
PA152: Efficient Use of DB

10. Failure Recovery

Vlastislav Dohnal



Contents
◼ Overview of integrity

◼ Transactions

◼ Logging in DBMS

PA152, Vlastislav Dohnal, FI MUNI, 2024 2



PA152, Vlastislav Dohnal, FI MUNI, 2024 3

Integrity or correctness of data

◼ Would like data to be “accurate” or

“correct” at all times

Name

Newman
Altman

Freeman

Age

52
3421

1

Employee



PA152, Vlastislav Dohnal, FI MUNI, 2024 4

Integrity or correctness of data 
◼ Integrity constraints

Main approach to consistency of DB

Predicates that data must satisfy

◼ Examples:

Domain(x) = {red, blue, green}

x is a key of relation R

A valid value for attribute x of R (foreign key)

Functional dependency: x → y



PA152, Vlastislav Dohnal, FI MUNI, 2024 5

Integrity or correctness of data 

◼ Consistent state

satisfies all constraints

◼ Consistent DB

DB in consistent state



PA152, Vlastislav Dohnal, FI MUNI, 2024 6

Limits of integrity constraints

◼ May not capture “full correctness”

◼ Examples: (Transaction constraints)

No employee should make more than twice 

the average salary.

Student scholarship may not exceed 30k per 

month in total.

When a bank account is deleted, balance = 0



PA152, Vlastislav Dohnal, FI MUNI, 2024 7

Limits of integrity constraints

◼ Some could be “emulated” by simple 

constraints

Deletion of account replaced with deletion flag

acc.no. … balance deletedaccount



PA152, Vlastislav Dohnal, FI MUNI, 2024 8

Limits of integrity constraints

◼ Database should reflect real world.

◼ Continue with constraints 

even though some part of “reality” cannot be 

defined as constraint or DB does not mirror reality

◼ Observation

DB cannot always be consistent.

DB Reality



PA152, Vlastislav Dohnal, FI MUNI, 2024 9

Example of inconsistent state

◼ Constraint example:

a1 + a2 +…. an = TOT

◼ Depositing 100 CZK to account a2

a2  a2 + 100

TOT  TOT + 100

.

.

50

.

.

1000

.

.

150

.

.

1000

.

.

150

.

.

1100

a2

TOT



PA152, Vlastislav Dohnal, FI MUNI, 2024 10

Solving inconsistencies

◼ Transaction

Collection of actions (updating data) that 

preserve consistency

◼ the actions are ordered – it’s a sequence.

Consistent

DB

Consistent

DB’
T



PA152, Vlastislav Dohnal, FI MUNI, 2024 11

Transaction Processing

◼ Assumption

 If T starts with consistent state and T 

executes in isolation 

→ T leaves DB in a consistent state

◼ Correctness 

 If we finish running transactions, DB is left 

consistent

Each transaction sees a consistent DB



PA152, Vlastislav Dohnal, FI MUNI, 2024 12

Consistency Violation

◼ Possible causes:

Transaction bug

DBMS bug

Hardware failure

◼ E.g., a disk crash during storing updates to accounts

Data sharing

◼ E.g.,  T1: give 10% raise to programmers

         T2: change programmers → systems 

analysts



PA152, Vlastislav Dohnal, FI MUNI, 2024 13

Prevent Consistency Violations

◼ Failure model

 Identify possible risks

Handle individual component failures

CPU

M Dmemory

processor

disk

bus



PA152, Vlastislav Dohnal, FI MUNI, 2024 14

Prevent Consistency Violations

◼ Failure model

Categorize risks

Events Desired

Undesired Expected

Unexpected



PA152, Vlastislav Dohnal, FI MUNI, 2024 15

Prevent Consistency Violations
◼ Events

Desired 
◼ See product manuals… ☺

Undesired expected 
◼ Memory lost

◼ CPU halts, resets

◼ Forcible shutdown

Undesired Unexpected (Everything else)
◼ Disk data is lost

◼ Memory lost without CPU halt

◼ Disaster – fire, flooding, …



PA152, Vlastislav Dohnal, FI MUNI, 2024 16

Failure Model

◼ Approach:

