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Repetition - RISC processors

Limited number of instructions, same size

Simple address modes, Load/Store, sufficient number of registers
Delayed branches, branch prediction, out-of-order execution
Superscalar (e.g. 2xFPU, 2xALU, special address instructions)
Superpipeline

Caches
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Optimizing Compiler

Translation to the
Optimization

intra-procedural analysis

cycle optimization

global optimization (inter-process optimization)
Code generation

use of all superscalar units
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Intermediate Language

Quadruple (generally n-tuple)

Instruction: operator, two operands, result
Example

Operation op writenas: X := Y op Z
Memory: accessible through temporary variables tn
Branches: condition calculated separately
Branches: jumps to absolute addresses



Basic translation

while ( j <n ) {
k = k + j*2
m= j*2
j++

>
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tl

t2 =

t3
jmp
jmp
t4
t5

t6

t7

t8 :

]
n

tl < t2

(B) t3

(C) TRUE

=]

t9 =

k
t5%2
t4+t6
t7

J
t8*2

t9

J
t10+1
t11l

A) TRUE
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Basic blocks

Program is represented as a flow graph
Block - a code segment without branches/jumps
One and one point
Block as a DAG (Directed Acyclic Graph)
Optimization within blocks

Removal of repeated (sub)expressions
Removal of redundant variables
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Directed Acyclic Graph

B:: t4 :=k

t5 = j

t6 = t5%2 —
£7 = t4+t6 2 J;15,18,t10 K.t4
k = t7

t8 = j

t9 = t8*%2

m = 19

t1l0 := j

tl1ll := tl10+1

J = tl1

jmp (A) TRUE
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Modified translation

B:: t4 :=k B:: t4 :=k
t5 =7 t5 = j
t6 = t5%2 t6 = t5*2
t7 = t4+té m = t6
k = t7 t7 = té6+t4
t8 =7 k = t7
t9 = t8%2 t11 := t5+1
m := t9 ‘= t11
tle :=7j Jmp (A) TRUE
tll := tle+l
Jj = tl11

jmp (A) TRUE
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Additional concepts

Variables
Definition and place of use
Cycles
Target code generation
Includes the so-called peephole optimization
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Optimized code

A::

t1l
t2
t3
jmp
jmp
t4
t5
t6
t7
k
t8
t9
m

t10 :

tl1

jmp

=]
=n

(B)
©

tl < t2
t3
TRUE

=k

J
t5%2
t4+t6
t7

]
t8%2
t9

J
tl0+1

= tl1l

)

TRUE

Bl::

tl =3

t2 =n

t4 =k

t9 :=m

tl2 := tl+tl
t3 = tl >= t2
jmp (B1) t3
t4 = t4+tl2
t9 = tl12

tl = tl+l
tl12 := tl2+2
t3 = tl < t2
jmp (B) t3

k = t4

m =19
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Classical optimizations

Copy propagation
Examples:
X=Y
Z=1. +X
Constants processing

constants propagation
constant folding

Dead-code elimination

inaccessible code
saving cache capacity for instructions

= <

.+ Y
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Classical optimizations Il

Strength reduction
Example: K¥*2 — K*K
Variable renaming

Example

x = y¥*z; X0 = y*z;

q = rtx+x; == g = I+x0+x0;
X = a+tb X = at+b

Common subexpressions elimination
(important especially for evaluation of array indices)
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Classical optimizations Il

Move of invariant code from cycles
Simplification of induction variables (expressions with them)

A(TI) is usually computed as:

address = base_address(A) +
(I-1)*sizeof_datatype(A)
which can be in a linear cycle easily simplified to
outside cycle:

address = base_address(A) -
sizeof_datatype(A)
within cycle:

address = address + sizeof_datatype(A)

Register allocation
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Garbage elimination

Procedures, macros
Inlining
Conditional expressions
Comples expressions reorganization
Excessive/redundant tests (1f vs case)
Conditional expressions within cycles

Cycle (induction variable) independent

Cycle (induction variable) dependent
Iteration independent
Dependence between iterations
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Conditional expressions - example

IF (N .EQ @) THEN

DO I=1,K
DO I=1,K . *
IF (N .EQ @) THEN coﬁ%iaaé(I)+B(I) ¢
ACT)=ACI)+B(I)*C
—  ELSE
ELSE
DO I=1,K
ACI)=0 :
ENDIF ACL)=0
CONTINUE

ENDIF
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Garbage elimination Il

Reduction
min (or max):
for(i=0;i<n;i++)

z=(a[i] > z) ? a[i] : z;

how to deal with a recursive dependency:

for(i=0;i<n-1;i+=2) {
z0=(Ca[i] > z0) ? a[i] : z0O;
z1=Ca[i+1] > z1) ? a[i+l] : z1;

z=(z0 < z1) ? z1 : zO;
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Reduction - Associative transformations

Numerical imprecision:
4 valid decimal digits

(X +Y) + Z = (.00005 + .00005) + 1.0000
.00010 + + 1.0000 = 1.0001
ale
X+ (Y +Z) = .00005 + (.00005 + 1.0000) =
.00005 + 1.0000 = 1.0000
Reduction
DO I=1,N

SUM=SUM+A(I)*B(I)
Reduction with recursive dependency - can we use the same trick
as with min reduction?
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Garbage elimination lll

Branches (jumps)

Type conversion
REAL*4 A(1000)
REAL*8 B(1000)
DO I=1,1000
ACD=ACI)*B(I)
Manual optimization
Common subexpressions
Code move
Array processing (intelligent compiler, C and pointers)
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Cycle optimization

m Goals:

