
PA039: Supercomputer Architecture and Intensive
Computing

Message Passing Interface

Luděk Matyska

Spring 2024

Luděk Matyska · MPI · Spring 2024 1 / 46



Parallel programming

Data parallelism
Identical instructions on different processors process different
data
In principle the SIMD model (Single Instruction Multiple Data)

For example loop parallelization

Task parallelism
MIMD model (Multiple Instruction Multiple Data)
Independent blocks (functions, procedures, programs) run in
parallel

SPMD
No synchronization at the level of individual instructions
Equivalent to MIMD

Message passing targets SPMD/MIMD

Luděk Matyska · MPI · Spring 2024 2 / 46



Before MPI

Many competing message passing libraries
Vendor specific/proprietary libraries
Academic, narrow specific implementations

Different communication models
Difficult application development
Need for “own” communication model to encapsulate the specific
models

MPI an attempt to define a standard set of communication calls

Luděk Matyska · MPI · Spring 2024 3 / 46



Message Passing Interface

Communication interface for parallel programs
Defined through API

Standardized
Several independent implementations

Potential for optimization for specific hardware
Some problems with real interoperability

Luděk Matyska · MPI · Spring 2024 4 / 46



Programming model

MPI designed originally for distributed memory architectures

Luděk Matyska · MPI · Spring 2024 5 / 46



Programming model

Currently supports hybrid models

Luděk Matyska · MPI · Spring 2024 6 / 46



MPI Evolution

Versions
1.0 (1994)

Basic, never implemented
Bindings for C and Fortran

1.1 (1995)
Removal of major deficiencies in Version 1.0
Implemented

1.2 (1996)
Intermediate version (precedes MPI-2)
Extension of MPI-1 standard

Luděk Matyska · MPI · Spring 2024 7 / 46



MPI-2.0 (1997)

Experimental Implementation of the full MPI-2 standard
Extensions

Parallel I/O
Unidirectional operations (put, get)
Process manipulation

Bindings for C++ and Fortran 90
Stable for 10 years

Version 2.2 in 2009

Luděk Matyska · MPI · Spring 2024 8 / 46



MPI-3.0 (2012)
Motivated by weaknesses of previous versions and also to reflect
hardware innovation (esp. multicore processors), see
http://www.mpi-forum.org/
Major new features

Non-blocking collectives, neighbourhood collectives
Improved one-sided communication
New tools interface and bindings for Fortran 2008

Other new features
Matching Probe and Recv for thread-safe probe and receive
New functions
Removed previously deprecated functions from C++ bindings

Working groups
MPI 3.1 ratified in June 2015
Fully adopted in all major MPI implementations

Luděk Matyska · MPI · Spring 2024 9 / 46

http://www.mpi-forum.org/


MPI 4

The current version
Major additions:

“Big count” operations
Persistent Collectives
Partitioned Communication
Topology Solutions
Simple fault handling to enable fault tolerance solutions
New tool interface for events

OpenMPI implementation
Currently Version 4.1 (approved in 2023)
Joint project of developers of several MPI streams

Luděk Matyska · MPI · Spring 2024 10 / 46



MPI Design Goals

Portability
Define standard APIs
Define bindings for different languages
Independent implementations

Performance
Independent hardware specific optimization
Libraries, potential for changes in algorithms

e.g. new versions of collective operations

Functionality
Goal to cover all aspects of inter-processor communication

Luděk Matyska · MPI · Spring 2024 11 / 46



Design Goals II

Library for message passing
Designed for use on parallel computers, clusters and even Grids
Make parallel hardware available for

Users
Libraries’ authors
Tools and applications developers

Luděk Matyska · MPI · Spring 2024 12 / 46



Core MPI

MPI Init MPI Initialization
MPI Comm Size Provide number of processes
MPI Comm Rank Provide own (process) identity
MPI Send Send a message
MPI Recv Receive a message
MPI Finalize MPI finish

Luděk Matyska · MPI · Spring 2024 13 / 46



MPI Initialization

Create an environment
Specify that the program will use the MPI libraries
No explicit work with processes

Added since MPI-3.0

Luděk Matyska · MPI · Spring 2024 14 / 46



Identity

Any parallel (distributed) program needs to know
How many processes are participating on the computation
Identity of “own” process

MPI Comm size(MPI COMM WORLD, &size)
Returns number of processes that share the default
MPI COMM WORLD communicator (see later)

MPI Comm rank(MPI COMM WORLD, &rank)
Returns number of the calling process (identity)

Luděk Matyska · MPI · Spring 2024 15 / 46



Work with messages

Naive/primitive model
Process A sends a message: operation send
Process B receives a message: operation receive

Lot of questions
How to properly specify (define) the data?
How to specify (identify) process B (the receiver)?
How the receiver recognises that the data are for it?
How a successful completion is recognised?

