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Integrity or correctness of data

◼ Would like data to be “accurate” or

“correct” at all times

Name

Newman
Altman

Freeman

Age

52
3421

1

Employee
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Integrity or correctness of data 
◼ Integrity constraints

Main approach to consistency of DB

Predicates that data must satisfy

◼ Examples:

Domain(x) = {red, blue, green}

x is a key of relation R

A valid value for attribute x of R (foreign key)

Functional dependency: x → y



PA152, Vlastislav Dohnal, FI MUNI, 2024 5

Integrity or correctness of data 

◼ Consistent state

satisfies all constraints

◼ Consistent DB

DB in consistent state
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Limits of integrity constraints

◼ May not capture “full correctness”

◼ Examples: (Transaction constraints)

No employee should make more than twice 

the average salary.

Student scholarship may not exceed 30k per 

month in total.

When a bank account is deleted, balance = 0
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Limits of integrity constraints

◼ Some could be “emulated” by simple 

constraints

Deletion of account replaced with deletion flag

acc.no. … balance deletedaccount
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Limits of integrity constraints

◼ Database should reflect real world.

◼ Continue with constraints 

even though some part of “reality” cannot be 

defined as constraint or DB does not mirror reality

◼ Observation

DB cannot always be consistent.

DB Reality
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Example of inconsistent state

◼ Constraint example:

a1 + a2 +…. an = TOT

◼ Depositing 100 CZK to account a2

a2  a2 + 100

TOT  TOT + 100

.

.

50

.

.

1000

.

.

150

.

.

1000

.

.

150

.

.

1100

a2

TOT
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Solving inconsistencies

◼ Transaction

Collection of actions (updating data) that 

preserve consistency

◼ the actions are ordered – it’s a sequence.

Consistent

DB

Consistent

DB’
T
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Transaction Processing

◼ Assumption

 If T starts with consistent state and T 

executes in isolation 

→ T leaves DB in a consistent state

◼ Correctness 

 If we finish running transactions, DB is left 

consistent

Each transaction sees a consistent DB
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Consistency Violation

◼ Possible causes:

Transaction bug

DBMS bug

Hardware failure

◼ E.g., a disk crash during storing updates to accounts

Data sharing

◼ E.g.,  T1: give 10% raise to programmers

         T2: change programmers → systems 

analysts
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Prevent Consistency Violations

◼ Failure model

 Identify possible risks

Handle individual component failures

CPU

M Dmemory

processor

disk

bus
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Prevent Consistency Violations

◼ Failure model

Categorize risks

Events Desired

Undesired Expected

Unexpected
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Prevent Consistency Violations
◼ Events

Desired 
◼ See product manuals… ☺

Undesired expected 
◼ Memory lost

◼ CPU halts, resets

◼ Forcible shutdown

Undesired Unexpected (Everything else)
◼ Disk data is lost

◼ Memory lost without CPU halt

◼ Disaster – fire, flooding, …
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Failure Model

◼ Approach:

Add low-level checks

Redundancy to increase probability model 

holds

◼ E.g.,

Replicate disk storage (stable store, RAID)

Memory parity, ECC

CPU checks
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Failure Model

◼ Focusing on memory and disk drive

◼ Key problem

Unfinished transactions

E.g.,

Memory

x x

Disk

Constraint: A=B
Transaction T1: A  A  2
   B  B  2
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Transaction

◼ Elementary operations

 Input (x): block containing x → memory

Read (x,t): a. Input(x), if necessary, 

   b. t := value of x in block

Write (x,t): a. Input(x), if necessary, 

b. value of x in block := t

Output (x): block containing x → disk
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Example: Transaction T1

T1: Read (A,t);  
 t  t  2;

Write (A,t);
Read (B,t);

 t  t  2;
Write (B,t);
Output (A);
Output (B);

A: 8
B: 8

memory

disk

16

A: 8
B: 8

16
Failure!

16
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Transaction

◼ Atomicity

Solution to unfinished transactions

Execute all actions of a transaction 

or none at all

◼ How to implement atomicity?