= Overhead reduction
m Better access to memory (efficient use of caches)
m Parallelism increase
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RAW, WAR and WAW dependencies

= Named according how variables are used in the code (two
occurencies)
m Read after Read (RAR)
m “Benign” (in fact no) dependency
m Read after Write (RAW)

m “True” dependency
m Most problematic, order cannot be changed

m Write after Read (WAR)

m “Antidependency”
= Can be dealt with by renaming

m Write after Write (WAW)
m “Output” dependency
= Order cannot change unless checked for other dependencies
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Data dependencies |

Flow Dependencies (backward dependencies)
Example: A(2:N) = A(1:N-1)+B(2:N)
DO I=2,N,2
= ACI)=A(I-1)+B(I)
A(I+1)=A(I-1)+B(I)+B(I+1)

DO I=2,N
A(T)=A(I-1)+B(I)

Anti-Dependencies
Variable renaming as a default solution

Example:
DO I=1,N
_ A’(I)= B(I) * E
DOAilﬁ’E BCD) ™ E = DOBIzl’T AC(I+2) * C
B(I) = A(T+2) * C DO §=i’ﬁ (I+2)

AT(ID
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Data dependencies Il

Output Dependencies

Example:
A(D = C(I) * 2
A(I+2) = D(I) + E

Several values of a variable are computed during the cycle
execution, but only the “last” is to be written
Not always easy to recognize, which value is “the last”
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Loop unrolling |

Cycle body copies several times within the cycle
DO I=1,N
ACI)=A(I)+B(I)*C

4
DO I=1,N,4
A(DH=A(I)+B(I)*C
A(I+1)=A(I+1)+B(I+1)*C
A(I+2)=A(I+2)+B(I+2)*C
A(I+3)=A(I+3)+B(I+3)*C
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Loop unrolling Il

Major purpose
Overhead reduction
Reduction of number of iterations (=number of branches)
Parallelism increase (also within a single superscalar processor)
Software pipelining
Pre- a postconditioning loops
Actual number of iterations adaptation
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Loop unrolling Il

Unsuitable loops

Small number of iterations — full loop unrolling

“Fat” (=too large)) cycles: already include sufficient number of
opportunities for parallelization

Loops with procedure calls: see also the procedure inlining
Loops with conditional expressions: more important for older
processors

“Recursive” loops: with internal dependencies (cross iterations)
(@[i]=a[i]+a[i-17*b)
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Loop unrolling problems

Unrolling with a bad number of iterations
Register clogging
Misses of instruction cache (too long cycle)

Hardware problems

esp. on multiprocessors with shared memory (cache coherency,
bus overload, ...)

Special cases: external loops unrolling, lLoops combination
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Loops combination

Repeated use of data (cache efficiency)

Large loop body
Compiler can do the combination if there is no code between

loops
a[0]=b[0]+1
for(i=0;i<n;i++) c[0]=a[0]/2
a[i]=b[i]+1 for(i=1;i<n;i++) {
for(i=0;i<n;i++) — ali]=b[i]+1
c[i]=a[i]/2 c[i]=a[i]/2
for(i=0;i<n;i++) d[i-1]=1/c[i]

d[i]=1/c[i+1] (];[ tetm]
n|= c[n+
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External loops unrolling

Example:
DO I=1,N
DO J=1,N
A(DH)=A(I)+B(I,I)*C(I)
A(l) is a constant in the internal loop, C(J)) is properly walked
through
B(l,)) Fortran has inverse order!
DO I=1,N,4
DO J=1,N
A(I+0)=A(I+0)+B(I+0,3)*C(I)
A(I+1)=A(I+1)+B(I+1,3)*C(I)
ACI+2)=A(I+2)+B(I+2,3)*C(I)
A(CI+3)=A(I+3)+B(I+3,3)*C(I)
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Memory access optimization

Optimal: smallest step (cache optimization)
Work with arrays - Cvs. Fortran

C: stored by rows, the right index is fastest to change
Fortran: stored by columns, the left index is fastest to change

Index inversion

Example:
DO I=1,N DO J=1,N
DO J=1,N = DO I=1,N

A(I,3)=B(I,I)+C(I)*D ACI,J)=B(I,I)+C(I)*D
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Memory access optimization Il

Combination into blocks
Example:

DO I=1,N
DO J=1,N
ACJ,I)=ACI,I)+B(I,])
Y

DO I=1,N,2
DO J=1,N,2
A(J,IH)=A(J,I)+B(I,T)
A(J+1,I)=A(J+1,I1)+B(I,J+1)
A(J,I+1)=A(J,I+1)+B(I+1,T)
A(J+1,I+1)=A(J+1,I+1)+B(I+1,3+1)
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Cache optimization - Blocking

A general technique to split loops working with arrays to loops
that work on a block of arrays

Example: Matrix transposition - c is transpose of a
DO I=1,M
DO J=1,N
c[j+i*n] = a[i+j*m]
Easy, but for any large n and m the cache overflow occurs
DO I=1,M,B
DO J=1,N,B
DO IT=1,B
DO JJ=1,B
c[j+jj+(i+iid*n] = a[i+ii+(i+jj)*m]
B is the block size, derived from the data cache size
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Memory access optimization Il

Indirect addressing
Example:
b[i]=a[i+k]*c, value of k unknown in the compile time
a[k[i]] += b[i]*c

Use of pointers

Insufficient memory capacity

“Manual” processing
Virtual memory
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More reading

m http://www.inf.ed.ac.uk/teaching/courses/copt/
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