Add low-level checks

Redundancy to increase probability model 

holds

◼ E.g.,

Replicate disk storage (stable store, RAID)

Memory parity, ECC

CPU checks



PA152, Vlastislav Dohnal, FI MUNI, 2024 17

Failure Model

◼ Focusing on memory and disk drive

◼ Key problem

Unfinished transactions

E.g.,

Memory

x x

Disk

Constraint: A=B
Transaction T1: A  A  2
   B  B  2



PA152, Vlastislav Dohnal, FI MUNI, 2024 18

Transaction

◼ Elementary operations

 Input (x): block containing x → memory

Read (x,t): a. Input(x), if necessary, 

   b. t := value of x in block

Write (x,t): a. Input(x), if necessary, 

b. value of x in block := t

Output (x): block containing x → disk



PA152, Vlastislav Dohnal, FI MUNI, 2024 19

Example: Transaction T1

T1: Read (A,t);  
 t  t  2;

Write (A,t);
Read (B,t);

 t  t  2;
Write (B,t);
Output (A);
Output (B);

A: 8
B: 8

memory

disk

16

A: 8
B: 8

16
Failure!

16



PA152, Vlastislav Dohnal, FI MUNI, 2024 20

Transaction

◼ Atomicity

Solution to unfinished transactions

Execute all actions of a transaction 

or none at all

◼ How to implement atomicity?

Log changes done to data

◼ i.e., create a journal (file with records about 

changes)



PA152, Vlastislav Dohnal, FI MUNI, 2024 21

Logging

◼ Transaction produces records of changes 

into journal

Start, End, Output, Write, …

◼ Uses:

System failure→ redo/undo changes following 

the journal

Recovery from backup → redo changes 

following the journal



PA152, Vlastislav Dohnal, FI MUNI, 2024 22

Logging

◼ During recovery after system failure

Some transactions are done again

◼ REDO

Some transactions are aborted

◼ UNDO



PA152, Vlastislav Dohnal, FI MUNI, 2024 23

Undo logging

◼ Property

Changes done in transaction are immediately 

propagated to disk

Original (previous) value is logged.

◼ If not sure (100%) about storing of 

changes done during finished transaction

Undo the changes in the data from journal

◼ i.e., recover last consistent DB

→ Transaction has not ever been executed



PA152, Vlastislav Dohnal, FI MUNI, 2024 24

Undo logging: Transaction T1

Read (A,t);  
t  t  2;
Write (A,t);
Read (B,t);
t  t  2;
Write (B,t);
Output (A);
Output (B);

A: 8
B: 8

memory

disk

A: 8
B: 8

16

journal

<T1, commit>
<T1, B, 8>
<T1, A, 8>

<T1, start>

16

16

16

T1:

Remark: requiring validity of A=B



PA152, Vlastislav Dohnal, FI MUNI, 2024 25

Undo logging

◼ Inconvenience

Logging uses buffer manager too → 

accumulated in memory, stored to disk later.

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>

A: 8
B: 8

16
Error
# 1

memory disk

journal



PA152, Vlastislav Dohnal, FI MUNI, 2024 26

Undo logging

◼ Inconvenience

Logging uses a buffer manager too → 

accumulated in memory, stored to disk later.

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>
<T1, commit>

A: 8
B: 8

16
Error
# 2

memory disk

journal

<T1, B, 8>
<T1, commit>

..
.



PA152, Vlastislav Dohnal, FI MUNI, 2024 27

Undo logging

◼ Rules

1. For every action write(X,t), generate undo log 

record containing old value of X

2. Before X is modified on disk (output(X)), log 

records pertaining to X must be on disk

▪ i.e., write-ahead logging (WAL)

3. Before commit is flushed to log, all writes of 

transaction must be reflected on disk.



