
PA152: Efficient Use of DB

12. New SQL

Vlastislav Dohnal



Credits
◼ This presentation is based on:

 S. Harizopoulos et al: OLTP Through the Looking 

Glass, and What We Found There. SIGMOD, 2008

 M. Stonebraker et al: H-Store: The End of an 

Architectural Era. VLDB, 2007

 J. DeBradant et al: Anti-Caching: A New Approach to 

Database Management System Architecture. VLDB, 

2013.

PA152, Vlastislav Dohnal, FI MUNI, 2024 2



Contents

◼ Features of OLTP

◼ Trends in OLTP

◼ Performance study of individual bottlenecks

◼ H-store

PA152, Vlastislav Dohnal, FI MUNI, 2024 3



Main Features of OLTP
◼ Buffer Management

 to facilitate data transfer between memory 

and disk

◼ B-Tree for on-disk data storage

◼ Logging for recovery

◼ Locking to support concurrency 

◼ Latching for accessing shared data 

structure

PA152, Vlastislav Dohnal, FI MUNI, 2024 4



Motivation

◼ Is the OLTP database optimized 

nowadays, given the hardware 

advancement?

◼ Request from outside the DB community 

for alternative DB architecture

PA152, Vlastislav Dohnal, FI MUNI, 2024 5



Motivation: Hardware advancement

In 1980s Nowadays

HW cost In millions Few thousands

Storage size DB size >> 
Memory

Memory >

DB size

Processing time 
for most of the 
transactions

\ In microseconds

PA152, Vlastislav Dohnal, FI MUNI, 2024 6



Motivation: Request from outside

◼ “Database-like” storage system proposal 

from Operating System and networking 

conference 

varying forms of 

◼ concurrency, 

◼ consistency, 

◼ reliability, 

◼ replication, 

◼ queryability.

PA152, Vlastislav Dohnal, FI MUNI, 2024 7



Trends in OLTP

1. Cluster computing

2. Memory resident databases

Data in OLTP doesn’t grow as fast as memory 

size.

3. Single threading

4. High availability vs. Logging

5. Transaction Variants

PA152, Vlastislav Dohnal, FI MUNI, 2024 8



Trend 3: Single Threading

◼ A step backward from multithread to single 

thread?

◼ Why multithreading?

Prevent idle of CPU while waiting data from 

disk

Prevent long-running transactions from 

blocking short transaction

◼ Not valid for memory resident DB

No disk wait

Long-running transactions run in warehouse
PA152, Vlastislav Dohnal, FI MUNI, 2024 9



Trend 3: Single Threading

◼ What about multi processors?

Dynamic locking was experimentally the best 

concurrency control with disk.

What concurrency control protocol is best?

◼ Goal: Achieve shared-nothing processor 

by virtual machine

So, concurrency control code gets removed.

PA152, Vlastislav Dohnal, FI MUNI, 2024 10



Trend 3: Single Threading

◼ What about network disk?

Feasible to partition transaction to run in 

“single-site”.

 Intra-query parallelism: each processor 

running on a part of a single query.

PA152, Vlastislav Dohnal, FI MUNI, 2024 11



Trend 4: HA vs. Logging

◼ 24x7 service achieved by using multiple 

sets of hardware.

◼ Perform recovery by copying missing 

states from other database replicas.

Log for recovery can be avoided.

PA152, Vlastislav Dohnal, FI MUNI, 2024 12

Production Server Standby Server

Recovery from



Trend 5: Transaction Variants
◼ Why transaction variants?

2-phase commit protocol harm performance 

of large-scale distributed DB system

2-phase commit involves commit-request and 

commit phase which involves all server to 

participate.

PA152, Vlastislav Dohnal, FI MUNI, 2024 13



Trend 5: Transaction Variants

◼ Trade consistency for performance

◼ Eventual consistency, all writes propagate 

among the database servers.

But not immediately.

PA152, Vlastislav Dohnal, FI MUNI, 2024 14



Trend in OLTP - Summary

PA152, Vlastislav Dohnal, FI MUNI, 2024 15



Impact on DBMS
◼ (1) memory resident DB can get rid of 

buffer management 

Buffers

PA152, Vlastislav Dohnal, FI MUNI, 2024 16



Impact on DBMS
◼ (2) single thread can avoid locking and 

latching

PA152, Vlastislav Dohnal, FI MUNI, 2024 17



Impact on DBMS
◼ (3) cluster computing helps avoid locking.

