PA152: Efficient Use of DB
 7. Query Optimization

Vlastislav Dohnal

Query Optimization

- Generating and comparing query execution plans

Pick the best

Generating Execution Plans

- Consider using:
\square Rel. algebra transformation rules
\square Implementations of rel. alg. operations
\square Use of existing indexes
\square Building indexes and sorting on the fly

Plan Cost Estimation

- Depends on costs of each operation
\square i.e., its implementation
- Assumptions for operation costs:
\square Input is read from a disk
\square Output is kept in memory
\square Costs on CPU
- Processing on CPU is faster than reading from disk
- Can be neglected but often simplified (number of rows and ops)
\square Network communication costs
- Issue in distributed databases
\square Ignoring contents of mem buffers/caches between queries
- Estimated costs of operation
$\square=$ number of read and write accesses to disk

Operation Cost Estimation
 - Example: settings in PostgreSQL

https://www.postgresql.org/docs/15/runtime-config-query.html\#RUNTIME-CONFIG-QUERY-CONSTANTS
https://www.postgresql.org/docs/15/static/runtime-config-resource.html
\square seq_page_cost (1.0)
\square random_page_cost (4.0)
\square cpu_tuple_cost (0.01)
\square cpu_index_tuple_cost (0.005)
\square cpu_operator_cost (0.0025)
\square shared_buffers (32MB) - $1 / 4$ RAM
\square effective_cache_size (4GB) - 1⁄2 RAM
\square work_mem (8MB)

- Memory available to an operation

Operation Cost Estimation

- Parameters
$\square \mathrm{B}(\mathrm{R})$ - size of relation R in blocks
$\square f(R)$ - max. record count to store in a block
$\square \mathrm{M}$ - max. RAM buffers available (in blocks)
- i.e., work_mem in Pg
$\square \mathrm{HT}(\mathrm{i})$ - depth of index i (in levels)
$\square \mathrm{LB}(\mathrm{i})$ - sum of all leaf nodes of index i

Operation Implementation
 - Based on concept of iterator
 \square Open - initialization

- preparations before returning any record of result
\square GetNext - return next record of result
\square Close - finalization
- release temp buffers, ...
- Result rows may be returned gradually
$\square \ldots$ and not all at once

Operation Implementation

- Advantages
\square Result does not occupy main memory
\square Intermediate results may not be materialized on a disk
\square Exploits pipelining
- i.e., passing result rows to another operation.

Accessing Relation

- Table scan / Seq. scan
\square Always applicable
\square High costs if few records are returned
\square Used when a table is small
- Index scan
\square Available if an index exists
\square Selectivity of a query influences its costs
- Index is an overhead if many records are returned
\square Rows themselves may not be accessed in some situations.

Accessing Relation: table scan - Relation is not interlaced

R1 R2 R3 R4 R5 R6 R7 R8 ...
\square Reading costs: $\mathrm{B}(\mathrm{R})$
\square TwoPhase-MergeSort $=$ 3B(R) reading/writing

- Final writing is ignored
- Relation is interlaced
R1 R2 S1 S2
R3 R4 S3 S4
\square Reading costs are up to $T(R)$ blocks!
\square TwoPhase-MergeSort
- $T(R)+2 B(R)$ reads and writes

Accessing Relation: index scan

- Reading relation using an index
\square Scanning index \rightarrow reading records
- Read index blocks (<< B(R))
- Read records of relation

Max. number of nodes

in an m-ary tree

\square Costs:

- up to $\left(m^{H T+1}-1\right)+$
\square where m is an index arity ($\mathrm{LB}=m^{H T}$)
- 1 to $B(R)$ blocks of relation (depending on the selectivity)
\square If an index is a "covering" index for a query
- no accesses to the relation.

