

Probability

PA154 Language Modeling (1.2)

Pavel Rychlý

pary@fi.muni.cz

February 20, 2024

Source: Introduction to Natural Language Processing (600.465) Jan Hajič, CS Dept., Johns Hopkins Univ. www.cs.jhu.edu/ hajic

Experiments & Sample Spaces

- Experiment, process, test, ...
- Set of possible basic outcomes: sample space Ω základní prostor obsahující možné výsledky)
 - coin toss (Ω = {head, tail}), die (Ω = {1..6})
 - yes/no opinion poll, quality test (bad/good) ($\Omega = \{0,1\}$)
 - lottery ($|\Omega| \cong 10^7..10^{12}$)
 - # of traffic accidents somewhere per year (Ω = N)
 - spelling errors (Ω = Z*), where Z is an aplhabet, and Z* is set of possible strings over such alphabet

Repeat experiment many times, record how many times a given

(where T_i is the number of experiments run in the *i*-th series) are

Do this whole series many times; remember all *c*_is.

close to some (unknown but) constant value.

Call this constant a probability of A. Notation: p(A)

• Observation: if repeated really many times, the ratios of $\frac{c_i}{T_i}$

missing word ($|\Omega| \cong$ vocabulary size)

Pavel Rychlý • Probability • February 20, 2024

event A occured ("count" c_1).

Pavel Rychlý • Probability • February 20, 2024

Recall our example:

experiment: three times coin toss

estimate: p(A) = 386/1000 = .386

Run an experiment 1000 times (i.e. 3000 tosses)
 Counted: 386 cases with two tails (HTT, THT or TTH)

Run again: 373, 399, 382, 355, 372, 406, 359

 $\square \Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$

p(A) = .379 (weighted average) or simply 3032/8000

■ Uniform distribution assumption: p(A) = 3/8 = .375

• count cases with exactly two tails: $A = \{HTT, THT, TTH\}$

Example

Probability

2/16

4/16

Events

- Event jev) A is a set of basic outcomes
- **u** Usually $A \subset \Omega$, and all $A \in 2^{\Omega}$ (the event space, jevové pole)
 - Ω is the certain event jistý jev), Ø is the impossible event nemožný jev)
- Example:
 - experiment: three times coin toss
 - Ω = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
 count cases with exactly two tails: then
 - A = {HTT, THT, TTH}
 - all heads:
 - A = {HHH}

Pavel Rychlý • Probability • February 20, 2024

3/16

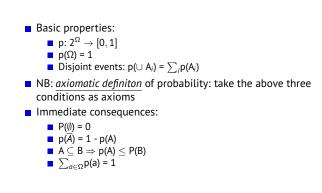
Estimating Probability

- Remember: ...close to an *unknown* constant.
- We can only estimate it:
 - from a single series (typical case, as mostly the outcome of a series is given to us we cannot repeat the experiment):

$$p(A)=\frac{c_1}{T_1}$$

- otherwise, take the weighted average of all $\frac{c_i}{T_i}$ (or, if the data allows, simply look at the set of series as if it is a single long series).
- This is the **<u>best</u>** estimate.

Basic Properties

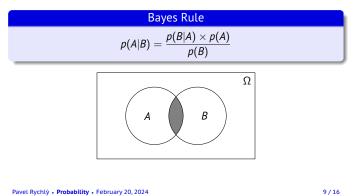


Pavel Rychlý • Probability • February 20, 2024

7/16

Bayes Rule

- p(A,B) = p(B,A) since $p(A \cap B) = p(B \cap A)$
 - therefore p(A|B)p(B) = p(B|A)p(A), and therefore:

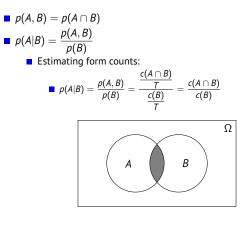


Chain Rule

$$p(A_1, A_2, A_3, A_4, \dots, A_n) = p(A_1|A_2, A_3, A_4, \dots, A_n) \times p(A_2|A_3, A_4, \dots, A_n) \times \times p(A_3|A_4, \dots, A_n) \times \dots \times p(A_{n-1}|A_n) \times p(A_n)$$

this is a direct consequence of the Bayes rule.

Joint and Conditional Probability



Pavel Rychlý • Probability • February 20, 2024

8/16

Independence

- Can we compute p(A,B) from p(A) and p(B)?
- Recall from previous foil:

$$p(A|B) = rac{p(B|A) imes p(A)}{p(B)}$$

$$p(A|B) \times p(B) = p(B|A) \times p(A)$$

$$p(A,B) = p(B|A) \times p(A)$$

- ...we're almost there: how p(B|A) relates to p(B)? **p**(B|A) = p(B) iff A and B are **independent**
- Example: two coin tosses, weather today and weather on March 4th 1789;
- Any two events for which p(B|A) = P(B)!

Pavel Rychlý • Probability • February 20, 2024

10/16

The Golden Rule of Classic Statistical NLP

- Interested in an event A given B (where it is not easy or practical or desirable) to estimate p(A|B):
- take Bayes rule, max over all Bs:
- argmax_A $p(A|B) = argmax_A \frac{p(B|A) \times p(A)}{p(B)} =$

 $argmax_A(p(B|A) \times p(A))$

■ ...as p(B) is constant when changing As

Random Variables

- **is a function** $X : \Omega \rightarrow Q$
 - in general $Q = R^n$, typically R
 - easier to handle real numbers than real-world events
- random variable is *discrete* if *Q* is <u>countable</u> (i.e. also if <u>finite</u>)
- Example: *die*: natural "numbering" [1,6], *coin*: {0,1}
- Probability distribution:
 - $p_X(x) = p(X = x) =_{df} p(A_x)$ where $A_x = \{a \in \Omega : X(a) = x\}$
 - often just p(x) if it is clear from context what X is

Expectation Joint and Conditional Distributions

- is a mean of a random variable (weighted average) $\blacksquare E(X) = \sum_{x \in X(\Omega)} x \cdot p_X(x)$
- Example: one six-sided die: 3.5, two dice (sum): 7
- Joint and Conditional distribution rules: analogous to probability of events
- Bayes: $p_{X|Y}(x, y) =_{notation} p_{XY}(x|y) =_{even simpler notation}$

 $p(x|y) = \frac{p(y|x).p(x)}{p(x)}$ p(y)

Chain rule: $\left(p(w, x, y, z) = p(z).p(y|z).p(x|y, z).p(w|x, y, z)\right)$

Pavel Rychlý • Probability • February 20, 2024

13/16

14/16

Standard Distributions

- Binomial (discrete)
 - outcome: 0 or 1 (thus *bi*nomial)
 - make n trials
 - interested in the (probability of) numbers of successes r
- Must be careful: it's not uniform!
- $\square p_b(r|n) = \frac{\binom{n}{r}}{2^n}$ (for equally likely outcome)
- $\binom{n}{r}$ counts how many possibilities there are for choosing r objects out of *n*;

$$(nr) = \frac{n!}{(n-r)!r!}$$

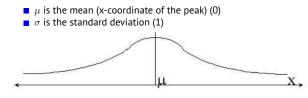
Pavel Rychlý • Probability • February 20, 2024

15/16

Pavel Rychlý • Probability • February 20, 2024

Continuous Distributions

 $-(x - \mu)^2$ $p_{norm}(x|\mu,\sigma) = exp \left[\frac{2\sigma^2}{\sigma} \right]$ $\sigma\sqrt{2\pi}$ where:



other: hyperbolic, t

Pavel Rychlý • Probability • February 20, 2024

16/16