

LM Smoothing (The EM Algorithm)

PA154 Language Modeling (3.2)

Pavel Rychlý

pary@fi.muni.cz

March 5, 2024

Source: Introduction to Natural Language Processing (600.465) Jan Hajič, CS Dept., Johns Hopkins Univ. www.cs.jhu.edu/~hajic

The Zero Problem

"Raw" n-gram language model estimate:

- necessarily, some zeros
 - !many: trigram model \rightarrow 2.16 \times 10¹⁴ parameters, data ~10⁹ words
- which are true 0?
 - optimal situation: even the least frequent trigram would be seen several times, in order to distinguish it's probability vs. other trigrams
 - optimal situation cannot happen, unfortunately (open question: how many data would we need?)
- ightarrow ightarrow we don't know
- we must eliminate zeros

■ Two kinds of zeros: p(w|h) = 0, or even p(h) = 0!

Why do we need Nonzero Probs?

- To avoid infinite Cross Entropy:
 - happens when an event is found in test data which has not been seen in training data

 $H(p) = \infty$: prevents comparing data with ≥ 0 "errors"

- To make the system more robust
 - Iow count estimates:
 - they typically happen for "detailed" but relatively rare appearances
 - high count estimates: reliable but less "detailed"

Eliminating the Zero Probabilites: Smoothing

- Get new p'(w) (same Ω): almost p(w) but no zeros
- Discount w for (some) p(w) > 0: new p'(w) < p(w)

$$\sum_{w \in discounted} (p(w) - p'(w)) = D$$

- Distribute D to all w; p(w) = 0: new p'(w) > p(w)
 - possibly also to other w with low p(w)
- For some w (possibly): p'(w) = p(w)

• Make sure
$$\sum_{w \in \Omega} p'(w) = 1$$

There are many ways of smoothing

Smoothing by Adding 1

Simplest but not really usable:

Predicting words w from a vocabulary V, training data T:

$$p'(w|h) = \frac{c(h,w)+1}{c(h)+|V|}$$

for non-conditional distributions: $p'(w) = \frac{c(w)+1}{|T|+|V|}$

Problem if |V| > c(h) (as is often the case; even >> c(h)!)

Example

Training data:<s> what is it what is small?|T| = 8V = {what, is, it, small, ?,<s> ,flying, birds, are, a, bird, .}, |V| = 12p(it) = .125, p(what) = .25, p(.)=0p(what is it?) = .25² × .125² \cong .001p(it) = .1, p'(what) = .15,p(what is it?) = .125 × .25 × 0² = 0p'(it) = .1, p'(what) = .15,p'(what is it?) = .15² × .1² \cong .0002p'(it is flying.) = .15p'(it is flying.) = .1 × .15 × .05² \cong .0004

Adding less than 1

Equally simple:

Predicting word w from a vocabulary V, training data T:

$$p'(w|h) = rac{c(h,w) + \lambda}{c(h) + \lambda |V|}, \ \lambda < 1$$

for non-conditional distributions: $p'(w) = \frac{c(w)+\lambda}{|T|+\lambda|V|}$

Example

Training data:<s> what is it what is small?|T| = 8V = {what, is, it, small, ?,<s> ,flying, birds, are, a, bird, .}, |V| = 12p(it) = .125, p(what) = .25, p(.)=0p(what is it?) = $.25^2 \times .125^2 \cong .001$ p(it is flying.) = $.125 \times .25 \times 0^2 = 0$ Use $\lambda = .1$ p'(it) $\cong .12$, p'(what) $\cong .23$,p'(it is flying.) = $.23^2 \times .12^2 \cong .0007$ p'(it is flying.) $= .12 \times .23 \times .01^2 \cong .00003$

Good-Turing

Suitable for estimation from large data

similar idea: discount/boost the relative frequency estimate:

$$p_r(w) = \frac{(c(w)+1) \times N(c(w)+1)}{|T| \times N(c(w))}$$

where N(c) is the count of words with count c (count-of-counts)

specifically, for c(w) = 0 (unseen words), $p_r(w) = \frac{N(1)}{|T| \times N(0)}$

- **good** for small counts (< 5–10, where N(c) is high)
- normalization! (so that we have $\sum_{w} p'(w) = 1$)

Good-Turing: An Example

Remember: $p_r(w) = \frac{(c(w)+1) \times N(c(w)+1)}{|T| \times N(c(w))}$

Training data:

 S what is it what is small? |T| = 8
 $V = \{ what, is, it, small, ?, <s> ,flying, birds, are, a, bird, .\}, <math display="inline">|V| = 12$
 p(it) = .125, p(what) = .25, p(.)=0 p(what is it?) = .25^2 × .125^2 \cong .001
 p(it is flying.) = .125 × .25 × 0^2 = 0

