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Main Features of OLTP
◼ Buffer Management

 to facilitate data transfer between memory 

and disk

◼ B-Tree for on-disk data storage

◼ Logging for recovery

◼ Locking to support concurrency 

◼ Latching for accessing shared data 

structure
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Motivation

◼ Is the OLTP database optimized 

nowadays, given the hardware 

advancement?

◼ Request from outside the DB community 

for alternative DB architecture
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Motivation: Hardware advancement

In 1980s Nowadays

HW cost In millions Few thousands

Storage size DB size >> 
Memory

Memory >

DB size

Processing time 
for most of the 
transactions

\ In microseconds
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Motivation: Request from outside

◼ “Database-like” storage system proposal 

from Operating System and networking 

conference 

varying forms of 

◼ concurrency, 

◼ consistency, 

◼ reliability, 

◼ replication, 

◼ queryability.
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Trends in OLTP

1. Cluster computing

2. Memory resident databases

Data in OLTP doesn’t grow as fast as memory 

size.

3. Single threading

4. High availability vs. Logging

5. Transaction Variants
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Trend 3: Single Threading

◼ A step backward from multithread to single 

thread?

◼ Why multithreading?

Prevent idle of CPU while waiting data from 

disk

Prevent long-running transactions from 

blocking short transaction

◼ Not valid for memory resident DB

No disk wait

Long-running transactions run in warehouse
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Trend 3: Single Threading

◼ What about multi processors?

Dynamic locking was experimentally the best 

concurrency control with disk.

What concurrency control protocol is best?

◼ Goal: Achieve shared-nothing processor 

by virtual machine

So, concurrency control code gets removed.
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Trend 3: Single Threading

◼ What about network disk?

Feasible to partition transaction to run in 

“single-site”.

 Intra-query parallelism: each processor 

running on a part of a single query.
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Trend 4: HA vs. Logging

◼ 24x7 service achieved by using multiple 

sets of hardware.

◼ Perform recovery by copying missing 

states from other database replicas.

Log for recovery can be avoided.
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Trend 5: Transaction Variants
◼ Why transaction variants?

2-phase commit protocol harm performance 

of large-scale distributed DB system

2-phase commit involves commit-request and 

commit phase which involves all server to 

participate.
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Trend 5: Transaction Variants

◼ Trade consistency for performance

◼ Eventual consistency, all writes propagate 

among the database servers.

But not immediately.
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Trend in OLTP - Summary
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Impact on DBMS
◼ (1) memory resident DB can get rid of 

buffer management 

Buffers
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Impact on DBMS
◼ (2) single thread can avoid locking and 

latching
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Impact on DBMS
◼ (3) cluster computing helps avoid locking.

 Instead of single processor and multithreading, 

each processor is responsible for each own 

thread.
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Impact on DBMS
◼ (4) high availability without replication mgr.

Active-passive replication scheme (log shipping)

1. Replica may not be consistent with the primary 

 unless on two-phase commit protocol

2. Failover in not instantaneous

3. Log is required

 It takes about 20% of CPU cycles.

Active-active replication scheme with 

transactions

◼ Two-phase commit introduces large latency for 

distributed replication yet.
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Impact on DBMS
◼ (5) being “transaction less” avoids book 

keeping, i.e., logging.

◼ (5+) Cache-conscious B-Trees

Cache misses in the B-tree code may well be 

the new bottleneck for the stripped-down 

system.

◼ Related to utilization of the first-level data cache of 

the CPU.
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TPC-C Benchmark

◼ TPC-C is industry standard used to 

measure ecommerce performance

◼ TPC-C is designed to represent any 

industry that must manage, sell, or 

distribute a product or service

◼ Vendors includes Microsoft, Oracle, IBM, 

Sybase, Sun, HP, DELL etc.

http://www.tpc.org/tpcc/default.asp
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TPC-C Benchmark
◼ 1 warehouse(~100M) serves 10 districts, 

and each district serve 3000 customers. 
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TPC-C Benchmark
◼ 5 concurrent business transactions

New Order Transaction

Payment 

Deliver Order

Check status of Order

Monitor Stock Level of warehouse
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Experiment setup

◼ 40,000 transactions run for types 

New Order Transaction and Payment

◼ Results measured in 

Throughput (Time, Transactions completed) 

 Instruction count

◼ Single-core Pentium 4, 3.2GHz, with 1MB 

L2 cache, hyper threading disabled, 1GB 

RAM, running Linux 2.6.
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Effect of removing components (1)

◼ Payment transaction:
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Effect of removing components (2)
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Effect of removing components (3)
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Effect of removing components (4)

PA152, Vlastislav Dohnal, FI MUNI, 2024 28



Effect of removing components (5)
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Effect of removing components (6)

◼ Instructions of useful work is only <2% of a 

memory resident DB
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Effect of removing components (7)

◼ The same for New Order Transaction
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Effect of removing components (8)

◼ Comparison of CPU instructions and cycles

New order transaction
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Experiment Results

◼ Memory resident DBMS

640 transactions per second.

