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Availability
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DB Server

DB ServerSource: Microsoft

High availability (HA) is the ability of a system to operate continuously 

without failing for a specified period of time.



Determining Availability

◼ Hours of Operation

Business hours vs. all of the time

◼ intranet service vs. web service

◼ shift workers vs. all-around-the-world customers

◼ Connectivity Requirements

Tight/Loose coupling of app and DBMS

◼ Synchronous vs. asynchronous data updates

Online vs. offline applications – so response 

time can be important!
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Availability
◼ Definition using operation hours

Av = “up time” / “total time”
◼ “up time” = the system is up and operating

More practical def.
◼ Av = (total time - down time) / total time

◼ Down time

Scheduled – reboot, SW/HW upgrade, …

Unscheduled – HW/SW failure, security breaches, 
network unavailability, power outage,  disasters, …

Non-functional app requirements – response time

◼ For “true” high-availability, down time is not 
distinguished
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Quantifying Availability: Nines
◼ Availability as percentage of uptime

Class of nines: 𝑐 = − log10 1 − 𝐴𝑣

◼ Assuming 24/7 operation:
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Nine class Availability Downtime per year Downtime per month Downtime per week

1 90% 36.5 days 72 hours 16.8 hours

2 99% 3.65 days 7.20 hours 1.68 hours

3 99.9% 8.76 hours 43.8 minutes 10.1 minutes

4 99.99% 52.56 minutes 4.32 minutes 1.01 minutes

5 99.999% 5.26 minutes 25.9 seconds 6.05 seconds

6 99.9999% 31.5 seconds 2.59 seconds 0.605 seconds

7 99.99999% 3.15 seconds 0.259 seconds 0.0605 seconds

Source: Wikipedia.org



Scalability
◼ Providing access to a number of

concurrent users

◼ Handling growing amounts of data without 

losing performance

◼ With acceptable latency!
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Scalability: Solutions
◼ Scaling Up – vertical scaling

 Increasing RAM

Multiprocessing

 → vendor dependence

◼ Scaling Out – horizontal scaling

Server federations/clusters

→ data distribution
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Horizontal Scaling
◼ Systems are distributed across multiple 

machines or nodes

Commodity machines → cost effective

Often surpasses scalability of vertical approach

◼ Fallacies of distributed computing by Peter Deutsch

Network
◼ Is reliable, secure, homogeneous

◼ Topology does not change

◼ Latency and transport cost is zero

◼ Bandwidth is infinite

One administrator
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Source: https://blogs.oracle.com/jag/resource/Fallacies.html



Need for Distributing Data
◼ Bring data closer to its user

geographic scalability

◼ Allow site independence

◼ Separate

Online transaction processing

Read-intensive applications

◼ Reduce conflicts during user requests

◼ Process large volumes of data
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Distributing Data
◼ Approaches

Data partitioning

◼ Sharding

◼ E.g.,

 Peer-to-peer networks

Replication

◼ Copies of data

◼ E.g., 

 One writeable and many read-only (standby) servers
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Replication / Distribution Model
◼ Model of distributing data

Replication

◼ The same data stored in more nodes.

Filtering data (sharding)

◼ The data is partitioned and stored separately

◼ Helps avoid replication conflicts when multiple 

sites are allowed to update data.
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Filtering Data (in general)
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Distribution Model: Replication
◼ Master-slave model

Load-balancing of read-intensive queries

◼ Master node

manages data

distributes changes to slaves

◼ Slave node

stores data

queries data

no modifications 
to data
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Slaves

Master

One master / many slaves



Distribution Model: Replication
◼ Master-master model

Consistency needs resolving update conflicts

◼ In “real” master-master model (or peer-to-peer)

Typically, with sharding (filtering) data

◼ Master for a subset of data

◼ Slave for the rest
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Multiple Masters

Master/Slave

Master/Slave

Master/Slave



Master-Master Model with Sharding
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Replication Types (for “real” multi-master model)
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Snapshot Replication
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Source: Microsoft



Replication Types
◼ Distributed Transactions

For “real” master-master model, ensures 

consistency

Low latency, high consistency

◼ Transactional Replication

Replication of incremental changes 

Minimal latency (typically online)

Conflicts are solved using shared locks
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Replication Types
◼ Snapshot Replication

Periodic bulk data transfer as new snapshots 

◼ Intermediate updates to data might be unnoticed 

by “subscribers”

◼ So, copies can be out-of-date

Data changes – substantial but infrequent

Replica servers are read-only

High latency is acceptable
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Replication Types
◼ Merge Replication

Autonomous changes to replicated data are 

later merged

◼ Default and custom conflict resolution rules

Does not guarantee transactional consistency, 

but converges

Adv: Nodes can update data offline, sync later

Disadv: Changes to schema needed.
▪ E.g., row version, row originator
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Issues of Distributed Systems
◼ Consistency

After an update, all readers in a distributed system 
see the same data

All nodes are supposed to always contain the 
same data

E.g., in multiple instances, all writes must be 
duplicated before write operation is completed.