■ Raw estimation (N(0) = 6, N(1) = 4, N(2) = 2, N(i) = 0, for i > 2): $p_r(it) = (1+1) \times N(1+1)/(8 \times N(1)) = 2 \times 2/(8 \times 4) = .125$ $p_r(what) = (2+1) \times N(2+1)/(8 \times N(2)) = 3 \times 0/(8 \times 2) = 0$: keep orig. p(what) $p_r(.) = (0+1) \times N(0+1)/(8 \times N(0)) = 1 \times 4/(8 \times 6) \cong .083$

■ Normalize (divide by $1.5 = \sum_{w \in |V|} p_r(w)$) and compute: p'(it) \cong .08, p'(what) \cong .17, p'(.) \cong .06 p'(what is it?) = .17² × .08² \cong .0002 p'(it is flying.) = .08² × .17 × .06² \cong .00004

Smoothing by Combination: Linear Interpolation

Combine what?

distribution of various level of detail vs. reliability

n-gram models:

- use (n-1)gram, (n-2)gram, ..., uniform
 - $\longrightarrow \text{reliability}$
 - $\longleftarrow \text{detail}$
- Simplest possible combination:
 - sum of probabilities, normalize:

■
$$p(0|0) = .8$$
, $p(1|0) = .2$, $p(0|1) = 1$, $p(1|1) = 0$,
 $p(0) = .4$, $p(1) = .6$

Typical n-gram LM Smoothing

• Weight in less detailed distributions using $\lambda = (\lambda_0, \lambda_1, \lambda_2, \lambda_3)$: $p'_{\lambda}(w_i|w_{i-2}, w_{i-1}) = \lambda_3 p_3(w_i|w_{i-2}, w_{i-1}) + \lambda_2 p_2(w_i|w_{i-1}) + \lambda_1 p_1(w_i) + \lambda_0/|V|$

Normalize:

 $\lambda_i > 0, \sum_{i=0}^n \lambda_i = 1$ is sufficient $(\lambda_0 = 1 - \sum_{i=1}^n \lambda_i)(n = 3)$

- Estimation using MLE:
 - fix the p₃, p₂, p₁ and |V| parameters as estimated from the training data
 - then find such {λ_i} which minimizes the cross entropy (maximazes probablity of data): -¹/_{|D|} Σ^{|D|}_{i=1} log₂(p'_λ(w_i|h_i))

Held-out Data

- What data to use?
 - try training data T: but we will always get $\lambda_3=1$
 - why? let p_{iT} be an i-gram distribution estimated using r.f. from T)
 - minimizing $H_T(p'_{\lambda})$ over a vector λ , p'_{λ} =

 $\lambda_{3} p_{3T} + \lambda_{2} p_{2T} + \lambda_{1} p_{1T} + \lambda_{0} / |V|$

– remember $H_T(p'_{\lambda}) = H(p_{3T}) + D(p_{3T}||p'_{\lambda})$; p_{3T} fixed $\rightarrow H(p_{3T})$ fixed, best)

– which p'_{λ} minimizes $H_T(p'_{\lambda})$? Obviously, a p'_{λ} for which $D(p_{3T}||p'_{\lambda}) = 0$

- ...and that's p_{3T} (because D(p||p) = 0, as we know)
- ...and certainly $p'_{\lambda} = p_{3T} i f \lambda_3 = 1$ (maybe in some other cases, too).

 $-\left(p'_{\lambda}=1\times p_{3\mathcal{T}}+0\times p_{2\mathcal{T}}+1\times p_{1\mathcal{T}}+0/|V|\right)$

- thus: do not use the training data for estimation of λ !
 - must hold out part of the training data (*heldout* data, <u>H</u>)
 - ...call remaining data the (true/raw) *training* data, <u>T</u>
 - the test data S (e.g., for comparison purposes): still different data!

The Formulas

Repeat: minimizing
$$\frac{-1}{|H|} \sum_{i=1}^{|H|} log_2(p'_{\lambda}(w_i|h_i))$$
 over λ

$$p'_{\lambda}(w_{i}|h_{i}) = p'_{\lambda}(w_{i}|w_{i-2}, w_{i-1}) = \\ = \lambda_{3}p_{3}(w_{i}|w_{i-2}, w_{i-1}) + \lambda_{2}p_{2}(w_{i}|w_{i-1}) + \lambda_{1}p_{1}(w_{i}) + \lambda_{0}\frac{1}{|V|}$$