Operation Implementation

- E.g., selection, projection, ordering (sorting), aggregation, distinct, join, ...
- One-pass
\square Read the input data (relation) just once
\square All done in RAM
- Two-pass

\square Read the input data (relation) multiple times
\square Uses a temporary disk storage

One-Pass Algorithms

- Implementation:
\square Read relation \rightarrow Processing in RAM \rightarrow Output buffers
\square Processing records one by one
- Operations
\square Projection, Selection, Duplicate elimination (DISTINCT)
- costs: $\mathrm{B}(\mathrm{R})$
\square Aggregate functions (GROUP BY)
- costs: B(R)
\square Set operations, cross product, joins
- costs: $\mathrm{B}(\mathrm{R})+\mathrm{B}(\mathrm{S})$

Duplicate Elimination (DISTINCT)
 - Procedure

\square Test whether the record has been sent to output
\square If not, output the record

- Test for existence in output
\square Store already-seen records in memory
- Can use $M-2$ blocks
\square No data structure: n^{2} complexity (comparisons)
\square Use in-mem hashing
- Limitation: $B(R)<M-1$
- Can be implemented using iterators?

Distinct - example

- Relation company(company key,company_name)
\# explain analyze SELECT DISTINCT company_name FROM provider.company;
HashAggregate (cost=438.68..554.67 rows=11600 width=20) (actual time=9.347..12.133 rows=11615 loops=1)
Group Key: company_name
-> Seq Scan on company (cost=0.00..407.94 rows=12294 width=20)
(actual time=0.019..5.007 rows=12295 loops=1)
Planning time: 0.063 ms
Execution time: 12.799 ms
\# explain analyze SELECT DISTINCT company_key FROM provider.company;
Unique (cost=0.29..359.43 rows=12294 width=8) (actual time=0.041..8.857 rows=12295 loops=1)
-> Index Only Scan using company_pkey on company (cost=0.29..328.69 rows=12294 width=8) (actual time=0.039..5.686 rows=12295 loops=1)
Heap Fetches: 4726
Planning time: 0.063 ms
Execution time: 9.645 ms
\# explain analyze SELECT DISTINCT company_name FROM provider.company ORDER BY company_name; Unique (cost=1243.05..1304.52 rows=11600 width=20) (actual time=53.468..59.072 rows=11615 loops=1)
-> Sort (cost=1243.05..1273.79 rows=12294 width=20) (actual time=53.467..55.482 rows=12295 loops=1)
Sort Key: company_name
Sort Method: quicksort Memory: 1214kB
-> Seq Scan on company (cost=0.00..407.94 rows=12294 width=20) (actual time $=0.018 . .5 .338$ rows=12295 loops=1)

Aggregations / Grouping

- Procedure
\square Create groups for group-by attributes
\square Store accumulated values of aggregation functions
- Internal structure
\square Organize values of grouping attributes, e.g., hashing
\square Accumulated value of aggregations
- MIN, MAX, COUNT, SUM - one value (number)
- AVG - two numbers (SUM and COUNT)
\square Accumulated values are small: $M-1$ blocks are enough
- Iterators:

The output block is not needed.

- All prepared in Open
- Advantage of pipelining is inapplicable

Set Operations

■ Requirement: $\min (B(R), B(S)) \leq M-2$
\square Smaller relation read into memory
\square Larger relation is read gradually
\square Set union (possibly also Set difference):

- Memory requirements: $B(R)+B(S) \leq M-2$
- Assumption
$\square R$ is larger relation, i.e., S is in memory
- Implementation
\square Create a temp search structure
- E.g., in-mem hashing

Set union

\square Notice: Not multiset union

- Read S; construct search structure
\square Eliminate duplicates
\square Output unique records immediately
- Read R and check existence of the record in S
\square If present, skip it.
\square If not seen, output it and add to structure
- Limitations
$\square B(R)+B(S) \leq M-2$

Set intersection

\square Notice: Not multiset intersection
i.e., without ALL in SQL

- Read S; construct search structure
\square Eliminate duplicates
- Read R and check existence of the record in S
\square If present, output the record and delete it from structure.
\square If not seen, skip it.
- Limitations
$\square \min (B(R), B(S)) \leq M-2$

Set Difference

- R-S
\square Read S; construct search structure
- Eliminate duplicates
\square Read R and check existence of the record in S
- If not present, output it
\square Also insert into internal structure
$\square B(S)+B(R) \leq M-2$ (worse case, but with pipelining)
- Or max $(\mathrm{B}(\mathrm{R}), \mathrm{B}(\mathrm{S})) \leq \mathrm{M}-2$, when preprocessing R (no pipelining)
- $S-R$
\square Read S; construct search structure
- Eliminate duplicates
\square Read R and check existence of the record in S
- If present, delete it from internal structure
\square Output all remaining recs. in S (no pipelining)
$\square \mathrm{B}(\mathrm{S}) \leq \mathrm{M}-1^{\text {PA } 152, \text { Vastistav Dohnal, FI MUNI, } 2024}$

Multiset (Bag) Operations
 - Bag union $R \cup_{B} S$
 \square Easy exercise...