◼ Availability
Every request receives a response 

◼ about whether it was successful or failed

◼ Partition Tolerance
System continues to operate despite arbitrary 

message loss or failure of part of the system.
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Brewer’s CAP Theorem
◼ Only 2 of 3 guarantees can be given in a “shared-

data” system.
 Proved by Nancy Lynch in 2002

◼ ACID 
 provides Availability and 

Consistency

 E.g., replication with 
distributed transactions

◼ BASE 
 provides Availability and Partition 

tolerance

 Reality: you can trade a little consistency for some 
availability

 E.g., sharding with merge replication
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Source: http://bigdatanerd.wordpress.com

NewSQL

DB



NewSQL
◼ Distributed database systems that scale out

◼ CP systems

 trade availability for consistency when partition 

occurs

◼ MySQL cluster, Google Spanner, VoltDB, …

 In fact, master-master replication with data 

sharding
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BASE Properties
◼ Basically Available

Partial failures can occur, but without total 
system failure

◼ Soft state

System is in flux / non-deterministic
◼ Changes occur all the time

◼ Eventual consistency (replica convergence)

 is a liveness guarantee
◼ Read requests eventually return the same value

 is not safety guarantee
◼ can return any value before it converges
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Two out of three ain’t right
◼ Can a distributed system be not tolerant of 

partitions?

◼ Partition Tolerance is mandatory in 

distributed systems!

Network partitions are a given; therefore, 

consistency and availability cannot be 

achieved.
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Two out of three ain’t right
◼ In reality, there are two types of systems 

when there is a partition:

give up availability

give up consistency.

◼ Incorrect conclusion:

Consistent, partition tolerant, databases 

cannot be available, and are therefore not 

feasible
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Consistency or Availability?
◼ NoSQL databases relax consistency in 

favor of availability

but are not inconsistent.

◼ NewSQL databases sacrifice availability for 

consistency

but are not unavailable.

◼ When partition occurs, make the decision.

Rather make the choice during the 

development process
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Tunable Consistency
◼ Allows developers to adopt a consistency

model required for a specific application, 

workload or query.

◼ Strong vs Eventual 

consistency
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Consistency
◼ Strong (ACID) vs. Eventual (BASE) 

consistency

◼ Example:

PA152, Vlastislav Dohnal, FI MUNI, 2024 30

Server A: read(A)=1 write(A,2)   read(A)=2

Server B: read(A)= 1 read(A)=1 read(A)=2

time

Server C: read(A)= 1 read(A)=2

Server A: read(A)=1 write(A,2)   read(A)=2

Server B: read(A)= 1 read(A)=2  read(A)=2

Server C: read(A)= 1 read(A)=2

Inconsistent state
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Tunable Consistency
◼ Would allow developers to adopt an 

availability model required for a specific 

application, workload or query.

◼ But tunable availability

is a trade‐off of

tunable consistency

◼ It is called latency.
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Beyond CAP Theorem
◼ It’s not “pick two”

◼ Or even pick one

◼ Think off them as dials

on a dashboard used 

to achieve the most 

appropriate balance of consistency, 

availability and partition tolerance

 for specific workloads
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Maintaining High Availability of DBMS

◼ Standby server

Shared disk failover (NAS)

File system replication (DRBD)

Transaction log shipping

Trigger-based replication

Statement-Based 

Replication 

Middleware
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Log-shipping Standby Server
◼ Primary node

 serves all queries

 in permanent archiving mode
◼ Continuous sending of WAL records to standby servers

◼ Standby server
 serves no queries

 in permanent recovery mode
◼ Continuous processing of WAL records arriving from primary 

node

 Also called warm standby

◼ Log shipping can be synchronous/asynchronous

◼ Disadvantage: all tables are replicated typically

◼ Advantage: no schema changes, no trigger 
definitions
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Log-shipping: Failure of a node
◼ If standby fails, no action taken.

After becoming online, catch-up procedure is 
started. 

◼ If primary fails, standby server begins 
failover.

1. Standby applies all WAL records pending,

2. marks itself as primary,

3. starts to serve all queries.

◼ Heartbeat mechanism

 to continually verify the connectivity between 
the two and the viability of the primary server
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Log-shipping: After failover
◼ When failover by standby succeeded,

a new standby should be configured.

◼ When the original primary node becomes 

available

→ detect that it is no longer the primary

◼ do so-called STONITH (Shoot The Other Node In 

The Head),

◼ otherwise, serious data corruption/loss may occur

◼ Old primary usually becomes new standby.
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Primary and Standby Servers
◼ Swap primary and standby regularly

To verify recovery steps

To do necessary maintenance on standby 

server

◼ SW/HW upgrades, …

◼ Mind limits on SW upgrades – see DBMS docs
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PostgreSQL: Replication
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◼ TPC Benchmark B

38

scale factor 1

1 trans. = 5 queries

2x server 
(AMD Opteron 8439 SE,

1024 MB RAM, 

20 GB HDD)



Recommended HA Practices
◼ Maximize availability at each tier of the 

application

 Independent power supply to the primary 

server

Keep standby servers on a different subnet

◼ Test whether your availability solution 

works
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Lecture Takeaways
◼ Term of Availability and its classification

◼ Possible techniques (sharding / replication)

◼ CAP Theorem 

ACID & BASE systems

◼ Know possible implementation in relational 

DBMS

◼ The future of databases is distributed.
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