FACULTY
OF INFORMATICS
Masaryk Universi ty

PA039: Supercomputer Architecture and Intensive

Computing

Compiling and Code Optimization

Ludék Matyska

Spring 2024

o NRTIS I

Ludék Matyska e Compilings e Spring 2024

1/33

FACULTY
‘OF INFORMATICS
Masaryk University

Repetition - RISC processors

Limited number of instructions, same size

Simple address modes, Load/Store, sufficient number of registers
Delayed branches, branch prediction, out-of-order execution
Superscalar (e.g. 2xFPU, 2xALU, special address instructions)
Superpipeline

Caches

FACULTY
‘OF INFORMATICS
Masaryk University

Optimizing Compiler

Translation to the
Optimization

intra-procedural analysis

cycle optimization

global optimization (inter-process optimization)
Code generation

use of all superscalar units

FACULTY
‘OF INFORMATICS
Masaryk University

Intermediate Language

Quadruple (generally n-tuple)

Instruction: operator, two operands, result
Example

Operation op writenas: X := Y op Z
Memory: accessible through temporary variables tn
Branches: condition calculated separately
Branches: jumps to absolute addresses

Basic translation

while (j <n) {
k = k + j*2
m= j*2
j++

>

FACULTY
‘OF INFORMATICS
Masaryk University

tl

t2 =

t3
jmp
jmp
t4
t5

t6

t7

t8 :

]
n

tl < t2

(B) t3

(C) TRUE

=]

t9 =

k
t5%2
t4+t6
t7

J
t8*2

t9

J
t10+1
t11l

A) TRUE

FACULTY
OF INFORMATICS

Masaryk University

Basic blocks

Program is represented as a flow graph
Block - a code segment without branches/jumps
One and one point
Block as a DAG (Directed Acyclic Graph)
Optimization within blocks

Removal of repeated (sub)expressions
Removal of redundant variables

FACULTY
‘OF INFORMATICS
Masaryk University

Directed Acyclic Graph

B:: t4 :=k

t5 = j

t6 = t5%2 —
£7 = t4+t6 2 J;15,18,t10 K.t4
k = t7

t8 = j

t9 = t8*%2

m = 19

t1l0 := j

tl1ll := tl10+1

J = tl1

jmp (A) TRUE

FACULTY
OF INFORMATICS
Masaryk Universi

Modified translation

B:: t4 :=k B:: t4 :=k
t5 =7 t5 = j
t6 = t5%2 t6 = t5*2
t7 = t4+té m = t6
k = t7 t7 = té6+t4
t8 =7 k = t7
t9 = t8%2 t11 := t5+1
m := t9 ‘= t11
tle :=7j Jmp (A) TRUE
tll := tle+l
Jj = tl11

jmp (A) TRUE

FACULTY
‘OF INFORMATICS
Masaryk University

Additional concepts

Variables
Definition and place of use
Cycles
Target code generation
Includes the so-called peephole optimization

FACULTY
‘OF INFORMATICS
Masaryk University

Optimized code

A::

t1l
t2
t3
jmp
jmp
t4
t5
t6
t7
k
t8
t9
m

t10 :

tl1

jmp

=]
=n

(B)
©

tl < t2
t3
TRUE

=k

J
t5%2
t4+t6
t7

]
t8%2
t9

J
tl0+1

= tl1l

)

TRUE

Bl::

tl =3

t2 =n

t4 =k

t9 :=m

tl2 := tl+tl
t3 = tl >= t2
jmp (B1) t3
t4 = t4+tl2
t9 = tl12

tl = tl+l
tl12 := tl2+2
t3 = tl < t2
jmp (B) t3

k = t4

m =19

FACULTY
‘OF INFORMATICS
Masaryk University

Classical optimizations

Copy propagation
Examples:
X=Y
Z=1. +X
Constants processing

constants propagation
constant folding

Dead-code elimination

inaccessible code
saving cache capacity for instructions

= <

.+ Y

FACULTY
‘OF INFORMATICS
Masaryk University

Classical optimizations Il

Strength reduction
Example: K¥*2 — K*K
Variable renaming

Example

x = y¥*z; X0 = y*z;

q = rtx+x; == g = I+x0+x0;
X = a+tb X = at+b

Common subexpressions elimination
(important especially for evaluation of array indices)

FACULTY
‘OF INFORMATICS
Masaryk University

Classical optimizations Il

Move of invariant code from cycles
Simplification of induction variables (expressions with them)

