
PA152: Efficient Use of DB

11. Replication and

High Availability

Vlastislav Dohnal

PA152, Vlastislav Dohnal, FI MUNI, 2024 2

Credits
◼ This presentation is based on:

 Microsoft MSDN library

 Course NoSQL databases and Big Data management

◼ Irena Holubová

◼ Charles University, Prague

◼ http://www.ksi.mff.cuni.cz/~holubova/NDBI040/

PostgreSQL documentation
◼ http://www.postgresql.org/docs/9.3/static/high-

availability.html

451 Research

◼ M. Aslett: CAP Theorem – two out of three ain’t

right

http://www.ksi.mff.cuni.cz/~holubova/NDBI040/
http://www.postgresql.org/docs/9.3/static/high-availability.html
http://www.postgresql.org/docs/9.3/static/high-availability.html

PA152, Vlastislav Dohnal, FI MUNI, 2024 3

Contents

◼ Availability

◼ Data distribution & replication

◼ High availability

◼ Failover

◼ Recommendations

Availability

PA152, Vlastislav Dohnal, FI MUNI, 2024 4

DB Server

DB ServerSource: Microsoft

High availability (HA) is the ability of a system to operate continuously

without failing for a specified period of time.

Determining Availability

◼ Hours of Operation

Business hours vs. all of the time

◼ intranet service vs. web service

◼ shift workers vs. all-around-the-world customers

◼ Connectivity Requirements

Tight/Loose coupling of app and DBMS

◼ Synchronous vs. asynchronous data updates

Online vs. offline applications – so response

time can be important!

PA152, Vlastislav Dohnal, FI MUNI, 2024 5

Availability
◼ Definition using operation hours

Av = “up time” / “total time”
◼ “up time” = the system is up and operating

More practical def.
◼ Av = (total time - down time) / total time

◼ Down time

Scheduled – reboot, SW/HW upgrade, …

Unscheduled – HW/SW failure, security breaches,
network unavailability, power outage, disasters, …

Non-functional app requirements – response time

◼ For “true” high-availability, down time is not
distinguished

PA152, Vlastislav Dohnal, FI MUNI, 2024 6

Quantifying Availability: Nines
◼ Availability as percentage of uptime

Class of nines: 𝑐 = − log10 1 − 𝐴𝑣

◼ Assuming 24/7 operation:

PA152, Vlastislav Dohnal, FI MUNI, 2024 7

Nine class Availability Downtime per year Downtime per month Downtime per week

1 90% 36.5 days 72 hours 16.8 hours

2 99% 3.65 days 7.20 hours 1.68 hours

3 99.9% 8.76 hours 43.8 minutes 10.1 minutes

4 99.99% 52.56 minutes 4.32 minutes 1.01 minutes

5 99.999% 5.26 minutes 25.9 seconds 6.05 seconds

6 99.9999% 31.5 seconds 2.59 seconds 0.605 seconds

7 99.99999% 3.15 seconds 0.259 seconds 0.0605 seconds

Source: Wikipedia.org

Scalability
◼ Providing access to a number of

concurrent users

◼ Handling growing amounts of data without

losing performance

◼ With acceptable latency!

PA152, Vlastislav Dohnal, FI MUNI, 2024 8

Scalability: Solutions
◼ Scaling Up – vertical scaling

 Increasing RAM

Multiprocessing

 → vendor dependence

◼ Scaling Out – horizontal scaling

Server federations/clusters

→ data distribution

PA152, Vlastislav Dohnal, FI MUNI, 2024 9

Horizontal Scaling
◼ Systems are distributed across multiple

machines or nodes

Commodity machines → cost effective

Often surpasses scalability of vertical approach

◼ Fallacies of distributed computing by Peter Deutsch

Network
◼ Is reliable, secure, homogeneous

◼ Topology does not change

◼ Latency and transport cost is zero

◼ Bandwidth is infinite

One administrator

PA152, Vlastislav Dohnal, FI MUNI, 2024 10

Source: https://blogs.oracle.com/jag/resource/Fallacies.html

Need for Distributing Data
◼ Bring data closer to its user

geographic scalability

◼ Allow site independence

◼ Separate

Online transaction processing

Read-intensive applications

◼ Reduce conflicts during user requests

◼ Process large volumes of data

PA152, Vlastislav Dohnal, FI MUNI, 2024 11

Distributing Data
◼ Approaches

Data partitioning

◼ Sharding

◼ E.g.,

 Peer-to-peer networks

Replication

◼ Copies of data

◼ E.g.,

 One writeable and many read-only (standby) servers

PA152, Vlastislav Dohnal, FI MUNI, 2024 12

Replication / Distribution Model
◼ Model of distributing data

Replication

◼ The same data stored in more nodes.