Log changes done to data

◼ i.e., create a journal (file with records about 

changes)
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Logging

◼ Transaction produces records of changes 

into journal

Start, End, Output, Write, …

◼ Uses:

System failure→ redo/undo changes following 

the journal

Recovery from backup → redo changes 

following the journal
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Logging

◼ During recovery after system failure

Some transactions are done again

◼ REDO

Some transactions are aborted

◼ UNDO
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Undo logging

◼ Property

Changes done in transaction are immediately 

propagated to disk

Original (previous) value is logged.

◼ If not sure (100%) about storing of 

changes done during finished transaction

Undo the changes in the data from journal

◼ i.e., recover last consistent DB

→ Transaction has not ever been executed
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Undo logging: Transaction T1

Read (A,t);  
t  t  2;
Write (A,t);
Read (B,t);
t  t  2;
Write (B,t);
Output (A);
Output (B);

A: 8
B: 8

memory

disk

A: 8
B: 8

16

journal

<T1, commit>
<T1, B, 8>
<T1, A, 8>

<T1, start>

16

16

16

T1:

Remark: requiring validity of A=B
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Undo logging

◼ Inconvenience

Logging uses buffer manager too → 

accumulated in memory, stored to disk later.

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>

A: 8
B: 8

16
Error
# 1

memory disk

journal
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Undo logging

◼ Inconvenience

Logging uses a buffer manager too → 

accumulated in memory, stored to disk later.

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>
<T1, commit>

A: 8
B: 8

16
Error
# 2

memory disk

journal

<T1, B, 8>
<T1, commit>

..
.
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Undo logging

◼ Rules

1. For every action write(X,t), generate undo log 

record containing old value of X

2. Before X is modified on disk (output(X)), log 

records pertaining to X must be on disk

▪ i.e., write-ahead logging (WAL)

3. Before commit is flushed to log, all writes of 

transaction must be reflected on disk.
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Undo logging – recovery after failure

◼ For every Ti with <Ti, start> in journal:

 If <Ti, commit> or <Ti, abort> is in log,

do nothing

Else for every <Ti, X, v> in journal:

◼ write(X, v)

◼ output(X)

◼ write <Ti, abort> to journal

Is it correct?
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Undo logging – recovery after failure

1. S = set of transactions

 with <Ti, start> in log, 

 but no <Ti, commit> or <Ti, abort> in log

2. For each <Ti, X, v> in log

 in the reverse order do

(latest → earliest)

 If Ti  S, then write(X, v) and output (X)

3. For each Ti  S

 write <Ti, abort> to log 

◼ after successful writing, all output(X) to disk
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Undo logging – recovery after failure

◼ Failure during recovery

No problem

◼ UNDO can be done repeatedly (is idempotent)

◼ Done for unfinished transactions
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Redo logging
◼ Properties

Logging of new (updated) values

Changes done by transaction are stored later
◼→ after transaction’s commit

◼ i.e., requires storing log records before any change 
is done to DB.

◼ May save some intermediate writes to disk.

Unfinished transactions are skipped during 
recovery
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Redo logging: Transaction T1

Read (A,t);  
t  t  2;
Write (A,t);
Read (B,t);
t  t  2;
Write (B,t);
Output (A);
Output (B);

A: 8
B: 8

memory

disk

A: 8
B: 8

16

journal

<T1, commit>
<T1, B, 16>
<T1, A, 16>

<T1, start>

16

16

16

T1:

<T1, end>
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Redo logging

◼ Rules

1. For every action write(X,t), generate log 

record containing a new value of X

2. Before X is modified on disk (in DB) 

(output(X)), all log records that modified X 

(including commit) must be on disk.

3. For transaction modifying X

1. Flush log records to disk

2. Write updated blocks to disk

3. Write end to journal
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Redo logging – recovery after failure

◼ For every Ti with <Ti, commit> in log, do:

For all <Ti, X, v> in log:

◼ write(X, v)

◼ output(X)

Is it correct?
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Redo logging – recovery after failure

1. S = set of transactions

 with <Ti, commit > in log, 

 but no <Ti, end>

2. For each <Ti, X, v> in log

 Do in forward order

(earliest → latest)

 If Ti  S, then write(X, v) and output (X)

3. For each Ti  S

 write <Ti, end> to log



Combining <Ti, end> Records
◼ Want to delay DB flushes for hot objects
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Say X is branch balance:
T1: ... update X...
T2: ... update X...
T3: ... update X...
T4: ... update X...