 Instead of single processor and multithreading, 

each processor is responsible for each own 

thread.

PA152, Vlastislav Dohnal, FI MUNI, 2024 18



Impact on DBMS
◼ (4) high availability without replication mgr.

Active-passive replication scheme (log shipping)

1. Replica may not be consistent with the primary 

 unless on two-phase commit protocol

2. Failover in not instantaneous

3. Log is required

 It takes about 20% of CPU cycles.

Active-active replication scheme with 

transactions

◼ Two-phase commit introduces large latency for 

distributed replication yet.

PA152, Vlastislav Dohnal, FI MUNI, 2024 19



Impact on DBMS
◼ (5) being “transaction less” avoids book 

keeping, i.e., logging.

◼ (5+) Cache-conscious B-Trees

Cache misses in the B-tree code may well be 

the new bottleneck for the stripped-down 

system.

◼ Related to utilization of the first-level data cache of 

the CPU.

PA152, Vlastislav Dohnal, FI MUNI, 2024 20



TPC-C Benchmark

◼ TPC-C is industry standard used to 

measure ecommerce performance

◼ TPC-C is designed to represent any 

industry that must manage, sell, or 

distribute a product or service

◼ Vendors includes Microsoft, Oracle, IBM, 

Sybase, Sun, HP, DELL etc.

http://www.tpc.org/tpcc/default.asp

PA152, Vlastislav Dohnal, FI MUNI, 2024 21

http://www.tpc.org/tpcc/default.asp


TPC-C Benchmark
◼ 1 warehouse(~100M) serves 10 districts, 

and each district serve 3000 customers. 

PA152, Vlastislav Dohnal, FI MUNI, 2024 22



TPC-C Benchmark
◼ 5 concurrent business transactions

New Order Transaction

Payment 

Deliver Order

Check status of Order

Monitor Stock Level of warehouse

PA152, Vlastislav Dohnal, FI MUNI, 2024 23



Experiment setup

◼ 40,000 transactions run for types 

New Order Transaction and Payment

◼ Results measured in 

Throughput (Time, Transactions completed) 

 Instruction count

◼ Single-core Pentium 4, 3.2GHz, with 1MB 

L2 cache, hyper threading disabled, 1GB 

RAM, running Linux 2.6.

PA152, Vlastislav Dohnal, FI MUNI, 2024 24



Effect of removing components (1)

◼ Payment transaction:

PA152, Vlastislav Dohnal, FI MUNI, 2024 25



Effect of removing components (2)

PA152, Vlastislav Dohnal, FI MUNI, 2024 26



Effect of removing components (3)

PA152, Vlastislav Dohnal, FI MUNI, 2024 27



Effect of removing components (4)

PA152, Vlastislav Dohnal, FI MUNI, 2024 28



Effect of removing components (5)

PA152, Vlastislav Dohnal, FI MUNI, 2024 29



Effect of removing components (6)

◼ Instructions of useful work is only <2% of a 

memory resident DB

PA152, Vlastislav Dohnal, FI MUNI, 2024 30



Effect of removing components (7)

◼ The same for New Order Transaction

PA152, Vlastislav Dohnal, FI MUNI, 2024 31



Effect of removing components (8)

◼ Comparison of CPU instructions and cycles

New order transaction

PA152, Vlastislav Dohnal, FI MUNI, 2024 32

remaining overhead



Experiment Results

◼ Memory resident DBMS

640 transactions per second.

◼ Stripped-down DBMS

12,700 transactions per second.

◼ Stripped-down DBMS gave a 20 times 

improvement in throughput

PA152, Vlastislav Dohnal, FI MUNI, 2024 33



Conclusion
◼ Most significant overhead contributors

buffer management and 

 locking operation, 

 followed by logging and latching.

◼ A fully stripped-down system’s 

performance is orders of magnitude better 

than an unmodified system.