Luděk Matyska · MPI · Spring 2024 16 / 46



Classical approach

We send data as a byte stream
It is left to sender and receiver to properly setup and recognize
data

Each process has a unique identifier
We have to know identity of sender and receiver
Broadcast operation

We can specify some tag for the better recognition (e.g. the
message sequence number)
Synchronization

Explicit collaboration between a sender and a receiver
It defines order of messages

Luděk Matyska · MPI · Spring 2024 17 / 46



Classical approach II

send(buffer, len, destination, tag)
buffer contains data, its length is len
Message is sent to process whose identity is destination
Message has a tag tag

recv(buffer, maxlen, source, tag, actlen)
Message will be accepted (read) into a memory space defined by
the buffer whose length is maxlen
Actual size of accepted message is actlen (actlen≤maxlen)
Message will arrive from a process with identifier source and must
have a tag tag

Luděk Matyska · MPI · Spring 2024 18 / 46



Deficiencies of the classical approach

Insufficient level of data specification/definition
Heterogeneity between sender and receiver (incompatible
representation)
Too many copies
Too much relies on a programmer

Tags are global
Complication when you want to write independent libraries

Collective operations
too many send/receive operations
not optimized, inefficient

Luděk Matyska · MPI · Spring 2024 19 / 46



MPI extensions

Processes are grouped
Each message is defined within a specific context (not only a tag)

Messages could be sent and received only within the same
context

Group and context jointly define communicator
Tag is local to a specific communicator

Default communicator MPI COMM WORLD
Group composed from all MPI processes

Process identity (rank) is always defined within a specific context

Luděk Matyska · MPI · Spring 2024 20 / 46



Data types

Data are described not by a tuple (address, length), but a triple
(address, number, datatype)
MPI Datatype is recursively defined as:

Pre-defined data type of the used language (e.g. MPI INT)
Continuous array of MPI datatypes
Strided array of MPI datatypes
Indexed array of datatype blocks
Arbitrary datatype structure

MPI provides functions to define own datatypes
e.g. a row of a matrix which is stored column-wise

Luděk Matyska · MPI · Spring 2024 21 / 46



Tags

, Each message has an associated tag
Simplifies message recognition by the receiver
Tag is always defined within the used context (it is scoped)

Receiver could specify which tag it expects
Alternatively it could ignore the tags (through MPI ANY TAG
specification)

Luděk Matyska · MPI · Spring 2024 22 / 46



Point-to-point Communication

Passing of a message between two processes
Blocking / Non-blocking call (transmission)

Blocking – the call waits till the operation is finished
Non-blocking – the call just initiates the operation but does not
wait till completion; the state of the data transfer must be tested
independently

Buffered / Un-buffered message passing
No buffer – message is passed directly without a buffer
MPI buffer – “transparent”, controlled directly by MPI
User buffer – controlled by the application (programmer)

Luděk Matyska · MPI · Spring 2024 23 / 46



Communication modes I

Standard mode (Send)
Blocking call
MPI “decides”, if the MPI buffer is used

used → Send finishes when all data are in the buffer
not used → Send finishes when the data are accepted by
the receiver

Synchronous mode
Blocking call
Send finishes when the data were accepted by the receiver
(processes synchronization)

Luděk Matyska · MPI · Spring 2024 24 / 46



Communication modes II

Buffered mode
Buffer provided by the application(programmer)
Blocking or non-blocking – the operation finishes when the data
are in the user buffer

Ready mode
Receive must precede the actual send (Receive prepares the
buffer)
Otherwise error

Luděk Matyska · MPI · Spring 2024 25 / 46



Basic send operation

Blocking send
MPI SEND(start, count, datatype, dest, tag, comm)
Triple (start, count, datatype) defines the message
dest identifies the receiver process, always relative to the used
communicator comm