Log actions:
write X, v1

output X
write X , v2

output X
write X , v3

output X
write X , v4

output X

combined <end>
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Redo logging – recovery after failure

◼ Storing changes by output(X)

 If there are more transactions changing X, 

 then output(X) can be done for the last log 

record <Ti, X, v> only

end can also be combined for multiple 

transactions
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Redo logging – recovery after failure

◼ Recovery is very slow

 if end(T) is not used (or delayed…)

... ... ...

Failure

First record
(1 year ago)

T1 updates A,B
Committed 1 year ago
→ STILL needed for recovery!

Last record

Transaction Journal:

Does DB know what transactions are active here?
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Logging – recovery after failure

◼ Solution to slowness

→ checkpoints

◼ Periodically do:

1. Do not accept new transactions

2. Wait until all transactions finish

3. Flush all log records to disk (log)

4. Flush all buffers to disk (DB)

5. Write “checkpoint” record on disk (log)

6. Resume transaction processing
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Logging – recovery after failure

◼ Procedure during recovery

Locate last checkpoint

Start recovery from this place

◼ Example for redo logging

<
T
1
,A

,1
6
>

<
T
1
,c

o
m

m
it
>

C
h

e
c
k

p
o

in
t

<
T
2
,B

,1
7
>

<
T
2
,c

o
m

m
it
>

<
T
3
,C

,2
1
>

... ... ... ... ... ...
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Logging
◼ Key drawbacks

Writes to disk are controlled by logging rules 
and not be accesses to data.

Undo logging
◼ cannot bring backup DB copies up to date

Redo logging
◼ need to keep all modified blocks in memory until 

commit

◼ Solution: Undo/Redo logging

Log record contains old and new value of X: 
<Ti, x, new X val, old X val>
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Undo/Redo logging
◼ Rules

 Page X can be flushed before or after Ti ‘s commit

 Log record flushed before corresponding updated 

page (WAL)

 Flush log records at commit

◼ Recovery

 Finished (committed) transactions are re-done from 

beginning

 Unfinished transactions are rolled back (un-done) 

from end



PA152, Vlastislav Dohnal, FI MUNI, 2024 43

Undo/Redo logging – recovery

◼ Example of undo/redo log:
<

c
h

e
c
k

p
o

in
t>

<
T
1
, 
A
, 
1
1
, 
1
0
>

<
T
1
, 
B
, 
2
1
, 
2
0
>

<
T
1
, 
co

m
m

it
>

<
T
2
, 
C
, 
3
1
,
3
0
>

<
T
2
, 
D

, 
4
1
,
4
0
>

... ... ... ... ... ...
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Checkpoints

◼ Simple checkpoint

No transaction can be active during creating 

checkpoint

Transaction throughput considerably lowered!

◼ Solution

Non-quiescent Checkpoint

◼ Register active transactions

◼ UNDO/REDO logging:

 all modified pages (blocks) are flushed to disk
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Non-quiescent Checkpoint

◼ Store start and end of checkpoint

Start-ckpt
active TR:
T1,T2,...

End
ckpt

.........Log

Dirty buffer pages flushed
(all, i.e., finished & active (unfinished) ones)

Pointers to 
beginnings of 
transactions
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Non-quiescent Checkpoint

◼ Recovery 1

◼ T1 has not been committed → Undo T1

(undo changes to b, a)

T1

a
...

Start-ckpt

T1
...

End 
ckpt

...
T1

b
...



◼ Recovery 2

◼ T1 has been committed → Redo T1

(redo b,c)
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...
T1

a
... ...

T1

b
... ...

T1

c
...

T1

cmt
...

ckpt-
end

ckpt-s

T1

Non-quiescent Checkpoint
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...
ckpt
start

... ...
T1

b
... ...

T1

c
...

ckpt-
start

ckpt
end

Non-quiescent Checkpoint
◼ Recovery 3

◼ Unfinished checkpoint
→ Locate last finished checkpoint

Start undo/redo of transactions
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Recovery process
◼ Backwards pass

(end of log → latest valid checkpoint start)

1. construct set S of committed transactions

2. undo actions of transactions not in S

◼ Remark: Undo pending transactions
 Follow undo chains for transactions in checkpoint 

active list

◼ Forward pass
(latest checkpoint start → end of log)

 redo actions of S transactions (without end)

backward pass

forward pass
start

check-
point
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Real world transaction
◼ Withdraw cash from ATM

 Info about bank accounts

HW of ATM

◼ Implementation

Transaction in DB

Dispense money

◼ Procedure

Do DB transaction, money dispensing after 
commit.

