUR EISENFORSCHUNG AND MPCDF

Automatic analyses of atom probe tomography data

A convolutional neuronal network has been

developed which can reconstruct 3D crystal structures -

from atom probe tomography data

The method dramatically speeds up the analysis of
micrographs

The method has been extended to reliably detect
chemical short-range order (CSRO) in crystalline
structures

MAX PLANCK COMPUTING AND DATA FACILITY
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®

SISSO++

o\
e‘ -
\Q SISSO, a deterministic symbolic regression method
0

« extracts mathematical expressions directly from data in 2 steps:

1. create a (huge) pool of analytical expressions through iterative
combinations

2. select optimal candidates for desired properties through (regression)
analysis of these expressions and their linear combinations

\6 A COLLABORATION OF THE FRITZ-HABER INSTITUTE, MPCDF, EU COE NOMAD

Feature generatlon

SISSO
steps

" Pool of generated features 2
~— (At least billions to trillions!)~, _~

Feature screening:
SIS(sure independence screening) + LO regularization

Y=a0+al*x1+a2*x2+...(Forxl,x2, ... in generated features)

« SISSO++, open source software (Purcell et al., JOSS, 7(71), 3960, 2022)

cross-platform, GPU-acceleration using the Kokkos framework

a)

« scientific application highlight: identification of > 50 strongly thermally
insulating materials for thermoelectric elements (devices able to convel
otherwise wasted heat into useful electrical voltage)

Purcell et al. npj Comput Mater 9, 112 (2023
MAX PLANCK COMPUTING AND DATA FACILITY

AMDO
nviDIA - openacc OpenMP
Programming models: CuDA

3\ CUDA HIP OpenACC OpenMP, .

Unified Performance Portable Layer oot R

S
" @ . =
. 5.

Kokkos Gru -

Total time (s)
[

Y. Yao,S. Eibl,M. Rampp,L. Ghiringhelli, T.
Purcell, M. Scheffler (in preparation)




GANS FOR CHEMICAL STRUCTURE GENERATION ”&9
A COLLABORATION OF MPI FHI AND MPCDF

Generate relevant chemical structures

Obtaining chemical structures for interesting
configuations is hard, since the most stable (measured)
ones are “boring”

Design and train a physics informed generative
model which can create physically correct but very
interesting structures

The generated structures will be then used for
calculations of material properties

MAX PLANCK COMPUTING AND DATA FACILITY

- but irrelevant

Most stable
configuration

for chemistry
" < : ,"4,

Y % within relevant
S configurational
bl o space

Relevant GAN
configurations *  guesses |

Irrelevant
configurations

P. Kdnig et. al., Presentation at the SKM
2023




SYNTHSEG
A COLLABORATION OF MPI CBS AND MPCDF

Synthetic image generation for segmentation networks

« Instead of training on expensive (and hard to obtain) 2\ >
. . . 'R ‘Generative
real MRI scans, a massive and diverse synthetic s e

‘*)

[Backpropagation]

dataset is generated _ y
.. . . . L > Average soft
- The synthetic images are obtainded via a generative o Dice loss

model that takes as input real exisiting label maps Training Set {S,} Target Labels T)

Input Labels Deformation GMM Sampling Bias Field Downsampling Training inputs )

 The generative model is tuned to produce images that
resemble the the real MRI scans

« The final segmentation model (well-proven 3d Unet) is
trained with this generated dataset

MAX PLANCK COMPUTING AND DATA FACILITY



Automatic density reconstruction from distance and
optical-IR extinction measurements

3D MAPPING OF CLOUD COMPLEXES IN THE MILKY WAY
A COLLABORATION OF MPI ASTRONOMY AND MPCDF

A new algorithm (based on baysian statistics) to infer
a 3d density distribuition from distance and extinction
measurements has been optimized by MPCDF to be
able to tackle better resolved inference grids

A catalog with 16 molecular cloud complexes of the
Milky Way a 3d density distribution could be generated

T. E. Dharmawardena et al., The 3D structure of Galactic molecular cloud complexes out to 2.5 kpc, MNRAS (2022)




SUMMARY

« Al methods are being explored in many scientific domains
« already in production in some

+ “black-box” approach seen critically sometimes

» effort on validation, trust-worthyness, error-estimation etc.

« Potential to speed up many tedious tasks
e pruning search spaces, creating new study objects via generative models, steering simulations, etc.
« But will they replace first-principle simulations?

« and if so, should the physical model be changed?