- Bag intersection $R \cap_{B} S$
\square Read S; construct search structure
- Eliminate duplicates by storing their count
\square Read R and check existence of the record in S
\square If record is present, output it
- and decrement record count!
- If counter is zero, delete it from internal structure
\square If record is not found, skip it
$\square \min (B(R), B(S)) \leq M-2$

Multiset (Bag) Operations

- Bag difference $\mathrm{S}_{-\mathrm{B}} \mathrm{R}$
\square Same idea
\square If record of R is present in S, decrement its counter
\square Output internal structure (recs. of S)
- with positive count (and output that many copies)
$\square \mathrm{B}(\mathrm{S}) \leq \mathrm{M}-1$
- Bag difference $\mathrm{R}_{-\mathrm{B}} \mathrm{S}$
\square By analogy... (S is preprocessed)
\square If record of R is not present in $S \rightarrow$ output
\square If found,
$\rightarrow \rightarrow$ if counter is zero, output it
- \rightarrow decrement the counter and skip it
$\square B(S) \leq M-2$

Join Operation - one pass version

- Cross product
\square Easy exercise...
- Natural join
\square Assume relations $\mathrm{R}(\mathrm{X}, \mathrm{Y}), \mathrm{S}(\mathrm{Y}, \mathrm{Z})$
- X - unique attributes is R, Z - unique attrs. in S
- Y - common attributes in R and S
\square Read S; construct search structure on Y
\square For each record of R, find all matching recs. of S
- Output concatenation of all combinations (eliminate repeating attributes Y)
- Outer join?

Summary: One-Pass Algorithms

- Unary operation: op(R)
$\square B(R) \leq M-1,1$ block for output; some need 1 for input
- Binary operation: R op S
$\square \mathrm{B}(\mathrm{S}) \leq \mathrm{M}-2,1$ block for R, 1 block for output - Some ops require: $B(R)+B(S) \leq M-2$ or $\max (B(R), B(S))<M-1$
- Cost $=B(R)+B(S)$

Summary: One-Pass Algorithms

- Choice is based on
\square available RAM buffers (M) and
\square input data size in blocks
\square Known \rightarrow ok
\square Not known \rightarrow estimate it
■ Wrong size \rightarrow swapping (mem virtualization)
- Use a two-pass algo if input data exceeds the limits.

Join Algorithms (1½ Pass Algos)

- Relations do not fit in memory
\square So called "one and a half'-pass algorithms
■ Basic variant: Nested-loop join
\square for each s in S do
- for each r in R do
\square if r and s match in Y then output concatenation of r and s.
- Example

$$
\begin{aligned}
& \square T(R)=10000 \quad T(S)=5000 \quad M=2 \\
& \square \text { Costs }=5000 \cdot(1+10000)=50005000 \mathrm{IOs}
\end{aligned}
$$

Join Algorithms

- Relations accessed by blocks
- Block-based nested-loop join
- R - inner relation, S - outer relation
- Example:
$\square B(R)=1000 \quad B(S)=500 \quad M=3$
\square Costs $=500 \cdot(1+1000)=500500$ IOs

Join Algorithms

- Exploit all buffer blocks (M blocks)
\square Cached Block-based Nested-loop Join
\square Read M-2 blocks of relation S at once
- Read relation R block by block
\square Join records
\square Costs in IOs: B(S)/(M-2) $\cdot(\mathrm{M}-2+\mathrm{B}(\mathrm{R}))$
- Example R』S:
$\square \mathrm{M}=102$
\square Costs: $5 \cdot(100+1000)=5500$ IOs
\square Swapping relations ($\mathrm{S} \bowtie \mathrm{R}$)
- Costs: $10 \cdot(100+500)=6000$ IOs