PA152, Vlastislav Dohnal, FI MUNI, 2024 28

Undo logging – recovery after failure

◼ For every Ti with <Ti, start> in journal:

 If <Ti, commit> or <Ti, abort> is in log,

do nothing

Else for every <Ti, X, v> in journal:

◼ write(X, v)

◼ output(X)

◼ write <Ti, abort> to journal

Is it correct?



PA152, Vlastislav Dohnal, FI MUNI, 2024 29

Undo logging – recovery after failure

1. S = set of transactions

 with <Ti, start> in log, 

 but no <Ti, commit> or <Ti, abort> in log

2. For each <Ti, X, v> in log

 in the reverse order do

(latest → earliest)

 If Ti  S, then write(X, v) and output (X)

3. For each Ti  S

 write <Ti, abort> to log 

◼ after successful writing, all output(X) to disk



PA152, Vlastislav Dohnal, FI MUNI, 2024 30

Undo logging – recovery after failure

◼ Failure during recovery

No problem

◼ UNDO can be done repeatedly (is idempotent)

◼ Done for unfinished transactions



PA152, Vlastislav Dohnal, FI MUNI, 2024 31

Redo logging
◼ Properties

Logging of new (updated) values

Changes done by transaction are stored later
◼→ after transaction’s commit

◼ i.e., requires storing log records before any change 
is done to DB.

◼ May save some intermediate writes to disk.

Unfinished transactions are skipped during 
recovery



PA152, Vlastislav Dohnal, FI MUNI, 2024 32

Redo logging: Transaction T1

Read (A,t);  
t  t  2;
Write (A,t);
Read (B,t);
t  t  2;
Write (B,t);
Output (A);
Output (B);

A: 8
B: 8

memory

disk

A: 8
B: 8

16

journal

<T1, commit>
<T1, B, 16>
<T1, A, 16>

<T1, start>

16

16

16

T1:

<T1, end>



PA152, Vlastislav Dohnal, FI MUNI, 2024 33

Redo logging

◼ Rules

1. For every action write(X,t), generate log 

record containing a new value of X

2. Before X is modified on disk (in DB) 

(output(X)), all log records that modified X 

(including commit) must be on disk.

3. For transaction modifying X

1. Flush log records to disk

2. Write updated blocks to disk

3. Write end to journal



PA152, Vlastislav Dohnal, FI MUNI, 2024 34

Redo logging – recovery after failure

◼ For every Ti with <Ti, commit> in log, do:

For all <Ti, X, v> in log:

◼ write(X, v)

◼ output(X)

Is it correct?



PA152, Vlastislav Dohnal, FI MUNI, 2024 35

Redo logging – recovery after failure

1. S = set of transactions

 with <Ti, commit > in log, 

 but no <Ti, end>

2. For each <Ti, X, v> in log

 Do in forward order

(earliest → latest)

 If Ti  S, then write(X, v) and output (X)

3. For each Ti  S

 write <Ti, end> to log



Combining <Ti, end> Records
◼ Want to delay DB flushes for hot objects

PA152, Vlastislav Dohnal, FI MUNI, 2024 36

Say X is branch balance:
T1: ... update X...
T2: ... update X...
T3: ... update X...
T4: ... update X...

Log actions:
write X, v1

output X
write X , v2

output X
write X , v3

output X
write X , v4

output X

combined <end>



PA152, Vlastislav Dohnal, FI MUNI, 2024 37

Redo logging – recovery after failure

◼ Storing changes by output(X)

 If there are more transactions changing X, 

 then output(X) can be done for the last log 

record <Ti, X, v> only

end can also be combined for multiple 

transactions



PA152, Vlastislav Dohnal, FI MUNI, 2024 38

Redo logging – recovery after failure

◼ Recovery is very slow

 if end(T) is not used (or delayed…)

... ... ...

Failure

First record
(1 year ago)

T1 updates A,B
Committed 1 year ago
→ STILL needed for recovery!

Last record

Transaction Journal:

Does DB know what transactions are active here?