Finishing the operation successfully means
All data were accepted by the system
The buffer is available for re-use
The receiver may not yet receive the data

Luděk Matyska · MPI · Spring 2024 26 / 46



Basic receive operation

Blocking operation
MPI RECV(start, count, datatype, source, tag, comm, status)

The operation waits till a message with a corresponding
tuple (source, tag) is not received
source identifies the sending process, relative to the used
communicator comm) or MPI ANY SOURCE
status contains info about the result of the operation
It also includes message tag and process identifier is
MPI ANY TAG and MPI ANY SOURCE were used, resp.
If the accepted message contains less than count blocks,
it is not interpreted as an error (the actual length is
specified in the status)
Reception of more than count block is an error

Luděk Matyska · MPI · Spring 2024 27 / 46



Short Send/Receive protocol

Fully duplex communication
Each sent message has a corresponding received message

int MPI_Sendrecv(void *sendbuf, int sendcnt,
MPI_Datatype sendtype, int dest, int sendtag,
void *recbuf, int reccnt, MPI_Datatype recvtype,
int source, int recvtag,
MPI_Comm comm, MPI_Status *status)

Luděk Matyska · MPI · Spring 2024 28 / 46



Asynchronous communications

Non-blocking send operation
Buffer can be re-used only after the completion of the whole
transfer

The send and receive operations create a request
Afterwards it is possible to check the status of the request

Call
int MPI_Isend(void *buf, int cnt, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm,
MPI_Request *request)

int MPI_Irecv(void *buf, int cnt, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm,
MPI_Request *request)

Luděk Matyska · MPI · Spring 2024 29 / 46



Asynchronous operations II

(Blocked) waiting for the operation to finish
int MPI_Wait(MPI_Request *request, MPI_Status *status)
int MPI_Waitany(int cnt, MPI_Request *array_of_requests,

int *index, MPI_Status *status)|
int MPI_Waitall(int cnt, MPI_Request *array_of_requests,

MPI_Status *array_of_statuses)

Luděk Matyska · MPI · Spring 2024 30 / 46



Asynchronous operation III

Non-blocking status check
int MPI_Test(MPI_Request *request, int *flag,

MPI_Status *status)
int MPI_Testany(int cnt, MPI_Request *array_of_requests,

int *flag, int *index, MPI_Status *status)
int MPI_Testall(int cnt, MPI_Request *array_of_requests,

int *flag, MPI_Status *array_of_statuses)

Request release
int MPI_Request_free(MPI_Request *request)

Luděk Matyska · MPI · Spring 2024 31 / 46



Persistent Communication Channels

Non-blocking
Created by combining two “half”-channels
Life cycle

Create (Start Complete)* Free
Creation, followed by repetitive use, destroyed afterwards

Luděk Matyska · MPI · Spring 2024 32 / 46



Persistent channel – creation

int MPI_Send_init(void *buf, int cnt,
MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm,
MPI_Request *request)

int MPI_Recv_init(void *buf, int cnt,
MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm,
MPI_Request *request)

Luděk Matyska · MPI · Spring 2024 33 / 46



Transmission

Transmission initialization (Start)
int MPI_Start(MPI_Request *request)
int MPI_Startall(int cnt,

MPI_Request *array_of_requests)

Finishing the transmission (Complete)
As in the asynchronous operations (wait, test, probe)

Luděk Matyska · MPI · Spring 2024 34 / 46



Channel destruction

Equivalent to the destruction of the corresponding request
int MPI_Cancel(MPI_Request *request)

Luděk Matyska · MPI · Spring 2024 35 / 46



Collective operations

Operation performed by all processes within a group
Broadcast: MPI BCAST

One process (root) will send data to all other processes
Reduction: MPI REDUCE

Joins data from all processes in a group (communicator)
and makes it available (as an array) to the calling process

Often a group of send/receive operations can be replaced by a
single bcast/reduce operation

Higher efficiency/performance: bcast/reduce optimized
for a particular hardware

Luděk Matyska · MPI · Spring 2024 36 / 46



Collective operations II

Other operations
alltoall: exchange of messages among all processes in a group

bcast/reduce realizes the so called scatter/gather model

Special reduction
min, max, sum, ...
User defined additional collective operations