Join Algorithms - Summary

■ Nested-loops join
\square Use always blocked variant
\square Read the smaller relation into memory (if $\mathrm{M} \gg 3$)

- Storage of relation
-Important for final costs
- Interlaced \rightarrow each record needs one I/O

■ Non-interlaced \rightarrow each record needs $B(R) / T(R)$ I/Os only

- Applicable to any join condition
\square theta joins

Two-Pass Algorithms
 - Procedure:

\square Preprocess input relation \rightarrow store it

- Sorting (Multi-way MergeSort)
- Hashing
\square Processing

Two-Pass Algorithms

- Operations:
\square Joins
\square Duplicate elimination (DISTINCT)
\square Aggregations (GROUP BY)
\square Set operations

Join Algorithms - MergeJoin ■ $\mathrm{R} \bowtie S \quad R(X, Y), S(Y, Z)$

Join Algorithms - MergeJoin

- R』S $\quad R(X, Y), S(Y, Z)$
- Algorithm:
\square Sort R and S
$\square \mathrm{i}=1$; $\mathrm{j}=1$;
\square while $(\mathrm{i} \leq T(R)) \wedge(\mathrm{j} \leq T(S))$ do
- if $R[i] . Y=S[j] . Y$ then doJoin()
- else if $R[i] . Y>S[j] . Y$ then $j=j+1$
- else if $R[i] . Y<S[j] . Y$ then $i=i+1$

Join Algorithms - MergeJoin

- Function doJoin():
\square Proceed nested-loop join for records of same Y
- We will keep all necessary block in mem
\square while $(R[i] . Y=S[j] . Y) \wedge(i \leq T(R))$ do
- j2 = j
- while $(R[i] . Y=S[j 2] \cdot Y) \wedge(j 2 \leq T(S))$ do
\square Output joined $R[i]$ and $S[j 2]$
$\square \mathrm{j} 2=\mathrm{j} 2+1$
■ $\mathrm{i}=\mathrm{i}+1$
$\square \mathrm{j}=\mathrm{j} 2$

Join Algorithms - MergeJoin

\mathbf{i}	$\mathbf{R}[\mathbf{i}] . \mathbf{Y}$	$\mathbf{S}[\mathbf{j}] . \mathbf{Y}$	\mathbf{j}
1	10	5	1
2	20	20	2
3	20	20	3
4	30	30	4
5	40	30	5
		50	6
		52	7

Join Algorithms - MergeJoin

- Costs
\square MergeSort of R and $S \rightarrow 4 \cdot(B(R)+B(S))$
$\square J o i n \rightarrow B(R)+B(S)$
- Example ($\mathrm{M}=102$)
\square MergeJoin
- Sorting: $4 \cdot(1000+500)=6000 \mathrm{read} / \mathrm{write} \mathrm{IOs}$
- Joining: $1000+500=1500$ read IOs
- Total: 7500 read/write IOs
\square Original cached block-based nested-loop join
- 5500 read IOs

Join Algorithms - MergeJoin

- Another example
$\square B(R)=10000$

$$
B(S)=5000
$$

$\square \mathrm{M}=102$ blocks
\square Cached Block-based Nested-loop Join

- $(5000 / 100) \cdot(100+10000)=505000$ read IOs
\square MergeJoin
- $5 \cdot(10000+5000)=75000 \mathrm{read} / \mathrm{write} \mathrm{IOs}$

Join Algorithms - MergeJoin
 - MergeJoin

\square Preprocessing is expensive

- If relations are sorted by Y , can be omitted.
- Analysis of IO costs
\square MergeJoin
- linear complexity
\square Cached Block-based Nested-loop Join
- quadratic complexity
$\square \rightarrow$ from a certain size of relations, MergeJoin is better

Join Algorithms - MergeJoin

- Memory requirements
\square Limitation to $\max (B(R), B(S))<M^{2}$
- Optimal memory size
\square Using MergeSort on relation R
- Number of runs $=B(R) / M$, Run length $=M$
- Limitation: number of runs $\leq M-1$
- $B(R) / M<M \rightarrow B(R)<M^{2} \rightarrow M>\lceil\sqrt{B(R)}\rceil$
- Example
$\square \mathrm{B}(\mathrm{R})=1000 \rightarrow M>[31.62\rceil$
$\square \mathrm{B}(\mathrm{S})=500 \rightarrow M>$ [22.36]

