
PA039: Supercomputer Architecture and Intensive
Computing

Parallel computers

Luděk Matyska

Spring 2024

Luděk Matyska · Parallel computers · Spring 2024 1 / 71

Parallel computers

Small-scale multiprocessing
2–several hundreds of cores (ten of processors)
mostly SMP (shared memory systems)

Large-scale multiprocessing
from hundreds to millions of cores (processors)
Most often distributed memory

Luděk Matyska · Parallel computers · Spring 2024 2 / 71

Parallel computers (II)

Architecture
Single Instruction Multiple Data, SIMD
Multiple Instruction Multiple Data, MIMD

Programming models
Single Program Multiple Data, SPMD
Multiple programs Multiple Data, MPMD

Concurrent, Parallel, Distributed
Concurrent: A single program with multiple tasks in progress
Parallel: A single program with multiple task closely cooperating
Distributed: Several programs (loosely) cooperating

Luděk Matyska · Parallel computers · Spring 2024 3 / 71

Architecture – SIMD

All processors synchronized
All performing the same instruction in any given time
Analogy of vector processors

Simple processors
Simple programming model

but difficult programming (esp. for simple scalar operations)

Luděk Matyska · Parallel computers · Spring 2024 4 / 71

Vector processor

Processor able to work directly with vectors of data
vector is a data type of the underlying instruction set
Cray introduced even vector registers (otherwise direct work with
the memory)

Vector Load/Store
“composing” vector from different memory words/areas
vector of registers that keep addresses of memory words with
actual data
“to localize” data for further processing
in practice the scather/gather operations directly over the main
memory

Luděk Matyska · Parallel computers · Spring 2024 5 / 71

Vector processor
Memory subsystem

as a default does not work with caches
interleaved (banked) memory
several concurrent operations over the main memory
it has higher throughput than use of caches esp. when the data
are “randomly” scattered over the main memory (random access to
data)

Luděk Matyska · Parallel computers · Spring 2024 6 / 71

Architecture – MIMD

Fully asynchronous system
Individual processors fully independent

No special production needed (off-the-shelf)
Advantages

Higher flexibility
At least in theory higher efficiency

Disadvantages
Explicit synchronization
Difficult programming (easy race condition)

Luděk Matyska · Parallel computers · Spring 2024 7 / 71

Communication models

Shared Memory Architecture
Message passing

Luděk Matyska · Parallel computers · Spring 2024 8 / 71

Shared Memory Architecture

Memory separated from processors
Uniform access to the memory
Bus as the easiest interconnect
Cheap interprocess/thread communication
Complex overlap of processing and communication (active
waiting)

Luděk Matyska · Parallel computers · Spring 2024 9 / 71

Message Passing

Each processor “visible”
Each processor has its own memory
Explicit communication – message passing
High communication cost (exchange of data)
More easier overlap of processing and communication

Luděk Matyska · Parallel computers · Spring 2024 10 / 71

Hybrid systems

Nonuniform memory access architecture (NUMA)
Cache-only memory access architecture (COMA)
Distributed shared-memory (DSM)

Luděk Matyska · Parallel computers · Spring 2024 11 / 71

Non-uniform memory access

Access to different memory addresses takes different time
Provides for higher scalability
Potentially lower throughput
Cache memory coherence problem

ccNUMA – cache coherent NUMA

Luděk Matyska · Parallel computers · Spring 2024 12 / 71

Cache only memory access

NUMA but resembling cache memory behavior
Data moves close to the processors that uses them
No hierarchy like with caches

System must check that the last copy remains (can’t delete it)

Experimental
Software-based hybrid NUMA-COMA implementation provided
by ScaleMP

A shared-memory multiprocessor system on top of a cluster of
commodity servers

Luděk Matyska · Parallel computers · Spring 2024 13 / 71

Distributed shared-memory
Distributed system – cluster

Local memory on each node
Remote memory on other nodes

“Fiction” of a single extended memory
Hardware solution

Usually based on virtual memory principles (move pages between
nodes)
Transparent

Software solution
Library
Non-transparent, programmer must modify the program (call of
proper APIs from the library)

ScaleMP hybrid

Luděk Matyska · Parallel computers · Spring 2024 14 / 71

Cache Memory Coherence

Reasons for cache miss:
Compulsory miss: 1st access to data
Capacity miss: insufficient capacity
Conflict miss: different memory areas mapped to the same cache
row
Coherence miss: different data in different caches

Multiprocessors exposed to the last case
But it can happen in a single processor case, too (how?)