"Expected counts of lambdas": j = 0..3

$$m{c}(\lambda_j) = \sum_{i=1}^{|H|} rac{\lambda_j m{
ho}_j(m{w}_i|m{h}_i)}{m{
ho}_\lambda'(m{w}_i|m{h}_i)}$$

"Next
$$\lambda$$
": j = 0..3

$$\lambda_{j,next} = \frac{c(\lambda_j)}{\sum_{k=0}^{3} c(\lambda_k)}$$

Pavel Rychlý • LM Smoothing • March 5, 2024

The (Smoothing) EM Algorithm

- 1. Start with some λ , such that $\lambda > 0$ for all $j \in 0..3$
- 2. Compute "Expected Counts" for each λ_i .
- **3**. Compute new set of λ_i , using "Next λ " formula.
- 4. Start over at step 2, unless a termination condition is met.
- **Termination condition: convergence of** λ .
 - Simply set an ε , and finish if $|\lambda_j \lambda_{j,next}| < \varepsilon$ for each j (step 3).
- Guaranteed to converge: follows from Jensen's inequality, plus a technical proof.

Remark on Linear Interpolation Smoothing

"Bucketed Smoothing":

– use several vectors of λ instead of one, based on (the frequency of) history: $\lambda(h)$

■ e.g. for h = (micrograms,per) we will have

 $\lambda(h) = (.999, .0009, .00009, .00001)$

(because "cubic" is the only word to follow ...)

– actually: not a separate set for each history, but rather a set for "similar" histories ("bucket"):

 λ (b(h)), where b: V² \rightarrow N (in the case of trigrams)

b classifies histories according to their reliability (~frequency)

Bucketed Smoothing: The Algorithm

- First, determine the bucketing function <u>b</u> (use heldout!):
 - decide in advance you want e.g. 1000 buckets
 - compute the total frequency of histories in 1 bucket $(f_{max}(b))$
 - gradually fill your buckets from the most frequent bigrams so that the sum of frequencies does not exceed f_{max} (b) (you might end up with slightly more than 1000 buckets)
- Divide your heldout data according to buckets
- Apply the previous algorithm to each bucket and its data

Simple Example

Raw distribution (unigram only; smooth with uniform): p(a) = .25, p(b) = .5, $p(\alpha) = 1/64$ for $\alpha \in \{c..r\}$, = 0 for the rest: s, t, u, v, w, x, y, z

 Heldout data: baby; use one set of λ (λ₁: unigram, λ
₀: uniform)

Start with $\lambda_0 = \lambda_1 = .5$:

$$p_{\lambda}'(b) = .5 \times .5 + .5/26 = .27$$

 $p_{\lambda}'(a) = .5 \times .25 + .5/26 = .14$
 $p_{\lambda}'(y) = .5 \times 0 + .5/26 = .02$

 $c(\lambda_1) = .5 \times .5/.27 + .5 \times .25/.14 + .5 \times .5/.27 + .5 \times 0/.02 = 2.27$ $c(\lambda_0) = .5 \times .04/.27 + .5 \times .04/.14 + .5 \times .04/.27 + .5 \times .04/.02 = 1.28$ Normalize $\lambda_{1,next} = .68$, $\lambda_{0,next} = .32$ Repeat from step 2 (recompute p'_{λ} first for efficient computation, there $c(\lambda_1)$

then $c(\lambda_i), ...)$.

Finish when new lambdas almost equal to the old ones (say, < 0.01 difference).

Some More Technical Hints

■ Set V = {all words from training data}.

- You may also consider V = T ∪ H, but it does not make the coding in any way simpler (in fact, harder).
- But: you must *never* use the test data for your vocabulary
- Prepend two "words" in front of all data:
 - avoids beginning-of-data problems
 - call these index -1 and 0: then the formulas hold exactly
- When $c_n(w,h) = 0$:
 - Assing 0 probability to $p_n(w|h)$ where $c_{n-1}(h) > 0$, but a uniform probablity (1/|V|) to those $p_n(w|h)$ where $c_{n-1}(h) = 0$ (this must be done both when working on the heldout data during EM, as well as when computing cross-entropy on the test data!)

Back-off model

Combines n-gram models

using lower order in not enough information in higher order

$$P_{bo}(w_{i}|w_{i-n+1}\dots w_{i-1}) =$$

$$= d_{w_{i-n+1}\dots w_{i-1}} \frac{C(w_{i-n+1}\dots w_{i-1}w_{i})}{C(w_{i-n+1}\dots w_{i-1})} \quad \text{if } C(w_{i-n+1}\dots w_{i}) > k$$

$$= \alpha_{w_{i-n+1}\dots w_{i-1}} P_{bo}(w_{i}|w_{i-n+2}\dots w_{i-1}) \quad \text{otherwise}$$