A(TI) is usually computed as:

address = base_address(A) +
(I-1)*sizeof_datatype(A)
which can be in a linear cycle easily simplified to
outside cycle:

address = base_address(A) -
sizeof_datatype(A)
within cycle:

address = address + sizeof_datatype(A)

Register allocation

FACULTY
OF INFORMATICS

Masaryk University

Garbage elimination

Procedures, macros
Inlining
Conditional expressions
Comples expressions reorganization
Excessive/redundant tests (1f vs case)
Conditional expressions within cycles

Cycle (induction variable) independent

Cycle (induction variable) dependent
Iteration independent
Dependence between iterations

FACULTY
‘OF INFORMATICS
Masaryk Universi ty

Conditional expressions - example

IF (N .EQ @) THEN

DO I=1,K
DO I=1,K . *
IF (N .EQ @) THEN coﬁ%iaaé(I)+B(I) ¢
ACT)=ACI)+B(I)*C
— ELSE
ELSE
DO I=1,K
ACI)=0 :
ENDIF ACL)=0
CONTINUE

ENDIF

FACULTY
‘OF INFORMATICS
Masaryk University

Garbage elimination Il

Reduction
min (or max):
for(i=0;i<n;i++)

z=(a[i] > z) ? a[i] : z;

how to deal with a recursive dependency:

for(i=0;i<n-1;i+=2) {
z0=(Ca[i] > z0) ? a[i] : z0O;
z1=Ca[i+1] > z1) ? a[i+l] : z1;

z=(z0 < z1) ? z1 : zO;

FACULTY
‘OF INFORMATICS
Masaryk University

Reduction - Associative transformations

Numerical imprecision:
4 valid decimal digits

(X +Y) + Z = (.00005 + .00005) + 1.0000
.00010 + + 1.0000 = 1.0001
ale
X+ (Y +Z) = .00005 + (.00005 + 1.0000) =
.00005 + 1.0000 = 1.0000
Reduction
DO I=1,N

SUM=SUM+A(I)*B(I)
Reduction with recursive dependency - can we use the same trick
as with min reduction?

FACULTY
‘OF INFORMATICS
Masaryk University

Garbage elimination lll

Branches (jumps)

Type conversion
REAL*4 A(1000)
REAL*8 B(1000)
DO I=1,1000
ACD=ACI)*B(I)
Manual optimization
Common subexpressions
Code move
Array processing (intelligent compiler, C and pointers)

FACULTY
‘OF INFORMATICS
Masaryk University

Cycle optimization

m Goals:

= Overhead reduction
m Better access to memory (efficient use of caches)
m Parallelism increase

Ludék Matyska e Compilings e Spring 2024

19/33

FACULTY
‘OF INFORMATICS
Masaryk University

RAW, WAR and WAW dependencies

= Named according how variables are used in the code (two
occurencies)
m Read after Read (RAR)
m “Benign” (in fact no) dependency
m Read after Write (RAW)

m “True” dependency
m Most problematic, order cannot be changed

m Write after Read (WAR)

m “Antidependency”
= Can be dealt with by renaming

m Write after Write (WAW)
m “Output” dependency
= Order cannot change unless checked for other dependencies

Ludék Matyska ¢ Compilings e Spring 2024 20/33

FACULTY
‘OF INFORMATICS
Masaryk University

Data dependencies |

Flow Dependencies (backward dependencies)
Example: A(2:N) = A(1:N-1)+B(2:N)
DO I=2,N,2
= ACI)=A(I-1)+B(I)
A(I+1)=A(I-1)+B(I)+B(I+1)

DO I=2,N
A(T)=A(I-1)+B(I)

Anti-Dependencies
Variable renaming as a default solution

Example:
DO I=1,N
_ A’(I)= B(I) * E
DOAilﬁ’E BCD) ™ E = DOBIzl’T AC(I+2) * C
B(I) = A(T+2) * C DO §=i’ﬁ (I+2)

AT(ID

FACULTY
OF INFORMATICS

Masaryk University

Data dependencies Il

Output Dependencies

Example:
A(D = C(I) * 2
A(I+2) = D(I) + E

Several values of a variable are computed during the cycle
execution, but only the “last” is to be written
Not always easy to recognize, which value is “the last”

FACULTY
‘OF INFORMATICS
Masaryk University

Loop unrolling |

Cycle body copies several times within the cycle
DO I=1,N
ACI)=A(I)+B(I)*C

4
DO I=1,N,4
A(DH=A(I)+B(I)*C
A(I+1)=A(I+1)+B(I+1)*C
A(I+2)=A(I+2)+B(I+2)*C
A(I+3)=A(I+3)+B(I+3)*C

FACULTY
‘OF INFORMATICS
Masaryk University

Loop unrolling Il

Major purpose
Overhead reduction
Reduction of number of iterations (=number of branches)
Parallelism increase (also within a single superscalar processor)
Software pipelining
Pre- a postconditioning loops
Actual number of iterations adaptation