“One size fits all” DBMSes excel at nothing

◼ Need for specialized databases and languages

PA152, Vlastislav Dohnal, FI MUNI, 2024 34



Conclusion

◼ Welcome to NewSQL

PA152, Vlastislav Dohnal, FI MUNI, 2024 35



NewSQL DBMS
◼ Highly concurrent, latch-free data 

structures

◼ Partitioning into single-threaded executors

◼ H-store

Distributed, shared-nothing, main mem DBMS

Row-store based relational DBMS

PA152, Vlastislav Dohnal, FI MUNI, 2024 36



ZDNet interview, Feb. 2008

PA152, Vlastislav Dohnal, FI MUNI, 2024 37



H-Store
◼ Logging overhead

Replication for recovery → no redo log

Transient undo log sufficient for tx rollback

◼ Transaction classes

Optimize concurrency control protocols

◼ Incremental scalability

Shared nothing architecture

◼ Remove knobs/tuning parameters

Personnel costs higher than machine costs

Automatic physical database design

PA152, Vlastislav Dohnal, FI MUNI, 2024 38



H-Store Architecture

PA152, Vlastislav Dohnal, FI MUNI, 2024 39



H-Store Cluster
◼ Cluster = multiple computers (nodes)

◼ Node = multi-core CPUs, RAM

hosts multiple sites

◼ Site = process of H-Store

dedicated CPU core and RAM, data partition

PA152, Vlastislav Dohnal, FI MUNI, 2024 40

Node A Node B

…



Transaction Classes
1. Single-sited transactions

2. One-shot transactions

3. Two-phase transactions

4. Sterile transactions

5. General transactions

PA152, Vlastislav Dohnal, FI MUNI, 2024 41



1. Single-sited transactions
◼ All queries hit the same partition

◼ Constrained Tree Schemas

Root table can be horizontally hash-partitioned

Collocate corresponding shards of child tables

No communication between partitions

PA152, Vlastislav Dohnal, FI MUNI, 2024 42



2. One-shot transactions
◼ No inter-query dependencies

◼ Execute in parallel without communication

Replicate read-only parts

Vertical partitioning

Can be decomposed into single-sited plans

Local decisions → No redo log required

PA152, Vlastislav Dohnal, FI MUNI, 2024 43



3. Two-phase class

◼ Two-phase classes

Phase 1: Read-only operations

Phase 2: Updates cannot violate integrity

No undo log required

PA152, Vlastislav Dohnal, FI MUNI, 2024 44



4. Sterile classes

◼ Sterile classes

Operate independently

Do not depend on results / state of other 

concurrent transactions

No concurrency control needed

◼ i.e., no coordination among transactions is necessary.

PA152, Vlastislav Dohnal, FI MUNI, 2024 45



5. General transactions
◼ Require coordination with other transactions

read/write shared data; 

update data in more partitions

PA152, Vlastislav Dohnal, FI MUNI, 2024 46

Concurrency 

control 

is needed



Concurrency Control
◼ Run sterile, single-sited and one-shot 

transactions with no controls

◼ Other transactions with basic strategy

can escalate to intermediate or advanced

◼ Timestamp ordering of all transactions

PA152, Vlastislav Dohnal, FI MUNI, 2024 47



Concurrency Control
◼ Basic Strategy

Coordinator sends tx subplans to “workers”

Worker waits for “small period of time”

◼ to preserve timestamp order (network delay).

Worker executes the subplan

◼ if there is not any uncommited, conflicting transaction

◼ otherwise aborts.

Coordinators wait for “ok” from all sites and 

commits.

PA152, Vlastislav Dohnal, FI MUNI, 2024 48



Concurrency Control
◼ Intermediate Strategy

 if there are too many aborts with basic one

 Increase wait latency in workers

◼ Advanced Strategy

 if there are too many aborts with intermediate

== Optimistic concurrency control

Tracks read and write sets of each tx on each 

site

◼ Aborts if a conflict between write and write is detected.

PA152, Vlastislav Dohnal, FI MUNI, 2024 49



Database Layout
◼ Table replication

Read-only tables are on all sites

 i.e., no communication → no latency

◼ Data partitioning

Horizontal partitioning into 4 partitions and 2 
replicas

 i.e., allow transaction execution in parallel

◼ K-safety of 2

Not enough RAM to replicate all tables

Every site is given a unique set of three partitions 
per table, thus preventing any pair of two sites 
from holding the only copies of a partition.