Join Algorithms - MergeJoin \rightarrow SortJoin

- Improvement:
\square Not necessary to have the relations sorted completely

Join Algorithms - $\underline{\text { SortJoin }}$

- Improvement
\square Prepare sorted runs of R and S
\square Read $1^{\text {st }}$ block of all runs (R and S)
\square Get min value in Y
- Find corresponding records in other runs
- Join them
- In case too many records with the same Y
\square Apply block-nested-loop join in the remaining memory

Join Algorithms - SortJoin
 - Costs

\square Sorted runs: $2 \cdot(B(R)+B(S))$
\square Joining: $B(R)+B(S)$

- Limitations
\square Run length $=\mathrm{M}$, number of runs $<\mathrm{M}$
$\square \sqrt{B(R)+B(S)}<M$
- Example ($\mathrm{M}=102$)
\square Sorting: $2 \cdot(1000+500)$ Joining: $1000+500$
\square Total: 4500 read/write IOs
- \rightarrow better than cached block-based nested-loop join

Join Algorithms - HashJoin
 - R $\ltimes S \quad R(X, Y), S(Y, Z)$

Join Algorithms - HashJoin
 ■ R凶S $\quad R(X, Y), S(Y, Z)$

\square Define a hash function for attributes Y
\square Create hashed index of R and S

- Address space is $\mathrm{M}-1$ buckets
\square For each $\mathrm{i} \in[0, \mathrm{M}-2]$
- Read bucket i of R and S
- Find matching records and join them
- add to the output block

Join Algorithms - HashJoin

- Joining buckets
\square Read whole bucket of S ($\leq M-2$)
- Create an in-mem structure to speed up
\square Read bucket of R block by block

Join Algorithms - HashJoin

- Costs:
\square Create hashed index: $2 \cdot(\mathrm{~B}(\mathrm{R})+\mathrm{B}(\mathrm{S}))$
\square Bucket joining: $B(R)+B(S)$
- Limitations:
\square Size of each bucket of $S \leq \mathrm{M}-2$
- Estimate: $\min (B(R), B(S))<(M-1) .(M-2)$
- Example:
\square Hashing: 2.(1000+500)
\square Joining: 1000+500
\square Total: 4500 read/write IOs

Join Algorithms - HashJoin

- Minimum memory requirements
\square Hashing S; optimal bucket occupation
- Memory buffer: M blocks
- Bucket size = B(S) / (M-1)
\square This must be smaller than M (due to joining)
$\square \rightarrow\lceil B(S) /(M-1)\rceil \leq M-2$
$■ \approx M-1>\lceil\sqrt{B(S)}\rceil$

Join Algorithms - HashJoin

- Optimization
\square keep some buckets in memory
\square Hybrid HashJoin
- Bucketing of S - Optimal size
$\square \mathrm{B}(\mathrm{S})=500$
$\square \sqrt{B(S)} \approx 23$
\square i.e., each bucket is of 22 blocks
$\square \mathrm{M}=102$
- \rightarrow keep 3 buckets in memory (66 blocks)
- $\rightarrow 36$ blocks of memory to spare

Join Algorithm - Hybrid HashJoin

- Preprocessing S
\square Contents of memory buffer
Memory usage ($\mathrm{M}=102$):
S0-2 $3 * 22$ blocks

Other buckets 23-3 blocks Reading S 1 block

Join Algorithm - Hybrid HashJoin

- Structure of memory to hash R
$\square 1000 / 23=44$ blocks per bucket
\square Records hashed to bucket 0-2
- Join immediately with S_{0-2} buckets (in memory) \rightarrow output

memory

Join Algorithm - Hybrid HashJoin

- Joining buckets
\square Do for buckets S_{i} and R_{i} with $i=3-22$
\square Read one whole bucket in memory; read the other bucket block by block