Luděk Matyska · MPI · Spring 2024 37 / 46



Virtual topology

MPI can define communication patterns that directly
corresponds to the application needs
These are (in a next step) mapped to the actual hardware ad its
communication operations

Transparent

Higher efficiency when writing programs
Portability

Program is not directly associated with a concrete topology of
used hardware

Potential for independent optimizations

Luděk Matyska · MPI · Spring 2024 38 / 46



Date types

Type Map
Typemap = {(type0, disp0), . . . , (typen−1, dispn−1)}

Type Signature
Typesig = {type0, . . . , typen−1}

Example:
MPI INT == {(int,0)}

Luděk Matyska · MPI · Spring 2024 39 / 46



Extent and Size

MPI Type extent(MPI Datatype Type, MPI Aint *extent)
MPI Type size(MPI Datatype Type, int *size)
Example:

Type = {(double,0),(char,8)}
extent = 16
size = 9

Luděk Matyska · MPI · Spring 2024 40 / 46



Datatype construction

Continuous data type
int MPI_Type_contiguous(int count,

MPI Datatype oldtype,
MPI_Datatype *newtype)

Vector
int MPI_Type_vector(int count, int blocklength,

int stride,
MPI_Datatype oldtype,
MPI_Datatype *newtype)

int MPI_Type_hvector(int count, int blocklength,
int stride,
MPI_Datatype oldtype,
MPI_Datatype *newtype)

Luděk Matyska · MPI · Spring 2024 41 / 46



Datatype construction II

Indexed data type
MPI_Type_indexed(int count, int *array_of_blocklengths,

int *array_of_displacements, MPI_Datatype oldtype,
MPI_Datatype *newtype)

MPI_Type_hindexed(int count, int *array_of_blocklength,
int *array_of_displacements, MPI_Datatype oldtype,
MPI_Datatype *newtype)

Structure
MPI_Type_struct(int count, int *array_of_blocklengths,

MPI_Aint *array_of_displacements,
MPI_Datatype *array_of_types,
MPI_Datatype *newtype)

Luděk Matyska · MPI · Spring 2024 42 / 46



Datatype constructions III

Confirmation of a datatype definition
int MPI_Type_commit(MPI_Datatype *datatype)

Strided data types
They can include “holes”
Implementation may optimize some datatypes
Example: every second element of a vector

MPI could really “compose” a new data datatype
or it can send the whole vector and the selection is done
at the receiver side

Luděk Matyska · MPI · Spring 2024 43 / 46



Operations over files

Support since MPI-2
File “parallelization”
Basic terms

file displacement
etype filetype
view offset
file size file pointer
file handle

Luděk Matyska · MPI · Spring 2024 44 / 46



Operations over files II
Placement Synch Coordination

non-collective collective

explicit blocking MPI File read at MPI File read at all
offset MPI File write at MPI File write at all

non-blocking & MPI File iread at MPI File read at all begin
split collect. MPI File read at all end

MPI File iwrite at MPI File write at all begin
MPI File write at all end

individual blocking MPI File read MPI File read all
file ptrs MPI File write MPI File write all

non-blocking & MPI File iread MPI File read all begin
split collect. MPI File read all end

MPI File iwrite MPI File write all begin
MPI File write all end

shared blocking MPI File read shared MPI File read ordered
file ptr. MPI File write shared MPI File write ordered

non-blocking & MPI File iread shared MPI File read ordered begin
split collect. MPI File read ordered end

MPI File iwrite shared MPI File write ordered begin
split collect. MPI File write ordered end

Luděk Matyska · MPI · Spring 2024 45 / 46



MPI and optimizing compilers

Asynchronous use of memory can lead to data changes (within
arrays) that a complier knows nothing about

Copying of parameters will lead to loss of data
call user(a, rq)
call MPI_WAIT(rq, status, ierr)
write (*,*) a

subroutine user(buf, request)
call MPI_IRECV(buf,...,request,...)
end
In this example, main program will print a non-sensical value of
“a” as the return from “user” the actual value of “a” will be copied
while the corresponding receive operation may not be finished yet

Luděk Matyska · MPI · Spring 2024 46 / 46