Filtering data (sharding)

◼ The data is partitioned and stored separately

◼ Helps avoid replication conflicts when multiple

sites are allowed to update data.

PA152, Vlastislav Dohnal, FI MUNI, 2024 13

Filtering Data (in general)

Subscriber

Horizontal Filtering

2

3

4

5

6

7

1

A B C D E F

3

6

2

A B C D E F

Vertical Filtering

2

3

4

5

6

7

1

A B C D E F

2

3

4

5

6

7

1

A B E

Table

TablePublisher

Source: Microsoft

PA152, Vlastislav Dohnal, FI MUNI, 2024 14

Distribution Model: Replication
◼ Master-slave model

Load-balancing of read-intensive queries

◼ Master node

manages data

distributes changes to slaves

◼ Slave node

stores data

queries data

no modifications
to data

PA152, Vlastislav Dohnal, FI MUNI, 2024 15

Slaves

Master

One master / many slaves

Distribution Model: Replication
◼ Master-master model

Consistency needs resolving update conflicts

◼ In “real” master-master model (or peer-to-peer)

Typically, with sharding (filtering) data

◼ Master for a subset of data

◼ Slave for the rest

PA152, Vlastislav Dohnal, FI MUNI, 2024 16

Multiple Masters

Master/Slave

Master/Slave

Master/Slave

Master-Master Model with Sharding

PA152, Vlastislav Dohnal, FI MUNI, 2024 17

Orders (Master A)
Primary Key

Area Id Order_no

1

1

2

2

3

3

1000

3100

1000

2380

1000

1070

~

~

~

~

~

~

Qty

15

22

32

8

7

19

1

1

1000

3100

~

~

15

22

Orders (Master B)
Primary Key

Area Id Order_no

1

1

2

2

3

3

1000

3100

1000

2380

1000

1070

~

~

~

~

~

~

Qty

15

22

32

8

7

19

2

2

1000

2380

~

~

32

8

Orders (Master C)
Primary Key

Area Id Order_no

1

1

2

2

3

3

1000

3100

1000

2380

1000

1070

~

~

~

~

~

~

Qty

15

22

32

8

7

19
3

3

1000

1070

~

~

7

19

Master/Slave

Master/SlaveMaster/Slave

Source: Microsoft

Replication Types (for “real” multi-master model)

PA152, Vlastislav Dohnal, FI MUNI, 2024 18

Snapshot Replication

Transactional Replication

Distributed Transactions

Lower Autonomy

Lower Latency

Higher Autonomy

Higher Latency

Merge Replication

Source: Microsoft

Replication Types
◼ Distributed Transactions

For “real” master-master model, ensures

consistency

Low latency, high consistency

◼ Transactional Replication

Replication of incremental changes

Minimal latency (typically online)

Conflicts are solved using shared locks

PA152, Vlastislav Dohnal, FI MUNI, 2024 19

Snapshot Replication

Transactional Replication

Distributed

Transactions

Lower Autonomy

Lower Latency

Higher Autonomy

Higher Latency

Merge Replication

Replication Types
◼ Snapshot Replication

Periodic bulk data transfer as new snapshots

◼ Intermediate updates to data might be unnoticed

by “subscribers”

◼ So, copies can be out-of-date

Data changes – substantial but infrequent

Replica servers are read-only

High latency is acceptable

PA152, Vlastislav Dohnal, FI MUNI, 2024 20

Snapshot Replication

Transactional Replication

Distributed

Transactions

Lower Autonomy

Lower Latency

Higher Autonomy

Higher Latency

Merge Replication

Replication Types
◼ Merge Replication

Autonomous changes to replicated data are

later merged

◼ Default and custom conflict resolution rules

Does not guarantee transactional consistency,

but converges

Adv: Nodes can update data offline, sync later

Disadv: Changes to schema needed.
▪ E.g., row version, row originator

PA152, Vlastislav Dohnal, FI MUNI, 2024 21

Snapshot Replication

Transactional Replication

Distributed

Transactions

Lower Autonomy

Lower Latency

Higher Autonomy

Higher Latency

Merge Replication

Issues of Distributed Systems
◼ Consistency

After an update, all readers in a distributed system
see the same data

All nodes are supposed to always contain the
same data

E.g., in multiple instances, all writes must be
duplicated before write operation is completed.