Luděk Matyska · Parallel computers · Spring 2024 15 / 71

Invalidation

Reaction on content change in remote (cache) memory
Row in the actual (“snooping”) cache memory invalidated
If the same row is needed later, it is retrieved from the memory
(again)

Luděk Matyska · Parallel computers · Spring 2024 16 / 71

Update

The cache memory row is updated immediately
If data are needed (again), they are already in the cache
Drawbacks

False sharing
Row includes more words

High load on the bus (broadcasting interconnect)
Invalidation and Update are equivalent performance-wise

Unless a specific memory access pattern is used

Luděk Matyska · Parallel computers · Spring 2024 17 / 71

Coherence Cache Miss solutions

Cache memory must be aware of a change elsewhere
Broadcast based protocols
Directory based protocols

Luděk Matyska · Parallel computers · Spring 2024 18 / 71

Snoopy cache

Broadcast based protocol
Communication network with a “natural” broadcast

Each processor follows/watches all memory accesses

Luděk Matyska · Parallel computers · Spring 2024 19 / 71

Directory based protocols

Snoopy protocol based on broadcast
Not usable for more complex interconnect networks
Not scalable

Solution: Reduction of actively “touched” caches – Directories
Tag at each memory block
Cache memory with a copy of such a block explicitly references
the tag
Special exclusivity tag (writing)

Luděk Matyska · Parallel computers · Spring 2024 20 / 71

Directory based protocols

Three based schemas
Fully mapped directories
Limited directories (partially mapped)
Chained directories

We will compare them based on the following features
Size of the additional memory needed
Number of necessary instructions/steps (latency introduced)

Luděk Matyska · Parallel computers · Spring 2024 21 / 71

Fully mapped directories

Each memory block is able to directly reference all caches
(processors) simultaneously
Bit vector of copies

If a bit is set, the corresponding cache keeps a copy of the data
block

Exclusivity tag
One per a block
Writing can be performed on one processor (one cache) only

Additional tags for each block in each cache
Validity tag
Exclusivity tag

Luděk Matyska · Parallel computers · Spring 2024 22 / 71

Limited directories

Full directories rather expensive (long bit vectors)
Additional memory needed: PM/B

P number of cache memories (processors)
M size of the main memory
B block size

Cumulative capacity of all caches usually smaller that the size of
the main memory
Data block are usually not extensively shared

Most directory entries contain zeros
Solution: Use of direct references

However, one bit per cache is not enough

Luděk Matyska · Parallel computers · Spring 2024 23 / 71

Limited directories II

Set of pointers to the caches
Dynamic allocation as needed

Features
Number of bits per pointer: log2 P
Number of pointers in the pointer pool: k
More memory efficient than directly mapped if k < P

log2 P

Invalidation information sent only to caches keeping the copy of
changed data

Luděk Matyska · Parallel computers · Spring 2024 24 / 71

Overflow

If the pointer’s pool is exhausted
Too many shared blocks

Possible reactions
Invalidation of all shared blocks (broadcast, DiriB)
One entry selection (even random) and invalidation (no broadcast,
DiriNB)

Luděk Matyska · Parallel computers · Spring 2024 25 / 71

Other modifications

Coarse-vector (DiriCVr)
r is the size of a region (more caches/processors)je velikost
regionu (vı́ce procesorů), which corresponds to one bit (i.e. several
caches/processors represented by one entry)

see the interconnect architectures
Switch of interpretation (whether a single processor or a region)
as a result of overflow

Limited broadcast to all processors in the region

LimitLESS: software interrupt in case of overflow (“program
decides”)

Luděk Matyska · Parallel computers · Spring 2024 26 / 71

Chained protocols

Cache-Based linked-list
Only one pointer per memory block
Other pointers part of the cache memories

The cache memories (their blocks) are “chained”
Advantages

Memory footprint minimization
Drawbacks

Comples protocol
More communication (“from cache to cache”; more than
theoretically necessary)
Write has higher latency (must pass through the whole chain)