PA152, Vlastislav Dohnal, FI MUNI, 2024 39

Logging – recovery after failure

◼ Solution to slowness

→ checkpoints

◼ Periodically do:

1. Do not accept new transactions

2. Wait until all transactions finish

3. Flush all log records to disk (log)

4. Flush all buffers to disk (DB)

5. Write “checkpoint” record on disk (log)

6. Resume transaction processing



PA152, Vlastislav Dohnal, FI MUNI, 2024 40

Logging – recovery after failure

◼ Procedure during recovery

Locate last checkpoint

Start recovery from this place

◼ Example for redo logging

<
T
1
,A

,1
6
>

<
T
1
,c

o
m

m
it
>

C
h

e
c
k

p
o

in
t

<
T
2
,B

,1
7
>

<
T
2
,c

o
m

m
it
>

<
T
3
,C

,2
1
>

... ... ... ... ... ...



PA152, Vlastislav Dohnal, FI MUNI, 2024 41

Logging
◼ Key drawbacks

Writes to disk are controlled by logging rules 
and not be accesses to data.

Undo logging
◼ cannot bring backup DB copies up to date

Redo logging
◼ need to keep all modified blocks in memory until 

commit

◼ Solution: Undo/Redo logging

Log record contains old and new value of X: 
<Ti, x, new X val, old X val>



PA152, Vlastislav Dohnal, FI MUNI, 2024 42

Undo/Redo logging
◼ Rules

 Page X can be flushed before or after Ti ‘s commit

 Log record flushed before corresponding updated 

page (WAL)

 Flush log records at commit

◼ Recovery

 Finished (committed) transactions are re-done from 

beginning

 Unfinished transactions are rolled back (un-done) 

from end



PA152, Vlastislav Dohnal, FI MUNI, 2024 43

Undo/Redo logging – recovery

◼ Example of undo/redo log:
<

c
h

e
c
k

p
o

in
t>

<
T
1
, 
A
, 
1
1
, 
1
0
>

<
T
1
, 
B
, 
2
1
, 
2
0
>

<
T
1
, 
co

m
m

it
>

<
T
2
, 
C
, 
3
1
,
3
0
>

<
T
2
, 
D

, 
4
1
,
4
0
>

... ... ... ... ... ...



PA152, Vlastislav Dohnal, FI MUNI, 2024 44

Checkpoints

◼ Simple checkpoint

No transaction can be active during creating 

checkpoint

Transaction throughput considerably lowered!

◼ Solution

Non-quiescent Checkpoint

◼ Register active transactions

◼ UNDO/REDO logging:

 all modified pages (blocks) are flushed to disk



PA152, Vlastislav Dohnal, FI MUNI, 2024 45

Non-quiescent Checkpoint

◼ Store start and end of checkpoint

Start-ckpt
active TR:
T1,T2,...

End
ckpt

.........Log

Dirty buffer pages flushed
(all, i.e., finished & active (unfinished) ones)

Pointers to 
beginnings of 
transactions



PA152, Vlastislav Dohnal, FI MUNI, 2024 46

Non-quiescent Checkpoint

◼ Recovery 1

◼ T1 has not been committed → Undo T1

(undo changes to b, a)

T1

a
...

Start-ckpt

T1
...

End 
ckpt

...
T1

b
...



◼ Recovery 2

◼ T1 has been committed → Redo T1

(redo b,c)

PA152, Vlastislav Dohnal, FI MUNI, 2024 47

...
T1

a
... ...

T1

b
... ...

T1

c
...

T1

cmt
...

ckpt-
end

ckpt-s

T1

Non-quiescent Checkpoint



PA152, Vlastislav Dohnal, FI MUNI, 2024 48

...
ckpt
start

... ...
T1

b
... ...