◼ Availability
Every request receives a response

◼ about whether it was successful or failed

◼ Partition Tolerance
System continues to operate despite arbitrary

message loss or failure of part of the system.

PA152, Vlastislav Dohnal, FI MUNI, 2024 22

Brewer’s CAP Theorem
◼ Only 2 of 3 guarantees can be given in a “shared-

data” system.
 Proved by Nancy Lynch in 2002

◼ ACID
 provides Availability and

Consistency

 E.g., replication with
distributed transactions

◼ BASE
 provides Availability and Partition

tolerance

 Reality: you can trade a little consistency for some
availability

 E.g., sharding with merge replication

PA152, Vlastislav Dohnal, FI MUNI, 2024 23

Source: http://bigdatanerd.wordpress.com

NewSQL

DB

NewSQL
◼ Distributed database systems that scale out

◼ CP systems

 trade availability for consistency when partition

occurs

◼ MySQL cluster, Google Spanner, VoltDB, …

 In fact, master-master replication with data

sharding

PA152, Vlastislav Dohnal, FI MUNI, 2024 24

BASE Properties
◼ Basically Available

Partial failures can occur, but without total
system failure

◼ Soft state

System is in flux / non-deterministic
◼ Changes occur all the time

◼ Eventual consistency (replica convergence)

 is a liveness guarantee
◼ Read requests eventually return the same value

 is not safety guarantee
◼ can return any value before it converges

PA152, Vlastislav Dohnal, FI MUNI, 2024 25

Two out of three ain’t right
◼ Can a distributed system be not tolerant of

partitions?

◼ Partition Tolerance is mandatory in

distributed systems!

Network partitions are a given; therefore,

consistency and availability cannot be

achieved.
PA152, Vlastislav Dohnal, FI MUNI, 2024 26

Two out of three ain’t right
◼ In reality, there are two types of systems

when there is a partition:

give up availability

give up consistency.

◼ Incorrect conclusion:

Consistent, partition tolerant, databases

cannot be available, and are therefore not

feasible

PA152, Vlastislav Dohnal, FI MUNI, 2024 27

Consistency or Availability?
◼ NoSQL databases relax consistency in

favor of availability

but are not inconsistent.

◼ NewSQL databases sacrifice availability for

consistency

but are not unavailable.

◼ When partition occurs, make the decision.

Rather make the choice during the

development process

PA152, Vlastislav Dohnal, FI MUNI, 2024 28

Tunable Consistency
◼ Allows developers to adopt a consistency

model required for a specific application,

workload or query.

◼ Strong vs Eventual

consistency

PA152, Vlastislav Dohnal, FI MUNI, 2024 29

Consistency
◼ Strong (ACID) vs. Eventual (BASE)

consistency

◼ Example:

PA152, Vlastislav Dohnal, FI MUNI, 2024 30

Server A: read(A)=1 write(A,2) read(A)=2

Server B: read(A)= 1 read(A)=1 read(A)=2

time

Server C: read(A)= 1 read(A)=2

Server A: read(A)=1 write(A,2) read(A)=2

Server B: read(A)= 1 read(A)=2 read(A)=2

Server C: read(A)= 1 read(A)=2

Inconsistent state

E
v
e
n
tu

a
l

S
tr

o
n
g

Tunable Consistency
◼ Would allow developers to adopt an

availability model required for a specific

application, workload or query.

◼ But tunable availability

is a trade‐off of

tunable consistency

◼ It is called latency.