◼ Stripped-down DBMS

12,700 transactions per second.

◼ Stripped-down DBMS gave a 20 times 

improvement in throughput
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Conclusion
◼ Most significant overhead contributors

buffer management and 

 locking operation, 

 followed by logging and latching.

◼ A fully stripped-down system’s 

performance is orders of magnitude better 

than an unmodified system.

“One size fits all” DBMSes excel at nothing

◼ Need for specialized databases and languages
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Conclusion

◼ Welcome to NewSQL

PA152, Vlastislav Dohnal, FI MUNI, 2024 35



NewSQL DBMS
◼ Highly concurrent, latch-free data 

structures

◼ Partitioning into single-threaded executors

◼ H-store

Distributed, shared-nothing, main mem DBMS

Row-store based relational DBMS
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ZDNet interview, Feb. 2008
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H-Store
◼ Logging overhead

Replication for recovery → no redo log

Transient undo log sufficient for tx rollback

◼ Transaction classes

Optimize concurrency control protocols

◼ Incremental scalability

Shared nothing architecture

◼ Remove knobs/tuning parameters

Personnel costs higher than machine costs

Automatic physical database design
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H-Store Architecture
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H-Store Cluster
◼ Cluster = multiple computers (nodes)

◼ Node = multi-core CPUs, RAM

hosts multiple sites

◼ Site = process of H-Store

dedicated CPU core and RAM, data partition
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Transaction Classes
1. Single-sited transactions

2. One-shot transactions

3. Two-phase transactions

4. Sterile transactions

5. General transactions
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1. Single-sited transactions
◼ All queries hit the same partition

◼ Constrained Tree Schemas

Root table can be horizontally hash-partitioned

Collocate corresponding shards of child tables

No communication between partitions
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2. One-shot transactions
◼ No inter-query dependencies

◼ Execute in parallel without communication

Replicate read-only parts

Vertical partitioning

Can be decomposed into single-sited plans

Local decisions → No redo log required
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3. Two-phase class

◼ Two-phase classes

Phase 1: Read-only operations

Phase 2: Updates cannot violate integrity

No undo log required
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4. Sterile classes

◼ Sterile classes

Operate independently

Do not depend on results / state of other 

concurrent transactions

No concurrency control needed

◼ i.e., no coordination among transactions is necessary.
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5. General transactions
◼ Require coordination with other transactions

read/write shared data; 

update data in more partitions
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Concurrency Control
◼ Run sterile, single-sited and one-shot 

transactions with no controls

◼ Other transactions with basic strategy

can escalate to intermediate or advanced

◼ Timestamp ordering of all transactions
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Concurrency Control
◼ Basic Strategy

Coordinator sends tx subplans to “workers”

Worker waits for “small period of time”

◼ to preserve timestamp order (network delay).

Worker executes the subplan

◼ if there is not any uncommited, conflicting transaction

◼ otherwise aborts.

Coordinators wait for “ok” from all sites and 

commits.
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Concurrency Control
◼ Intermediate Strategy

 if there are too many aborts with basic one

 Increase wait latency in workers

◼ Advanced Strategy

 if there are too many aborts with intermediate

== Optimistic concurrency control

Tracks read and write sets of each tx on each 

site

◼ Aborts if a conflict between write and write is detected.
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Database Layout
◼ Table replication

Read-only tables are on all sites

 i.e., no communication → no latency

◼ Data partitioning

Horizontal partitioning into 4 partitions and 2 
replicas

 i.e., allow transaction execution in parallel

◼ K-safety of 2

Not enough RAM to replicate all tables

Every site is given a unique set of three partitions 
per table, thus preventing any pair of two sites 
from holding the only copies of a partition.
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Performance comparison
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Anti-caching (Durability)
◼ No logging is performed

◼ Cold data moved from RAM to disk

 In a transactional-safe way
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Anti-caching
◼ Fine-grained eviction

Like in virtual memory mgmt, pages are 

copied.

Cold pages are written out.

A single hot tuple marks the page (block) hot.

◼ Non-blocking fetches

Abort transactions instead of waiting

◼ for an I/O operation
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Anti-caching
◼ Non-blocking 

fetches:

◼ Abort transactions 

instead of waiting

Reschedule them

Occurs if a transaction needs to operate 

on a tuple on disk

“pre-pass” tx to identify all evicted blocks.
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H-store implementations
◼ Volt Active Data (VoltDB)

ensure “five 9’s” uptime

◼ SAP HANA

◼ SingleStore (MemSQL)

◼ eXtremeDB
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Lecture Takeaways
◼ Trends in DBMS with current HW

◼ Main bottlenecks in full ACID systems

◼ NewSQL as H-Store

principle

 transaction classes

durability
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