FACULTY
OF INFORMATICS
Masaryk University

Loop unrolling Il

Unsuitable loops

Small number of iterations — full loop unrolling

“Fat” (=too large)) cycles: already include sufficient number of
opportunities for parallelization

Loops with procedure calls: see also the procedure inlining
Loops with conditional expressions: more important for older
processors

“Recursive” loops: with internal dependencies (cross iterations)
(@[i]=a[i]+a[i-17*b)

FACULTY
‘OF INFORMATICS
Masaryk University

Loop unrolling problems

Unrolling with a bad number of iterations
Register clogging
Misses of instruction cache (too long cycle)

Hardware problems

esp. on multiprocessors with shared memory (cache coherency,
bus overload, ...)

Special cases: external loops unrolling, lLoops combination

FACULTY
‘OF INFORMATICS
Masaryk University

Loops combination

Repeated use of data (cache efficiency)

Large loop body
Compiler can do the combination if there is no code between

loops
a[0]=b[0]+1
for(i=0;i<n;i++) c[0]=a[0]/2
a[i]=b[i]+1 for(i=1;i<n;i++) {
for(i=0;i<n;i++) — ali]=b[i]+1
c[i]=a[i]/2 c[i]=a[i]/2
for(i=0;i<n;i++) d[i-1]=1/c[i]

d[i]=1/c[i+1] (];[tetm]
n|= c[n+

FACULTY
‘OF INFORMATICS
Masaryk University

External loops unrolling

Example:
DO I=1,N
DO J=1,N
A(DH)=A(I)+B(I,I)*C(I)
A(l) is a constant in the internal loop, C(J)) is properly walked
through
B(l,)) Fortran has inverse order!
DO I=1,N,4
DO J=1,N
A(I+0)=A(I+0)+B(I+0,3)*C(I)
A(I+1)=A(I+1)+B(I+1,3)*C(I)
ACI+2)=A(I+2)+B(I+2,3)*C(I)
A(CI+3)=A(I+3)+B(I+3,3)*C(I)

FACULTY
‘OF INFORMATICS
Masaryk University

Memory access optimization

Optimal: smallest step (cache optimization)
Work with arrays - Cvs. Fortran

C: stored by rows, the right index is fastest to change
Fortran: stored by columns, the left index is fastest to change

Index inversion

Example:
DO I=1,N DO J=1,N
DO J=1,N = DO I=1,N

A(I,3)=B(I,I)+C(I)*D ACI,J)=B(I,I)+C(I)*D

FACULTY
‘OF INFORMATICS
Masaryk Universi ty

Memory access optimization Il

Combination into blocks
Example:

DO I=1,N
DO J=1,N
ACJ,I)=ACI,I)+B(I,])
Y

DO I=1,N,2
DO J=1,N,2
A(J,IH)=A(J,I)+B(I,T)
A(J+1,I)=A(J+1,I1)+B(I,J+1)
A(J,I+1)=A(J,I+1)+B(I+1,T)
A(J+1,I+1)=A(J+1,I+1)+B(I+1,3+1)

FACULTY
OF INFORMATICS
Masaryk University

Cache optimization - Blocking

A general technique to split loops working with arrays to loops
that work on a block of arrays

Example: Matrix transposition - c is transpose of a
DO I=1,M
DO J=1,N
c[j+i*n] = a[i+j*m]
Easy, but for any large n and m the cache overflow occurs
DO I=1,M,B
DO J=1,N,B
DO IT=1,B
DO JJ=1,B
c[j+jj+(i+iid*n] = a[i+ii+(i+jj)*m]
B is the block size, derived from the data cache size

FACULTY
‘OF INFORMATICS
Masaryk University

Memory access optimization Il

Indirect addressing
Example:
b[i]=a[i+k]*c, value of k unknown in the compile time
a[k[i]] += b[i]*c

Use of pointers

Insufficient memory capacity

“Manual” processing
Virtual memory

FACULTY
‘OF INFORMATICS
Masaryk University

More reading

m http://www.inf.ed.ac.uk/teaching/courses/copt/

Ludék Matyska ¢ Compilings e Spring 2024 33/33

http://www.inf.ed.ac.uk/teaching/courses/copt/