Join Algorithm - Hybrid HashJoin

- Costs:
\square Bucketize S: $500+20 \cdot 22=940$ read/write IOs
\square Bucketize R: $1000+20 \cdot 44=1880$ read/write IOs
- Only 20 buckets to write!
\square Joining: $20 \cdot 44+20 \cdot 22=1320$ read IOs
- Three buckets are already done (during bucketizing R)
\square In total: 4140 read/write IOs

Join Algorithms

- Hybrid HashJoin
\square How many buckets to keep in memory?
- Empirically: 1 bucket
- Hashing record pointers
\square Organize pointers to records instead of records themselves
- Store pairs [key value, rec. pointer] in buckets
\square Joining
- If match, we must read the records

Join Algorithm - Hashing Pointers

- Example
$\square 100$ key-pointer pairs fit in one block
\square Estimate results size: 100 recs
\square Costs:
- Bucketize S in memory (500 IOs)
$\square 5000$ records $\rightarrow 5000 / 100$ blocks $=50$ blocks in memory
- Joining - read R gradually and join
\square If match, read full records of $S \rightarrow 100$ read IOs
- Total: $500+1000+100=1600$ read IOs

Join Algorithms - IndexJoin
 ■ R凶S $\quad R(X, Y), S(Y, Z)$
 - Assume:

\square Index on attributes Y of R

- Procedure:
\square For each record $s \in S$
\square Look up matches in index R.Y \rightarrow records A
- For each pointer $p_{r} \in A$, read r
- Output concatenation of r and s

Join Algorithms - IndexJoin

■ Example
\square Assume

- Index on Y of R: HT=2, LB=200
- Scenario 1
\square Index R.Y fits in memory
\square Costs:
- Pass of S: 500 read $\mathrm{IOs}(\mathrm{B}(\mathrm{S})=500, \mathrm{~T}(\mathrm{~S})=5000)$
- Searching in index: for free
\square If match, read record of $R \rightarrow 1$ read IO

Join Algorithms - IndexJoin

- Costs
\square Depends on the number of matches
\square Variants:
- A) Y in R is primary key; Y in S is foreign key
$\rightarrow 1$ record
Costs: $500+5000 \cdot 1 \cdot 1=5500$ read IOs
- B) $\mathrm{V}(\mathrm{R}, \mathrm{Y})=5000 \quad \mathrm{~T}(\mathrm{R})=10000$
uniform distribution $\rightarrow 2$ records
Costs: $500+5000 \cdot 2 \cdot 1=10500$ read IOs
- C) $\operatorname{DOM}(\mathrm{R}, \mathrm{Y})=1000000 \quad \mathrm{~T}(\mathrm{R})=10000$
$\rightarrow 10 \mathrm{k} / 1 \mathrm{~m}=1 / 100$ of record
Costs: $500+5000 \cdot(1 / 100) \cdot 1=550$ read IOs

Join Algorithms - IndexJoin

- Scenario 2
\square Index does not fit in memory
\square Index on R.Y is of 201 blocks
■ Keep root-node block and 99 leaf-node blocks in memory $\mathrm{M}=102$
\square Costs for searching
- $0 \cdot(99 / 200)+1 \cdot(101 / 200)=0.505$ read IOs per search (query)

Join Algorithms - IndexJoin

- Scenario 2
\square Costs
- $\mathrm{B}(\mathrm{S})+\mathrm{T}(\mathrm{S}) \cdot($ searching index + reading records)
\square Variants:
- A) $\rightarrow 1$ record

Costs: $500+5000 \cdot(0.5+1)=8000$ read IOs

- B) $\rightarrow 2$ records

Costs: $500+5000 \cdot(0.5+2)=13000$ read IOs

- C) $\rightarrow 1 / 100$ of record

Costs: $500+5000 \cdot(0.5+1 / 100)$
= 3050 read IOs

Join Algorithms - Summary

$R \bowtie S$
$B(R)=1000$
$B(S)=500$

Algorithm	Costs
Cached Block-based Nested-loop Join	5500
Merge Join (w/o sorting)	1500
Merge Join (with sorting)	7500
Sort Join	4500
Index Join (R.Y index)	$8000 \rightarrow 550$
Hash Join	4500
Hybrid	4140
Pointers	1600