PA152, Vlastislav Dohnal, FI MUNI, 2024 31

Beyond CAP Theorem
◼ It’s not “pick two”

◼ Or even pick one

◼ Think off them as dials

on a dashboard used

to achieve the most

appropriate balance of consistency,

availability and partition tolerance

 for specific workloads
PA152, Vlastislav Dohnal, FI MUNI, 2024 32

Maintaining High Availability of DBMS

◼ Standby server

Shared disk failover (NAS)

File system replication (DRBD)

Transaction log shipping

Trigger-based replication

Statement-Based

Replication

Middleware

PA152, Vlastislav Dohnal, FI MUNI, 2024 33

Clients

Primary

Node

Secondary/

Standby

Node
Cluster

Log-shipping Standby Server
◼ Primary node

 serves all queries

 in permanent archiving mode
◼ Continuous sending of WAL records to standby servers

◼ Standby server
 serves no queries

 in permanent recovery mode
◼ Continuous processing of WAL records arriving from primary

node

 Also called warm standby

◼ Log shipping can be synchronous/asynchronous

◼ Disadvantage: all tables are replicated typically

◼ Advantage: no schema changes, no trigger
definitions

PA152, Vlastislav Dohnal, FI MUNI, 2024 34

Log-shipping: Failure of a node
◼ If standby fails, no action taken.

After becoming online, catch-up procedure is
started.

◼ If primary fails, standby server begins
failover.

1. Standby applies all WAL records pending,

2. marks itself as primary,

3. starts to serve all queries.

◼ Heartbeat mechanism

 to continually verify the connectivity between
the two and the viability of the primary server

PA152, Vlastislav Dohnal, FI MUNI, 2024 35

Log-shipping: After failover
◼ When failover by standby succeeded,

a new standby should be configured.

◼ When the original primary node becomes

available

→ detect that it is no longer the primary

◼ do so-called STONITH (Shoot The Other Node In

The Head),

◼ otherwise, serious data corruption/loss may occur

◼ Old primary usually becomes new standby.
PA152, Vlastislav Dohnal, FI MUNI, 2024 36

Primary and Standby Servers
◼ Swap primary and standby regularly

To verify recovery steps

To do necessary maintenance on standby

server

◼ SW/HW upgrades, …

◼ Mind limits on SW upgrades – see DBMS docs

PA152, Vlastislav Dohnal, FI MUNI, 2024 37

PostgreSQL: Replication

PA152, Vlastislav Dohnal, FI MUNI, 2024

◼ TPC Benchmark B

38

scale factor 1

1 trans. = 5 queries

2x server
(AMD Opteron 8439 SE,

1024 MB RAM,

20 GB HDD)

Recommended HA Practices
◼ Maximize availability at each tier of the

application

 Independent power supply to the primary

server

Keep standby servers on a different subnet

◼ Test whether your availability solution

works

PA152, Vlastislav Dohnal, FI MUNI, 2024 39

Lecture Takeaways
◼ Term of Availability and its classification

◼ Possible techniques (sharding / replication)

◼ CAP Theorem

ACID & BASE systems

◼ Know possible implementation in relational

DBMS

◼ The future of databases is distributed.

PA152, Vlastislav Dohnal, FI MUNI, 2024 40

	Snímek 1: PA152: Efficient Use of DB 11. Replication and High Availability
	Snímek 2: Credits
	Snímek 3: Contents
	Snímek 4: Availability
	Snímek 5: Determining Availability
	Snímek 6: Availability
	Snímek 7: Quantifying Availability: Nines
	Snímek 8: Scalability
	Snímek 9: Scalability: Solutions
	Snímek 10: Horizontal Scaling
	Snímek 11: Need for Distributing Data
	Snímek 12: Distributing Data
	Snímek 13: Replication / Distribution Model
	Snímek 14: Filtering Data (in general)
	Snímek 15: Distribution Model: Replication
	Snímek 16: Distribution Model: Replication
	Snímek 17: Master-Master Model with Sharding
	Snímek 18: Replication Types (for “real” multi-master model)
	Snímek 19: Replication Types
	Snímek 20: Replication Types
	Snímek 21: Replication Types
	Snímek 22: Issues of Distributed Systems
	Snímek 23: Brewer’s CAP Theorem
	Snímek 24: NewSQL
	Snímek 25: BASE Properties
	Snímek 26: Two out of three ain’t right
	Snímek 27: Two out of three ain’t right
	Snímek 28: Consistency or Availability?
	Snímek 29: Tunable Consistency
	Snímek 30: Consistency
	Snímek 31: Tunable Consistency
	Snímek 32: Beyond CAP Theorem
	Snímek 33: Maintaining High Availability of DBMS
	Snímek 34: Log-shipping Standby Server
	Snímek 35: Log-shipping: Failure of a node
	Snímek 36: Log-shipping: After failover
	Snímek 37: Primary and Standby Servers
	Snímek 38: PostgreSQL: Replication
	Snímek 39: Recommended HA Practices
	Snímek 40: Lecture Takeaways

