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Motivation – arithmetic performance of GPUs
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Motivation – memory bandwidth of GPUs
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Motivation – programming complexity

OK, so GPUs are fast, but aren’t much more difficult to program?

well, it’s much more complicated than writing serial C++
code...

but is it fair comparison?

Moore’s Law

The amount of transistors, which can be placed into single chip,
doubles every 18 months

The performance grow is caused by:

in the past: higher frequency, instruction-level parallelism,
out-of-order instruction execution, etc.

nowadays: wider vector instructions, more cores
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Motivation – the paradigm shift

Consequences of the Moore’s Law:

in the past: the changes in processors architectures are
relevant mainly for compilers developers

nowadays: we need to explicitly parallelize and vectorize the
code to keep scaling the performance

still a lot of work for developers, compilers have very limited
capabilities here
writing of really efficient code is similarly difficult for both
GPUs and CPUs
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What makes GPU powerful?

Parallelism types

Task parallelism

the problem is decomposed to parallel tasks
tasks are typically complex, they can perform different jobs
complex synchronization
best for lower number of high-performance processors/cores

Data parallelism

the parallelism on a level of data structures
typically the same operation on multiple elements of a data
structure
can be executed on simpler processors
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What makes GPU powerful?

Programmer point of view

some problems are more task-parallel, some more data-parallel
(tree traversal vs. vector addition)

Hardware designer point of view

processors for data-parallel computations can be simpler

so we can get more arithmetic power per square centimeter
(i.e., for the same amount of transistors)

simpler memory access patterns allows to create a memory
with higher bandwidth
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GPU Architecture

Jǐŕı Filipovič GPU Acceleration of General Computing Tasks 8 / 43



Motivation GPU Architecture C for CUDA Demo CUDA: more details Conclusion

GPU Architecture

CPU vs. GPU

hundreds ALU in tens of cores vs. tens of thousands ALU in
tens of multiprocessors

out-of-order vs. in-order

MIMD, SIMD for short vectors vs. SIMT for long vectors

big cache vs. small cache, often read-only

GPUs use more transistors for ALUs than for cache and instruction
control => higher peak performance, less universal
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GPU Architecture

High-end GPU:

co-processor with dedicated memory

asynchronous instructions execution

connected via PCI-E to the rest of the system
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CUDA

CUDA (Compute Unified Device Architecture)

architecture for parallel computations developed by NVIDIA

a programming model allowing to implement general
programs on GPUs

can be used with multiple programming languages
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Processor G80

G80

the first CUDA processor

contains 16 multiprocessors

a multiprocessor

8 scalar processors
2 special function units
up to 768 threads

HW switching and scheduling

groups of 32 threads are organized into warps

SIMT

native synchronization within a multiprocessor
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Memory model of G80

Memory model

8192 registers shared among all threads within a
multiprocessor

16KB shared memory

local within a multiprocessor
close to the registers’ speed (under some circumstances)

constant memory

cached, optimized for broadcast, read-only

texture memory

cached, 2D spatial locality, read-only

global memory

read-write, not cached

transfers between system and global memory via PCI-E

Jǐŕı Filipovič GPU Acceleration of General Computing Tasks 13 / 43



Motivation GPU Architecture C for CUDA Demo CUDA: more details Conclusion

Processor G80
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Newer GPUs

Similar architecture, new features

double-precision

relaxed rules for efficient access into global memory

L1, L2/data cache

higher amount of on-chip resources (registers, shared memory,
threads etc.)

wider synchronization options (e.g., atomic operations)

nested parallelism

unified memory
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C for CUDA

C for CUDA extends C/C++ language for parallel computations
with GPUs

explicit separation of a host (CPU) and a device (GPU) code

threads hierarchy

memory hierarchy

synchronization mechanisms

API (context manipulation, memory, errors handling etc.)
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Threads hierarchy

Threads hierarchy

threads are organized into thread-blocks

thread-blocks create a grid

a computational problem is typically decomposed into
independent sub-problems, solved by thread-blocks

subproblems are further parallelized and solved by (potentially
collaborating) threads

ensures good scaling
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Threads hierarchy
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Memory hierarchy

Multiple types of memory

differ in visibility

differ in life-time

differ in latency and bandwidth
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Memory hierarchy
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Example – vector addition

We want to add vectors a, b, and store the result into vector c .