Join Algorithms - Summary

$R \bowtie S \quad$ Assume $B(S)<B(R), \quad Y$ are common attributes

Algorithm	Costs	Limits
Block-based Nested-loop	$\mathrm{B}(\mathrm{S}) \cdot(1+\mathrm{B}(\mathrm{R})$)	$\mathrm{M}=3$
Cached version	$B(S) /(M-2) \cdot(M-2+B(R))$	$\mathrm{M} \geq 3$
Merge Join (w/o sorting)	$B(R)+B(S)$	$\mathrm{M}=3$
Merge Join (with sorting)	$5 \cdot(B(R)+B(S))$	$M=\sqrt{B(R)}$
Sort Join	$3 \cdot(B(R)+B(S))$	$M>\sqrt{B(R)+B(S)}$
Index Join (R.Y index) (max costs)	$\begin{aligned} & \mathrm{B}(\mathrm{~S})+\mathrm{T}(\mathrm{~S}) \cdot(\mathrm{HT}+\theta) \\ & \text { e.g. } \theta=\mathrm{T}(\mathrm{R}) / \mathrm{V}(\mathrm{R}, \mathrm{Y}) \end{aligned}$	min. $\mathrm{M}=4$
Hash Join	$3 \cdot(B(R)+B(S))$	$M=2+\sqrt{B(S)}$ max. M-1 buckets
Hybrid	$3(B(R)+B(S))-\frac{2(B(R)+B(S))}{\|\sqrt{B(R)}\|}$	$M=\frac{B(R)}{\mid \sqrt{B(R)}\rceil}+(\lceil\sqrt{B(R)}\rceil)+1$
Pointers	$\begin{aligned} & B(S)+B(R)+T(R) \cdot \theta \\ & \text { e.g. } \theta=T(S) / V(S, Y) \end{aligned}$	$\mathrm{M}=\mathrm{B}$ (hash index on S$)+3$

Join Algorithms - Recommendation

- Cached Block-based Nested-loop Join
\square Good for small relations (relative to memory size)
■ HashJoin
\square For equi-joins (equality on attributes only)
\square Relations are not sorted or no indexes
- SortJoin
\square Good for non-equi-joins, but not all theta-joins
\square E.g., R.Y > S.Y
- MergeJoin
\square Best if relations are already sorted
- IndexJoin
\square If an index exists, it could be useful
\square Depends on expected result size

Two-Pass Algorithms

- Using sorting
\square Duplicate Elimination
\square Aggregations (GROUP BY)
\square Set operations

Duplicate Elimination

- Procedure
\square Do $1^{\text {st }}$ phase of MergeSort
- \rightarrow sorted runs on disk
\square Read all runs block by block
- Find smallest record and output it
- Skip all duplicate records
- Properties
\square Costs: $3 B(R)$
\square Limitations: $B(R) \leq M^{*}(M-1)$
- Optimal $\mathrm{M} \geq \sqrt{B(R)}+1$

Aggregations

- Procedure (analogous to previous)
\square Sort runs of R (by group-by attributes)
\square Read all runs block by block
- Find smallest value \rightarrow new group
\square Compute all aggregates over all records of this group
\square No more record in this group \rightarrow output it
- Properties
\square Costs: $3 B(R)$
\square Limitations: $B(R) \leq M^{*}(M-1)$
- Optimal $\mathrm{M} \geq \sqrt{B(R)}+1$

Set union

- Notice: No two-pass algo for bag union - Set union
\square Do $1^{\text {st }}$ phase of MergeSort on R and S
$\bullet \rightarrow$ sorted runs on disk
\square Read all runs (both R and S) gradually
- Find the first remaining record and output it
- Skip all duplicates of this record (in R and S)
- Properties
\square Costs: $3(B(R)+B(S))$
\square Limitations: $\sqrt{B(R)+B(S)}<M$
- Need one block per all runs (of R and also S)

Set/bag intersection and difference

- R $\cap \mathrm{S}, \mathrm{R}-\mathrm{S}, \mathrm{R} \cap_{\mathrm{B}} \mathrm{S}, \mathrm{R}-\mathrm{B} \mathrm{S}$
- Procedure
\square Do $1^{\text {st }}$ phase of MergeSort on R and S
\square Read all runs (both R and S) gradually
- Find the first remaining record t
- Count t's occurrences in R and S (separately)
$\square \#_{\mathrm{R}}, \#_{\mathrm{S}}$
- Make a decision w.r.t. the specific operation
\square and copy selected records to output