Luděk Matyska · Parallel computers · Spring 2024 27 / 71

Hierarchical directories

Usable in systems with multiple buses (n general broadcast
supporting interconnects)
Hierarchy of caches

Higher hierarchy at each bus interconnect
Higher memory requirements

Higher hierarchy level must keep copies of shared blocks
from lower levels
No need of fast ”pointer” memory

In principle a hierarchy of snoopy protocols with special
extensions

Luděk Matyska · Parallel computers · Spring 2024 28 / 71

Scalability
No single definition
Most used definition: Scalable is such a system for which the
following holds

Performance grows linearly with price
The ratio Price/Performance is fixed

Both are equivalent, but usually only one condition is explicitly
used
Alternative parameter – Scalability Extent

Performance change as a result of a processor addition
Price change as a result of a processor addition
Rational extent of number of processors considered

e.g. the Price/Performance ratio is not constant but within a
defined interval (of number processors) the changes are small
(and much higher outside the interval)

Luděk Matyska · Parallel computers · Spring 2024 29 / 71

Speedup

S(N) =
TEXEC(1)
TEXEC(N)

=
Tcomp(1) + Tcomm(1)
Tcomp(N) + Tcomm(N)

Ideal speedup means

Tcomp(N) = Tcomp(1)/N
Tcomm(N) = Tcomm(1)/N

Luděk Matyska · Parallel computers · Spring 2024 30 / 71

Speedup – commentary

Theoretical feature, reality depends on the application
Different values for different applications (on the same system)

Amdahl law – extent of possible parallelization
Parallelizable and serial part of the task
Parallelizability has its limits

Luděk Matyska · Parallel computers · Spring 2024 31 / 71

Extensible interconnecting networks

Parallel systems must include interconnecting network
It influences behavior of the parallel system

Ideal extensible network
Low cost growing linearly with the number of processors (N)
Minimal latency independent of N
Throughput grows linearly with N

Luděk Matyska · Parallel computers · Spring 2024 32 / 71

Network properties

Three basic components
Topology
Switching (how data moves between nodes)
Routing (how a path is computed)

Luděk Matyska · Parallel computers · Spring 2024 33 / 71

Interconnecting networks

We distinguish the following parameters
Network size – number of nodes N
Node degree d (number of edges from a node)
Network radius D

Longest shortest path
Bisection width B
Network redundancy A

Minimal number of links that must be removed for the
network to become split into two disconnected parts

Cost C
Number of links in the network

Luděk Matyska · Parallel computers · Spring 2024 34 / 71

Bisection width

Bisection width
Minimal number of links that must be removed for the network to
split into two same size parts

Bisection bandwidth
Commutative throughput of all removed links

Ideal properties:
Bisection bandwidth per process is constant

Luděk Matyska · Parallel computers · Spring 2024 35 / 71

Topology of interconnecting networks

Classification based on the number of dimensions
One-dimensional
Two-dimensional, planar
Three-dimensional, cubic
Hypercube, tesseract (higher dimensions)

Luděk Matyska · Parallel computers · Spring 2024 36 / 71

One-dimensional interconnects

Linear array
Individual nodes serially connected

“(string of) beads”

Simplest
Worst properties (for N > 2)

Luděk Matyska · Parallel computers · Spring 2024 37 / 71

Two-dimensional interconnects

Ring
Closed linear array

Star
Tree

Decreases network radius (2 log N+1
2)

Still bad redundancy and bisection (band)width
Fat tree

Adds redundant links at higher levels
Improves bisection bandwidth

Luděk Matyska · Parallel computers · Spring 2024 38 / 71

Fat tree topology

Luděk Matyska · Parallel computers · Spring 2024 39 / 71

Two-dimensional mesh

Very popular
Good properties

Radius 2(N1/2 − 1)
Bisection N1/2

Redundancy 2
However a higher cost and variable node degree

Torus
closed two-dimensional mesh

Radius N1/2

Bisection 2N1/2

Redundancy 4
Higher cost – adds 2N1/2 links

Luděk Matyska · Parallel computers · Spring 2024 40 / 71

Three-dimensional mesh

Properties
Radius 3(N1/3 − 1)
Bisection N2/3

Redundancy 3
Acceptable cost 2(N − N2/3)