We need to parallelize the problem.
Serial code:

for ( int i = 0 ; i < N ; i++)
c [ i ] = a [ i ] + b [ i ] ;

Independent iterations – easy to parallelize, scales with the vector
size.
i-th thread adds i-th elements of a, b:

c [ i ] = a [ i ] + b [ i ] ;

How to find out which index to pick?
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Jǐŕı Filipovič GPU Acceleration of General Computing Tasks 21 / 43



Motivation GPU Architecture C for CUDA Demo CUDA: more details Conclusion

Example – vector addition

We want to add vectors a, b, and store the result into vector c .
We need to parallelize the problem.
Serial code:

for ( int i = 0 ; i < N ; i++)
c [ i ] = a [ i ] + b [ i ] ;

Independent iterations – easy to parallelize, scales with the vector
size.

i-th thread adds i-th elements of a, b:

c [ i ] = a [ i ] + b [ i ] ;

How to find out which index to pick?
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Threads hierarchy
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Identification of a thread and a block

Each thread in C for CUDA has build-in variables:

threadIdx.{x, y, z} contains the position of the thread within
its block

blockDim.{x, y, z} contains the size of the block

blockIdx.{x, y, z} contains the position of the block within a
grid

gridDim.{x, y, z} contains the size of the grid
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Example – vector addition

We need to compute a global position of the thread (using 1D
blocks and grid):

int i = blockIdx . x*blockDim . x + threadIdx . x ;

The complete function for the parallel vector addition:

__global__ void addvec ( float *a , float *b , float *c ){
int i = blockIdx . x*blockDim . x + threadIdx . x ;
c [ i ] = a [ i ] + b [ i ] ;

}

The code defines a kernel (a parallel function executed on GPU).
When executing kernel, the size of block and number of blocks has
to be defined.
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Function type quantifiers

The syntax of C is extended by function type quantifiers,
determining from where the function can be called and where it is
executed

device function is executed on device (GPU) and called
from device code

global function is executed on device and called from host
(CPU)

host function is executed on host, and called from host

host and device can be combined, the function is
then compiled for both host and device and also can be called
from both host and device
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Example – vector addition

For complete computation of vector addition, we need to:

allocate memory for the vectors, and fill it with some data

allocate GPU memory

copy vectors a a b to GPU memory

compute vector addition on GPU

copy back the result from GPU memory into c

use c somehow :-)

When managed memory is used (supported from compute
capability 3.0 and CUDA 6.0), we don’t need to perform steps
printed in italic.
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Example – vector addition

CPU code fills a a b, and prints c:

#include <s t d i o . h>
#define N 64
int main ( ){

float *a , *b , *c ;
cudaMallocManaged(&a , N*sizeof (* a ) ) ;
cudaMallocManaged(&b , N*sizeof (* b ) ) ;
cudaMallocManaged(&c , N*sizeof (* c ) ) ;

for ( int i = 0 ; i < N ; i++) {
a [ i ] = i ; b [ i ] = i *2 ; }

// p l a c e h o l d e r f o r GPU computat ion

for ( int i = 0 ; i < N ; i++)
printf ( ”%f , ” , c [ i ] ) ;

cudaFree ( a ) ; cudaFree ( b ) ; cudaFree ( c ) ;

return 0 ;
}
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GPU memory management

We use managed memory, so CUDA automatically copies data
between CPU and GPU.

memory coherency is automatically ensured

we cannot access managed memory while any GPU kernel is
running (even if it does not touch the buffer we want to use)

Alternatively, we can allocate and copy memory explicitly:

cudaMalloc ( void** devPtr , size_t count ) ;
cudaFree ( void* devPtr ) ;
cudaMemcpy ( void* dst , const void* src , size_t count ,

enum cudaMemcpyKind kind ) ;
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Example – vector addition

Kernel execution:

the kernel is called as a C-function; between the name and the
arguments, there are triple angle brackets with specification of
grid and block size

we need to know block size and their count

we will use 1D block and grid with fixed block size

the size of the grid is determined in a way to compute the
whole problem of vector sum

For vector size divisible by 32:

#define BLOCK 32
addvec<<<N/BLOCK , BLOCK>>>(a , b , c ) ;
cudaDeviceSynchronize ( ) ;

The synchronization after kernel call ensures that c is going to be
accessed by host code after the called kernel finishes.
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Example – vector addition

How to solve a general vector size?
We will modify the kernel source:

