

HMM Parameter Estimation: the Baum-Welch algorithm

PA154 Language Modeling (6.1)

Pavel Rychlý

pary@fi.muni.cz

March 26, 2024

Source: Introduction to Natural Language Processing (600.465) Jan Hajič, CS Dept., Johns Hopkins Univ. www.cs.jhu.edu/~hajic

A variant of Expectation-Maximization

- Idea(~EM, for another variant see LM smoothing (lecture 3.2)):
 - Start with (possibly random) estimates of P_S and P_Y .
 - Compute (fractional) "counts" of state transitions/emissions taken, from P_S and P_Y, given data Y
 - Adjust the estimates of P_S and P_Y from these "counts" (using MLE, i.e. relative frequency as the estimate).
- Remarks:
 - many more parameters than the simple four-way smoothing
 - no proofs here; see Jelinek Chapter 9

Pavel Rychlý • HMM Parameter Estimation: the Baum-Welch algorithm • March 26, 2024

3/14

- For computing the initial expected "counts"
- Important part

Initialization

- EM guaranteed to find a local maximum only (albeit a good one in most cases)
- \blacksquare P_Y initialization more important
 - fortunately, often easy to determine
 - \blacksquare together with dictionary \leftrightarrow vocabulary mapping, get counts, then MLE
- P_S initialization less important
 - e.g. uniform distribution for each p(.|s)

HMM: The Tasks

- HMM(the general case):
 - \blacksquare five-tuple (S, S_0, Y, P_S, P_Y) , where:
 - $S = \{s_1, s_2, \dots, s_T\}$ is the set of states, S_0 is the initial state,
 - $Y = \{y_1, y_2, \dots, y_y\}$ is the output alphabet,
 - $P_S(s_i|s_i)$ is the set of prob. distributions of transitions,
 - $P_Y(y_k|s_i,s_j)$ is the set of output (emission) probability distributions.
- Given an HMM & an output sequence $Y = \{y_1, y_2, \dots, y_k\}$:
 - (Task 1) compute the probability of *Y*;
 - (Task 2) compute the most likely sequence of states which has generated Y
 - (Task 3) Estimating the parameters (transition/output distributions)

Pavel Rychlý • HMM Parameter Estimation: the Baum-Welch algorithm • March 26, 2024

2 / 14

Setting

- HMM (without P_S, P_Y)(S, S_0, Y), and data $T = \{y_i \in Y\}_{i=1...|T|}$
 - will use $T \sim |T|$
- HMM structure is given: (S, S_0)
- P_S: Typically, one wants to allow "fully connected" graph
 - $lue{}$ (i.e. no transitions forbidden \sim no transitions set to hard 0)
 - lacksquare why? ightarrow we better leave it on the learning phase, based on the data!
 - sometimes possible to remove some transitions ahead of time
- P_Y : should be restricted (if not, we will not get anywhere!)
 - restricted \sim hard 0 probabilities of p(y|s,s')
 - "Dictionary": states \leftrightarrow words, "m:n" mapping on $S \times Y$ (in general)

Pavel Rychlý • HMM Parameter Estimation: the Baum-Welch algorithm • March 26, 2024

4/14

Data structures

- Will need storage for:
 - The predetermined structure of the HMM (unless fully connected → need not to keep it!)
 - The parameters to be estimated (P_S, P_Y)
 - The expected counts (same size as (P_S, P_Y))
 - The training data $T = \{y_i \in Y\}_{i=1...T}$
 - The trellis (if f.c.):

Each trellis state: <u>two</u> [float] numbers (forward/backward)

The Algorithm Part I

- 1. Initialize P_S, P_Y
- 2. Compute "forward" probabilities:
 - follow the procedure for trellis (summing), compute $\alpha(s, i)$ evervwhere
 - use the current values of P_S , $P_Y(p(s'|s), p(y|s, s'))$: $\alpha(s',i) = \sum_{s \to s}, \alpha(s,i-1) \times p(s'|s) \times p(y_i|s,s')$
 - NB: do not throw away the previous stage!
- 3. Compute "backward" probabilities
 - start at all nodes of the last stage, proceed backwards, $\beta(s, i)$
 - i.e., probability of the "tail" of data from stage i to the end of data $\beta(s',i) = \sum_{s' \leftarrow s} \beta(s,i+1) \times p(s|s') \times p(y_{i+1}|s',s)$ also, keep the $\beta(s,i)$ at all trellis states

Pavel Rychlý • HMM Parameter Estimation: the Baum-Welch algorithm • March 26, 2024