T1

c
...

ckpt-
start

ckpt
end

Non-quiescent Checkpoint
◼ Recovery 3

◼ Unfinished checkpoint
→ Locate last finished checkpoint

Start undo/redo of transactions



PA152, Vlastislav Dohnal, FI MUNI, 2024 49

Recovery process
◼ Backwards pass

(end of log → latest valid checkpoint start)

1. construct set S of committed transactions

2. undo actions of transactions not in S

◼ Remark: Undo pending transactions
 Follow undo chains for transactions in checkpoint 

active list

◼ Forward pass
(latest checkpoint start → end of log)

 redo actions of S transactions (without end)

backward pass

forward pass
start

check-
point



PA152, Vlastislav Dohnal, FI MUNI, 2024 50

Real world transaction
◼ Withdraw cash from ATM

 Info about bank accounts

HW of ATM

◼ Implementation

Transaction in DB

Dispense money

◼ Procedure

Do DB transaction, money dispensing after 
commit.

Dispensing should be made idempotent.



PA152, Vlastislav Dohnal, FI MUNI, 2024 51

Real world transaction

◼ After DB transaction, a “signal“ for money 

dispensing is sent

$

give(amount)

lastTid:

time:Give$$(amount, Tid, time)



PA152, Vlastislav Dohnal, FI MUNI, 2024 53

Media Failure

◼RAID

◼Make copies of data

E.g., 

◼Keep 3 copies

◼Output(X) 

→ three outputs

◼ Input(X) 

→ three inputs + voting

X1 X2 X3



PA152, Vlastislav Dohnal, FI MUNI, 2024 54

Media Failure

◼Make copies of data

Other solution

◼Keep 3 copies

◼Output(X) 

→ three outputs

◼ Input(X) 

→ read from first (if ok, continue)

→ read from second, …

◼Assumption

bad data can be detected

X1 X2 X3



PA152, Vlastislav Dohnal, FI MUNI, 2024 55

Media Failure
◼ DB backup (dump)

Recover DB backup

Apply log

◼ Use redo entries of each transaction not finished at 

the backup time

backup
DB

active
DB

log



PA152, Vlastislav Dohnal, FI MUNI, 2024 56

Discarding Log

◼ When can log be discarded?

 In case of UNDO/REDO logging

not needed for
media recovery

not needed for undo
after system failure

not needed for
redo after system failure

time

check-
point

db
dump

last
needed
undo

log

ch
e
ck

-p
o
in

t

ch
e
ck

-p
o
in

t



PA152, Vlastislav Dohnal, FI MUNI, 2024 57

LOG DATADATADATA

STABLE STORAGE

UNSTABLE STORAGE

WRITE 

log records before commit

WRITE 

modified pages after commit

RECOVERY

Pi Pj

DATABASE BUFFER
LOG BUFFER

lri lrj



PA152, Vlastislav Dohnal, FI MUNI, 2024 58

Logging in SQLServer 2000

Free

Log caches

Flush

Log caches

Current

Log caches

Flush

Log caches

db

writer

Flush queue

Waiting 

processes

LOG DATA

free Bi free Bj

Log entries:

- LSN

- before and after images or 

logical log

Lazy-

writer

Synchronous I/O Asynchronous I/O

DATABASE BUFFER

DB2 v7 uses similar schema



PA152, Vlastislav Dohnal, FI MUNI, 2024 59

Logging in Oracle 8i

Rollback segments

(fixed size)

After images

(redo entries)

Log buffer (default 32 Kb)

Bi Bj

Free list

DATABASE BUFFER

LOG
DATA

Rollback

Segments
Log File

#1
Log File

#2

Log Writer
Database  

Writer

Before images



PA152, Vlastislav Dohnal, FI MUNI, 2024 60

Storing Log

◼ On dedicated disk

◼ Log records are stored sequentially

◼ Sequential writes are much faster than 

random ones (on a magnetic disk)

Disk for logging should not store any other data
+ sequential I/O
+ loss of log is not dependent on loss of DB



PA152, Vlastislav Dohnal, FI MUNI, 2024 61

Storing Log

0

50

100

150

200

250

300

350

controller cache no controller cache
T

h
ro

u
g

h
p

u
t 

(t
u

p
le

s
/s

e
c
) Log on same disk

Log on separate disk 

300 000 transactions

Each transaction = 1x INSERT

DB2 v7.1 server
5% improvement when log
stored on dedicated disk

Controller Cache diminishes negative impact of non-dedicated disk
HW: middle server, Adaptec RAID controller (80Mb RAM), 2x18Gb disk.