__global__ void addvec ( float *a , float *b , float *c , int n ){
int i = blockIdx . x*blockDim . x + threadIdx . x ;
if ( i < n ) c [ i ] = a [ i ] + b [ i ] ;

}

And call the kernel with sufficient number of threads:

addvec<<<N/BLOCK + 1 , BLOCK>>>(a , b , c , N ) ;
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Compilation

Now we just need to compile it :-).

nvcc -o vecadd vecadd.cu
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Thread-local memory

Registers

the fastest memory, directly used by instructions

local variables and intermediate results are stored into
registers

if there is enough registers
if compiler can determine array indexes in compile time

life-time of a thread

Local memory

what cannot fit into registers, goes to the local memory

physically stored in global memory, have longer latency and
lower bandwidth

life-time of a thread
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Block-local memory

Shared memory

the speed is close to registers

if there are no bank-conflicts
typically requires some load/store instructions

declared by shared

can have dynamic size (determined during kernel execution), if
declared as extern without specification of the array size

life-time of a thread block
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GPU-local memory

Global memory

order-of-magnitude lower bandwidth compared to the shared
memory

latency in hundreds of GPU cycles

coalesced access necessary for efficient access

life-time of an application

can be cached (depending on GPU architecture)

Dynamic allocation with cudaMalloc, static allocation by using
device
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Other memories

constant memory

texture memory

system memory

Jǐŕı Filipovič GPU Acceleration of General Computing Tasks 35 / 43



Motivation GPU Architecture C for CUDA Demo CUDA: more details Conclusion

Thread block-scope synchronization

native barrier

has to be visited by all threads within a thread-block
only one instruction, very fast if not reduce parallelism
syncthreads()
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Atomic operations

perform read-modify-write operations using shared or global
memory

no interference with other threads

for 32-bit and 64-bit integers (compute capability ≥ 1.2, float
add with c.c. ≥ 2.0)

arithmetic (Add, Sub, Exch, Min, Max, Inc, Dec, CAS) and
bitwise (And, Or, Xor) operations
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Synchronization of memory operations

Compiler can optimize access into shared and global memory by
placing intermediate results into registers, and it can change order
of memory operations:

threadfence() and threadfence block() can be used to
ensure data we are storing are visible for others

variables declared as volatile are always read/written from/to
global or shared memory
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Thread-block synchronization

Thread blocks communication

global memory visible for all blocks

but weak possibilities to synchronize between blocks

in general no global barrier (can be implemented if all blocks
are persistent on GPU)
using atomic operations can solve some problems
generic global barrier only by kernel invocation
harder to program, but allows better scaling
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Global synchronization via atomic operations

Alternative implementation of vector reduction

each thread-block reduces a subvector

the last running thread-block adds results of all thread-blocks

implementation of weak global barrier: after finishing blocks
1..n − 1, blocks n continues
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__device__ unsigned int count = 0 ;
__shared__ bool isLastBlockDone ;
__global__ void sum ( const float* array , unsigned int N ,

float* result ) {
float partialSum = calculatePartialSum ( array , N ) ;
if ( threadIdx . x == 0) {

result [ blockIdx . x ] = partialSum ;
__threadfence ( ) ;
unsigned int value = atomicInc(&count , gridDim . x ) ;
isLastBlockDone = ( value == ( gridDim . x = 1 ) ) ;

}
__syncthreads ( ) ;
if ( isLastBlockDone ) {

float totalSum = calculateTotalSum ( result ) ;
if ( threadIdx . x == 0) {

result [ 0 ] = totalSum ;
count = 0 ;

}
}

}

Jǐŕı Filipovič GPU Acceleration of General Computing Tasks 41 / 43



Motivation GPU Architecture C for CUDA Demo CUDA: more details Conclusion

Materials

CUDA documentation (part of CUDA Toolkit, downloadable from
developer.nvidia.com)

CUDA C Programming Guide (CUDA essentials)

CUDA C Best Practices Guide (more details on optimization)

CUDA Reference Manual (complete C for CUDA API
reference)

a lot of other useful documents (nvcc manual, documentation
of PTX and assembly, documentation for various accelerated
libraries, etc.)

CUDA, Supercomputing for the Masses

http://www.ddj.com/cpp/207200659
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Today, we learned

what is CUDA good for

basic GPU architecture

basic C for CUDA programming

In the next lecture, we will focus

how to write efficient GPU code
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