Set/bag intersection and difference

- On copy to output:
$\square \mathrm{R} \cap \mathrm{S}$: output t,
- if $\#_{R}>0 \wedge \#_{S}>0$
$\square \mathrm{R} \cap_{\mathrm{B}} \mathrm{S}$: output $t \min \left(\#_{\mathrm{R}}, \#_{\mathrm{S}}\right)$-times
$\square \mathrm{R}$-S: output t,
- if $\#_{R}>0 \wedge \#_{S}=0$
$\square \mathrm{R}_{-\mathrm{B}} \mathrm{S}$: output $t \max \left(\#_{\mathrm{R}}-\#_{\mathrm{S}}, 0\right)$-times
- Properties
\square Costs: $3(B(R)+B(S))$
\square Limitations: $\sqrt{B(R)+B(S)}<M$
- Need one block per all runs (of R and also S) and 1 output block

Two-Pass Algorithms

- Using hashing
\square Duplicate Elimination
\square Aggregations (GROUP BY)
\square Set operations

Duplicate Elimination

- Procedure
\square Bucketize R into $\mathrm{M}-1$ buckets
- \rightarrow store buckets on disk
\square For each bucket
- Read it in memory and remove duplicates; output remaining records
\square bucket size is max. M-1 blocks
- Properties
\square Costs: $3 B(R)$
\square Limitations: $B(R) \leq(M-1)^{2}$

Aggregations

- Procedure (analogous to previous)
\square Bucketize R into M-1 buckets by group-by attrs.
- \rightarrow store buckets on disk
\square For each bucket
- Read block by block in memory and
- Create groups for new values and compute aggregates
\square Limit on bucket size is not defined. But groups and partial aggregates must fit in max. $\mathrm{M}-1$ blocks.
- Output results
- Properties
\square Costs: $3 B(R)$
\square Limitations: $B(R) \leq(M-1)^{2}$

It can be relaxed, since we store just the aggregates in RAM.

Set union, intersection, difference

- Procedure
\square Bucketize R and S (the same hash function) - into M-1 buckets
\square Process the pair of buckets R_{i} and S_{i}
- Read one in memory (depends on operation)
\square bucket size: max. M-2
- Read the other gradually
- Properties
\square Costs: $3(B(R)+B(S))$
\square Limitations on M depends on the operation

Set intersection, difference

- Intersection (smaller relation is S)
\square Load the bucket of S in mem
\square Restrictions: $\min (B(R), B(S)) \leq(M-2)^{*}(M-1)$
- Difference R-S:
\square To eliminate duplicates in R , read bucket of R into mem
\square Restrictions: $B(R) \leq(M-2)^{*}(M-1)$
- Difference S-R:
\square Load the bucket of S in mem
\square Restrictions: $B(S) \leq(M-2)^{*}(M-1)$

Set Union

- Must eliminate duplicates in R and S
- for each i in hash addresses:
- read $\mathrm{Bkt}_{\mathrm{i}}$, build in-mem hash table \& eliminate dups
\square also output the unique records gradually
- read $B k t^{R}$ gradually:
\square for each r in $\mathrm{Bkt}_{\mathrm{i}}$:
- if r not in in-mem hash table
- output r and add to in-mem hash table
- Restrictions: $\sqrt{B(R)}+\sqrt{B(S)}<M$
\square Need to load both the buckets (at worst) into M

Summary

- Operations
\square distinct, group by, set operations, joins
- Algorithm type
\square one-pass, one-and-a-half pass, two-pass
- Implementation
\square Sorting
\square Hashing
\square Exploiting indexes
- Costs
\square blocks to read/write
\square memory footprint

Lecture Takeaways

- Estimated sizes influence the choice of implementation
- Influence of algorithm implementation on costs
- If more mem is needed (estimation was wrong)
$\square \mathrm{It}$ is allocated, and the operation is not terminated.
- Also, tiny code changes count!