PA152, Vlastislav Dohnal, FI MUNI, 2024 50



Performance comparison

PA152, Vlastislav Dohnal, FI MUNI, 2024 51



Anti-caching (Durability)
◼ No logging is performed

◼ Cold data moved from RAM to disk

 In a transactional-safe way

PA152, Vlastislav Dohnal, FI MUNI, 2024 52



Anti-caching
◼ Fine-grained eviction

Like in virtual memory mgmt, pages are 

copied.

Cold pages are written out.

A single hot tuple marks the page (block) hot.

◼ Non-blocking fetches

Abort transactions instead of waiting

◼ for an I/O operation

PA152, Vlastislav Dohnal, FI MUNI, 2024 53



Anti-caching
◼ Non-blocking 

fetches:

◼ Abort transactions 

instead of waiting

Reschedule them

Occurs if a transaction needs to operate 

on a tuple on disk

“pre-pass” tx to identify all evicted blocks.

PA152, Vlastislav Dohnal, FI MUNI, 2024 54



H-store implementations
◼ Volt Active Data (VoltDB)

ensure “five 9’s” uptime

◼ SAP HANA

◼ SingleStore (MemSQL)

◼ eXtremeDB

PA152, Vlastislav Dohnal, FI MUNI, 2024 55



Lecture Takeaways
◼ Trends in DBMS with current HW

◼ Main bottlenecks in full ACID systems

◼ NewSQL as H-Store

principle

 transaction classes

durability

PA152, Vlastislav Dohnal, FI MUNI, 2024 56


	Výchozí oddíl
	Snímek 1: PA152: Efficient Use of DB 12. New SQL
	Snímek 2: Credits
	Snímek 3: Contents
	Snímek 4: Main Features of OLTP
	Snímek 5: Motivation
	Snímek 6: Motivation: Hardware advancement
	Snímek 7: Motivation: Request from outside
	Snímek 8: Trends in OLTP
	Snímek 9: Trend 3: Single Threading
	Snímek 10: Trend 3: Single Threading
	Snímek 11: Trend 3: Single Threading
	Snímek 12: Trend 4: HA vs. Logging
	Snímek 13: Trend 5: Transaction Variants
	Snímek 14: Trend 5: Transaction Variants
	Snímek 15: Trend in OLTP - Summary
	Snímek 16: Impact on DBMS
	Snímek 17: Impact on DBMS
	Snímek 18: Impact on DBMS
	Snímek 19: Impact on DBMS
	Snímek 20: Impact on DBMS
	Snímek 21: TPC-C Benchmark
	Snímek 22: TPC-C Benchmark
	Snímek 23: TPC-C Benchmark
	Snímek 24: Experiment setup
	Snímek 25: Effect of removing components (1)
	Snímek 26: Effect of removing components (2)
	Snímek 27: Effect of removing components (3)
	Snímek 28: Effect of removing components (4)
	Snímek 29: Effect of removing components (5)
	Snímek 30: Effect of removing components (6)
	Snímek 31: Effect of removing components (7)
	Snímek 32: Effect of removing components (8)
	Snímek 33: Experiment Results
	Snímek 34: Conclusion
	Snímek 35: Conclusion
	Snímek 36: NewSQL DBMS
	Snímek 37: ZDNet interview, Feb. 2008
	Snímek 38: H-Store
	Snímek 39: H-Store Architecture
	Snímek 40: H-Store Cluster
	Snímek 41: Transaction Classes
	Snímek 42: 1. Single-sited transactions
	Snímek 43: 2. One-shot transactions
	Snímek 44: 3. Two-phase class
	Snímek 45: 4. Sterile classes
	Snímek 46: 5. General transactions
	Snímek 47: Concurrency Control
	Snímek 48: Concurrency Control
	Snímek 49: Concurrency Control
	Snímek 50: Database Layout
	Snímek 51: Performance comparison
	Snímek 52: Anti-caching (Durability)
	Snímek 53: Anti-caching
	Snímek 54: Anti-caching
	Snímek 55: H-store implementations
	Snímek 56: Lecture Takeaways