PA152, Vlastislav Dohnal, FI MUNI, 2024 62

Flushing Buffers

◼ Flushing dirty page

When a threshold of modified pages is 

reached (Oracle 8)

When the ratio of free pages drops below a 

threshold (less than 3% in SQLServer 7)

After checkpoint

Periodically



PA152, Vlastislav Dohnal, FI MUNI, 2024 63

Creating Checkpoints

0

0.2

0.4

0.6

0.8

1

1.2

0 checkpoint 4 checkpoints

T
h

ro
u

g
h

p
u

t 
R

a
ti

o

Performance influence (decreased throughput)
Reduces size of log
Shortens time to recover after failure

300 000 transactions

Each transaction = one INSERT command

Oracle 8i, Windows 2000



PA152, Vlastislav Dohnal, FI MUNI, 2024 64

Lecture Takeaways

◼ Data consistency

One source of problems: failures

◼ Solutions: (i) logging; (ii) redundancy

Another source of problems: data sharing

◼ Solution: (i) Locking data during transactions

▪ Not done in this course…

◼ Logging

Know principles and limitations

Understand checkpoints

Be able to do recovery


	Snímek 1: PA152: Efficient Use of DB 10. Failure Recovery
	Snímek 2: Contents
	Snímek 3: Integrity or correctness of data
	Snímek 4: Integrity or correctness of data 
	Snímek 5: Integrity or correctness of data 
	Snímek 6: Limits of integrity constraints
	Snímek 7: Limits of integrity constraints
	Snímek 8: Limits of integrity constraints
	Snímek 9: Example of inconsistent state
	Snímek 10: Solving inconsistencies
	Snímek 11: Transaction Processing
	Snímek 12: Consistency Violation
	Snímek 13: Prevent Consistency Violations
	Snímek 14: Prevent Consistency Violations
	Snímek 15: Prevent Consistency Violations
	Snímek 16: Failure Model
	Snímek 17: Failure Model
	Snímek 18: Transaction
	Snímek 19: Example: Transaction T1
	Snímek 20: Transaction
	Snímek 21: Logging
	Snímek 22: Logging
	Snímek 23: Undo logging
	Snímek 24: Undo logging: Transaction T1
	Snímek 25: Undo logging
	Snímek 26: Undo logging
	Snímek 27: Undo logging
	Snímek 28: Undo logging – recovery after failure
	Snímek 29: Undo logging – recovery after failure
	Snímek 30: Undo logging – recovery after failure
	Snímek 31: Redo logging
	Snímek 32: Redo logging: Transaction T1
	Snímek 33: Redo logging
	Snímek 34: Redo logging – recovery after failure
	Snímek 35: Redo logging – recovery after failure
	Snímek 36: Combining <Ti, end> Records
	Snímek 37: Redo logging – recovery after failure
	Snímek 38: Redo logging – recovery after failure
	Snímek 39: Logging – recovery after failure
	Snímek 40: Logging – recovery after failure
	Snímek 41: Logging
	Snímek 42: Undo/Redo logging
	Snímek 43: Undo/Redo logging – recovery
	Snímek 44: Checkpoints
	Snímek 45: Non-quiescent Checkpoint
	Snímek 46: Non-quiescent Checkpoint
	Snímek 47: Non-quiescent Checkpoint
	Snímek 48: Non-quiescent Checkpoint
	Snímek 49: Recovery process
	Snímek 50: Real world transaction
	Snímek 51: Real world transaction
	Snímek 53: Media Failure
	Snímek 54: Media Failure
	Snímek 55: Media Failure
	Snímek 56: Discarding Log
	Snímek 57
	Snímek 58: Logging in SQLServer 2000
	Snímek 59: Logging in Oracle 8i
	Snímek 60: Storing Log
	Snímek 61: Storing Log
	Snímek 62: Flushing Buffers
	Snímek 63: Creating Checkpoints
	Snímek 64: Lecture Takeaways