Difficult for construction

Luděk Matyska · Parallel computers · Spring 2024 41 / 71

Torus topologies

Luděk Matyska · Parallel computers · Spring 2024 42 / 71

Torus topologies

Luděk Matyska · Parallel computers · Spring 2024 43 / 71

Hypercube, tesseract

Very interesting topology
In general n-dimensional cube
Basic parameters

Radius log N
Bisection N/2
Redundancy log N
Higher cost (N log N)/2

Meshes are special cases of hypercube (lower dimensionality)
Routing very simple

Based on binary numbering of nodes

Luděk Matyska · Parallel computers · Spring 2024 44 / 71

Deadlock Free 6D torus (K Computer)

Luděk Matyska · Parallel computers · Spring 2024 45 / 71

Fully connected network

More as a theoretical construct
Excellent radius (1)
Unacceptable cost (N ∗ (N − 1)/2) and node degree (N − 1)

Luděk Matyska · Parallel computers · Spring 2024 46 / 71

Switching

Specific mechanism how the packet move from input to output
(on a transit node)
Basic approaches

Packet switching, store-and-forward
Circuit switching
Virtual connection (cut-through)
Wormhole routing

Luděk Matyska · Parallel computers · Spring 2024 47 / 71

Store-and-forward

The whole packet is stored on the transit node
And is send out only after the full packet is received
Simple (first generation of parallel computers)
High latency P

B ∗ D
P is packet size, B is throughput and D is number of “hops”
(distance)

Luděk Matyska · Parallel computers · Spring 2024 48 / 71

Circuit switching

Three stages
Connection setup – initiated by a probe
Data transmission
Connection tearing

Visibly lower latency P
B ∗ D + M

B
P is the size of the probe and M is a size of the message (packets
are not needed nor relevant)
For P << M latency is independent of the path size

Luděk Matyska · Parallel computers · Spring 2024 49 / 71

Virtual connection

Message is split into smaller blocks – flow control digits/units
(flits)

The first flit contains the path info (initially the target address)
Next flits contain the data (payload)
Last flit breaks the path

Individual flits are sent as a continuous stream
With buffers of sufficient size, this responds to the circuit switching

Latency HF
B ∗ D + M

B
HF is flit length, usually HF << M

Luděk Matyska · Parallel computers · Spring 2024 50 / 71

Wormhole
Special case of virtual circuit
Buffer size exactly fits the flit size
Latency does not depend on the distance (the length of the path)

Pipeline analogue
The whole packet resides in several buffers at different nodes on
the path – thus the wormhole
Latency is considered at the level of the whole message transfer,
not per flits; number of flits is much higher than the distance (the
length of the path = number of hops)

transmission time is a sum of the length of the path and
number of the transferred flits
while for store-and-forward it relates to the product of
these two values

The protocol supports packet replication
convenient for multicast and broadcast

Luděk Matyska · Parallel computers · Spring 2024 51 / 71

Wormhole Three Interfering Flows

Luděk Matyska · Parallel computers · Spring 2024 52 / 71

Virtual channels

Physical channels sharing
Several buffers over the same channel

Flits stored in the appropriate buffer
Use

Overloaded links
Deadlock avoidance
Logical to physical topology mapping
Guarantees of sufficient transport capacity for system data

Luděk Matyska · Parallel computers · Spring 2024 53 / 71

Routing in the interconnecting networks

Path discovery
Properties

Static routing
Source based
Distributed

Adaptive routing (always distributed)

Minimal but also non-minimal routes

Luděk Matyska · Parallel computers · Spring 2024 54 / 71

Fault tolerance of interconnecting networks

Error check
Message acknowledgment
Message re-transmission

Luděk Matyska · Parallel computers · Spring 2024 55 / 71

Memory latency

Memory considerably slower than the processor
Waiting for memory substantially decreases efficiency of the
whole system

Solutions:
Latency decrease – access speedup
Latency hiding – interleaving of computing and data transmission

Luděk Matyska · Parallel computers · Spring 2024 56 / 71

Memory Latency Decrease

NUMA: Non-Uniform Memory Access
Each logical address is mapped to a concrete physical address

COMA: Cache-Only Memory Architecture
Main memory considered as an attraction memory
Memory rows can be moved freely
A memory row can have several copies