« Doubtless, we will see many more (and surprising) adoptons of Al methods in (e)Science

MAX PLANCK COMPUTING AND DATA FACILITY



MYTH 1: QUANTUM COMPUTING WILL TAKE OVER HPC

30



@ Scientific Analysis (not Hype) of Utility of Quantum Computing o

RIKEN

e For Pl‘aCtiC3| 'Cluantum Supl‘emaCV', eXponentia| Torsten Hoefler, Thomas Haner, Matthias Troyer

speedup cf classical algorithm is necessary

e Many algorithms only achieve quadratic speedup,
thus will lose to classical in practice

. E.g., Shor’s algorithm - exponential => Good
. E.g., Grover’s algorithm - quadratic=>NG

For ‘pure’ quantum algorithms, none exist that
exhibit quadratic speedup & can be executed
practically on current NISQ machines w/~100
qubits

e Shor’s algorithm may break RSA 2048 in the far

future but will require 20~200mil NISQ qubits
https://arxiv.org/pdf/1905.09749.pdf

Hybrid algorithms e.g., variational algorithms
(e.g. VQE) might be useful in much closer future

Require platform to conduct scientific analysis of

QC, as large qubits as possible, using real state-
of-the art real machines and simulators!

Communications of the ACM, May 2023, Vol. 66 No. 5, Pages 82-87
10.1145/3571725

Disentangling Hype from Practicality: On Realistically Achieving
Quantum Advantage

TORSTEN HOEFLER, Microsoft Corporation, USA and ETH Zurich, Switzerland
THOMAS HANER and MATTHIAS TROYER, Microsoft Corporation, USA

Quantum computers offer a new paradigm of computing with the potential to vastly outperform any imagineable classical
computer. This has caused a gold rush towards new quantum algorithms and hardware. In light of the growing expectations
and hype surrounding quantum computing we ask the question which are the promising applications to realize quantum
advantage. We argue that small data problems and quantum algorithms with super-quadratic speedups are essential to make
quantum computers useful in practice. With these guidelines one can separate promising applications for quantum computing
from those where classical solutions should be pursued. While most of the proposed quantum algorithms and applications
do not achieve the necessary speedups to be considered practical, we already see a huge potential in material science and
chemistry. We expect further applications to be developed based on our guidelines.

ACM Reference Format:

Torsten Hoefler, Thomas Hiner, and Matthias Troyer. 2022. Disentangling Hype from Practicality: On Realistically Achieving
Quantum Advantage. 1, 1 (September 2022), 7 pages. https://doi.org/XXXXXXX XXXXXXX

Practical and impractical applications. We can now use the above considerations to discuss several classes of
applications where our fundamental bounds draw a line for quantum practicality. The most likely problems
to allow for a practical quantum advantage are those with exponential quantum speedup. This includes the
simulation of quantum systems for problems in chemistry, materials science, and quantum physics, as well as
cryptanalysis using Shor’s algorithm [13]. The solution of linear systems of equations for highly structured
problems [10] also has an exponential speedup, but the I/O limitations disct
and undo this advantage if knowledge of the full solution is required (as opp:
obtained by sampling the solution).

Equally importantly, we identify dead ends in the maze of applications.
quadratic quantum speedups, such as many current machine learning tra
design and protein folding with Grover’s algorithm, speeding up Monte ¢
walks, as well as more traditional scientific computing simulations includ|
systems of equations, such as fluid dynamics in the turbulent regime, weat
achieve quantum advantage with current quantum algorithms in the fores
the identified I/O limits constrain the performance of quantum computing
linear systems, and database search based on Grover’s algorithm such that

These considerations help with separating hype from practicality in the
can guide algorithmic developments. Specifically, our analysis shows that
to focus on super-quadratic speedups, ideally exponential speedups and 2
bottlenecks when deriving algorithms to exploit quantum computation be!
quantum practicality are small-data problems with exponential speedup, an
problems in chemistry and materials science.

slide curtesy Satoshi Matsuoka




LIKELY/NEEDED QUANTUM DEVELOPMENTS

 More research into algorithms
« QC good for big compute on little data; bad on big data

* QC likely as “accelerator” for certain problems in a classical
workflow

 Most common strategy adopted worldwide today, including
EuroHPC

 Commercial viability of QC?

32



CONCLUSIONS

« We see alot of hypes and myths in HPC

 some might become reality, some not

 There is a lot more than (today’s) hardware/FLOPS-focussed Exascale
computing

« scientific approaches need, not hypes

 Realize that the current hardware market is driven by Al, not HPC

* be pragmatic and adopt

33