Dispensing should be made idempotent.
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Real world transaction

◼ After DB transaction, a “signal“ for money 

dispensing is sent

$

give(amount)

lastTid:

time:Give$$(amount, Tid, time)
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Media Failure

◼RAID

◼Make copies of data

E.g., 

◼Keep 3 copies

◼Output(X) 

→ three outputs

◼ Input(X) 

→ three inputs + voting

X1 X2 X3
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Media Failure

◼Make copies of data

Other solution

◼Keep 3 copies

◼Output(X) 

→ three outputs

◼ Input(X) 

→ read from first (if ok, continue)

→ read from second, …

◼Assumption

bad data can be detected

X1 X2 X3
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Media Failure
◼ DB backup (dump)

Recover DB backup

Apply log

◼ Use redo entries of each transaction not finished at 

the backup time

backup
DB

active
DB

log
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Discarding Log

◼ When can log be discarded?

 In case of UNDO/REDO logging

not needed for
media recovery

not needed for undo
after system failure

not needed for
redo after system failure

time

check-
point

db
dump

last
needed
undo

log

ch
e
ck

-p
o
in

t

ch
e
ck

-p
o
in

t
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LOG DATADATADATA

STABLE STORAGE

UNSTABLE STORAGE

WRITE 

log records before commit

WRITE 

modified pages after commit

RECOVERY

Pi Pj

DATABASE BUFFER
LOG BUFFER

lri lrj
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Logging in SQLServer 2000

Free

Log caches

Flush

Log caches

Current

Log caches

Flush

Log caches

db

writer

Flush queue

Waiting 

processes

LOG DATA

free Bi free Bj

Log entries:

- LSN

- before and after images or 

logical log

Lazy-

writer

Synchronous I/O Asynchronous I/O

DATABASE BUFFER

DB2 v7 uses similar schema
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Logging in Oracle 8i

Rollback segments

(fixed size)

After images

(redo entries)

Log buffer (default 32 Kb)

Bi Bj

Free list

DATABASE BUFFER

LOG
DATA

Rollback

Segments
Log File

#1
Log File

#2

Log Writer
Database  

Writer

Before images
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Storing Log

◼ On dedicated disk

◼ Log records are stored sequentially

◼ Sequential writes are much faster than 

random ones (on a magnetic disk)

Disk for logging should not store any other data
+ sequential I/O
+ loss of log is not dependent on loss of DB
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Storing Log

0

50

100

150

200

250

300

350

controller cache no controller cache
T

h
ro

u
g

h
p

u
t 

(t
u

p
le

s
/s

e
c
) Log on same disk

Log on separate disk 

300 000 transactions

Each transaction = 1x INSERT

DB2 v7.1 server
5% improvement when log
stored on dedicated disk

Controller Cache diminishes negative impact of non-dedicated disk
HW: middle server, Adaptec RAID controller (80Mb RAM), 2x18Gb disk.
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Flushing Buffers

◼ Flushing dirty page

When a threshold of modified pages is 

reached (Oracle 8)

When the ratio of free pages drops below a 

threshold (less than 3% in SQLServer 7)

After checkpoint

Periodically
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Creating Checkpoints

0

0.2

0.4

0.6

0.8

1

1.2

0 checkpoint 4 checkpoints

T
h

ro
u

g
h

p
u

t 
R

a
ti

o

Performance influence (decreased throughput)
Reduces size of log
Shortens time to recover after failure

300 000 transactions

Each transaction = one INSERT command

Oracle 8i, Windows 2000
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Lecture Takeaways

◼ Data consistency

One source of problems: failures

◼ Solutions: (i) logging; (ii) redundancy

Another source of problems: data sharing

◼ Solution: (i) Locking data during transactions

▪ Not done in this course…

◼ Logging

Know principles and limitations

Understand checkpoints

Be able to do recovery
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