Luděk Matyska · Parallel computers · Spring 2024 57 / 71

Recapitulation

NUMA COMA
Communication
to computation
ratio

Small
working
set

Large
working
set

Small
working
set

Large
working
set

Low Good Medium Good Good

High Medium Poor Poor Poor

Luděk Matyska · Parallel computers · Spring 2024 58 / 71

Memory Latency Hiding

Weak consistency models
Prefetch
Multiple-context processors
Producer initiated communication

Luděk Matyska · Parallel computers · Spring 2024 59 / 71

Weak consistency

Does not require a strict synchronization access to shared
variables unless explicitly required (explicit synchronization)
Release consistency:

New instructions acquire and release
Fence instruction

Enforced finalization of unfinished instructions (waiting)

Luděk Matyska · Parallel computers · Spring 2024 60 / 71

Prefetch

Data moved to the process in advance
Binding prefetch

Data moved to the processor (register)
Risk of consistency break

Non-binding prefetch
Data moved to the cache only

HW Prefetch
SW Prefetch
Special instruction prefetch-exclusive: read followed by a write
Remember ANDES?

Luděk Matyska · Parallel computers · Spring 2024 61 / 71

Multiple-context processors

Multithreading support
Requires

Very fast context switch (1-2 ticks)
Very high number of registers (the full set per each thread)

Many experimental systems
HEP (seventies)
Tera
*T

Luděk Matyska · Parallel computers · Spring 2024 62 / 71

Producer initiated communication

Analogy of invalidate and update in cache coherency
Specific use for message passing systems (e.g. Cray T3D) or
block-copy (computers with shared memory)
Suitable for transfer of large blocks or for lock-based
synchronization

Luděk Matyska · Parallel computers · Spring 2024 63 / 71

Synchronization support

Synchronization leads to “hot spots”
Basic synchronization primitives/protocols:

Mutual exclusion (mutex)
Dynamic load distribution
Events’ propagation
Global serialization (barriers)

Luděk Matyska · Parallel computers · Spring 2024 64 / 71

Mutual exclusion (mutex)

Access to a shared variable is granted to at most one process at
any given time
Universal, but usually rather expensive
Synchronization constructs of higher programming languages

Semaphores
Monitors
Critical sections

Foundation – hardware support
test&set instruction
test-and-test&set instruction

Spin waiting protocol

Luděk Matyska · Parallel computers · Spring 2024 65 / 71

test&set

Properties
An atomic instruction that reads the actual content and sets the
content to 1 (CLOSED)
Busy (active) waiting till the read value is 0
char *lock;
while (exchange(lock, CLOSED) == CLOSED);

Highly stressing cache coherent multiprocessor systems
Each “set” flushes all caches

Luděk Matyska · Parallel computers · Spring 2024 66 / 71

test-and-test&set

Properties
An instruction that reads the actual value and run the atomic
test&set only if the read value is 0
for (;;)
while (*lock == CLOSED);
if (exchange(lock, CLOSED) != CLOSED)
break;

Protocol responsive to the cache subsystem properties
First test over the shared (in cache) copy

Luděk Matyska · Parallel computers · Spring 2024 67 / 71

Use of queues

Improvement: Collision avoidance schemes
Queue on lock bit (QOLB) protocol
The most effective implementation
Processes lined up in a queue

After lock release the process at the queue head is activated
No data transfer among all waiting processes needed

Luděk Matyska · Parallel computers · Spring 2024 68 / 71

Locks in multiprocessors

Related to the dynamic load distribution
Use of counter with atomic operation

Fetch&Op – counters, e.g., Op==Add
fetch&add (x, a)
int *x, a;
{ int temp;

temp = *x;
*x += a;
return (temp);

}
Compare&Swap – lists

Luděk Matyska · Parallel computers · Spring 2024 69 / 71

Event’s propagation

Global events/signals used as a tool
for producers to inform consumers that data are ready
to inform about a global change in a set of equivalent processes

Status change that must be announced to all processes

Luděk Matyska · Parallel computers · Spring 2024 70 / 71

Barriers

A point of synchronization
To let all processes synchronize at the same point

No process can pass the barrier unless all processes reached it

Luděk Matyska · Parallel computers · Spring 2024 71 / 71