7/14

The Algorithm Part II

- 4. Collect counts:
 - for each output/transition pair compute

$$c(y,s,s') = \sum_{i=0,k:1,y=y_{i+1}} \alpha(s,i) \underbrace{p(s'|s) p(y_{i+1}|s,s')}_{\text{prefix prob.}} \beta(s',i+1)$$
one pass through data, only stop at (output) y
$$\times \text{ output prob}$$

 $c(s,s') = \sum_{y \in Y} c(y,s,s')$ (assuming all observed y_i in Y) $c(s) = \sum_{s' \in S} c(s,s')$

- 5. Reestimate: p'(s'|s) = c(s,s')/c(s) p'(y|s,s') = c(y,s,s')/c(s,s')
- 6. Repeat 2-5 until desired convergence limit is reached

Pavel Rychlý • HMM Parameter Estimation: the Baum-Welch algorithm • March 26, 2024

8/14

Baum-Welch: Tips & Tricks

- Normalization badly needed
 - long training data → extremely small probabilities
- Normalize α, β using the same norm.factor:

$$N(i) = \sum_{s \in S} \alpha(s, i)$$

as follows:

- \blacksquare compute $\alpha(s, i)$ as usual (Step 2 of the algorithm), computing the sum N(i) at the given stage i as you go.
- \blacksquare at the end of each stage, recompute all αs (for each state s): $\alpha^*(s,i) = \alpha(s,i)/N(i)$
- use the same N(i) for βs at the end of each backward (Step 3) stage:

$$\beta^*(s,i) = \beta(s,i)/N(i)$$

Pavel Rychlý • HMM Parameter Estimation: the Baum-Welch algorithm • March 26, 2024

Example

- Task: pronunciation of "the"
- Solution: build HMM, fully connected, 4 states:
 - S short article, L long article, C,V word starting w/consonant,
 - thus, only "the" is ambiguous (a, an, the not members of C,V)
- Output form states only (p(w|s,s') = p(w|s'))

· Data Y: an egg and a piece of the big (C,3 Trellis: (V,T) 0

Pavel Rychlý • HMM Parameter Estimation: the Baum-Welch algorithm • March 26, 2024

10 / 14

Example: Initialization

- Output probabilities:
 - $ightharpoonup p_{init}(w|c) = c(c,w)/c(c)$; where c(S,the) = c(L,the) = c(the)/2(other than that, everything is deterministic)
- Transition probabilities:
 - $p_{init}(c'|c) = 1/4(uniform)$
- Don't forget:
 - about the space needed
 - initialize $\alpha(X,0) = 1$ (X : the never-occurring front buffer st.)
 - initialize $\beta(s,T) = 1$ for all s (except for s = X)

Fill in alpha, beta

- Left to right, alpha: $\alpha(s',i) = \sum_{s \to s'} \alpha(s,i-1) \times p(s'|s) \times p(w_i|s')$, where s' is the output from states
- Remember normalization (N(i)).
- Similary, beta (on the way back from the end).

Counts & Reestimation

- One pass through data
- At each position i, go through all pairs (s_i, s_{i+1})
- Increment appropriate counters by frac. counts (Step 4):
 - $inc(y_{i+1}, s_i, s_{i+1}) = a(s_i, i)p(s_{i+1}|s_i)p(y_{i+1}|s_{i+1})b(s_{i+1,i+1})$
 - $c(y_{i+1}, y_{i+1}) = c(y_i, y_{i+1}) + y_i$ $c(y_i, s_i, s_{i+1}) + \text{einc (always)}$ $c(s_i, s_{i+1}) + \text{einc (always)}$ $c(s_i) + \text{einc (always)}$

inc(big,L,C)= $\alpha(L,7)p(C|L)p(big,C)\beta(V,8)$ inc(big,S,C)= $\alpha(S,7)p(C|S)p(big,C)\beta(V,8)$

- Reestimate p(s'|s), p(y|s)
 - and hope for increase in p(C|S) and p(V|L)...!!

Pavel Rychlý • HMM Parameter Estimation: the Baum-Welch algorithm • March 26, 2024

HMM: Final Remarks

- Parameter "tying"
 - lacktriangle keep certain parameters same (\sim just one "counter" for all of them)
 - any combination in principle possible
 - ex.: smoothing (just one set of lambdas)
- Real Numbers Output
 - \blacksquare Y of infinite size (R, R^n)
 - parametric (typically: few) distribution needed (e.g., . "Gaussian")
- "Empty" transitions: do not generate output

 $lue{}$ \sim vertical areas in trellis; do not use in "counting"

14/14