word embeddings what, how and whither

Yoav Goldberg Bar Ilan University understanding word2vec

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めんの

Seems magical.

"Neural computation, just like in the brain!"

・ロト・日本・日本・日本・日本

Seems magical.

"Neural computation, just like in the brain!"

How does this actually work?

・ロト < 置 > < 置 > < 置 > < 置 > の Q (?)

word2vec implements several different algorithms:

Two training methods

- Negative Sampling
- Hierarchical Softmax

Two context representations

- Continuous Bag of Words (CBOW)
- Skip-grams

・ロト・日本・モー・モー・ 日・ うへつ・

word2vec implements several different algorithms:

Two training methods

- Negative Sampling
- Hierarchical Softmax

Two context representations

- Continuous Bag of Words (CBOW)
- Skip-grams

We'll focus on skip-grams with negative sampling.

intuitions apply for other models as well.

▲□▶▲畳▶▲≣▶▲≣▶ ≣ めみぐ

- Represent each word as a *d* dimensional vector.
- Represent each context as a *d* dimensional vector.
- Initalize all vectors to random weights.
- Arrange vectors in two matrices, *W* and *C*.

・ロト < 置 > < 置 > < 置 > < 置 > < の < ()

While more text:

Extract a word window:
A springer is [a cow or heifer close to calving].
 $c_1 \quad c_2 \quad c_3 \quad w \quad c_4 \quad c_5 \quad c_6$

- ► *w* is the focus word vector (row in *W*).
- c_i are the context word vectors (rows in *C*).

・ロト・雪・・雪・・雪・・日・

While more text:

Extract a word window:

A springer is [a cow or heifer close to calving]. $c_1 \quad c_2 \quad c_3 \quad W \quad c_4 \quad c_5 \quad c_6$

Try setting the vector values such that:

 $\sigma(\mathbf{w} \cdot \mathbf{c}_1) + \sigma(\mathbf{w} \cdot \mathbf{c}_2) + \sigma(\mathbf{w} \cdot \mathbf{c}_3) + \sigma(\mathbf{w} \cdot \mathbf{c}_4) + \sigma(\mathbf{w} \cdot \mathbf{c}_5) + \sigma(\mathbf{w} \cdot \mathbf{c}_6)$

is **high**

・ロ・・聞・・聞・・聞・・日・

While more text:

Extract a word window:

A springer is [a cow or heifer close to calving]. $c_1 \quad c_2 \quad c_3 \quad W \quad c_4 \quad c_5 \quad c_6$

Try setting the vector values such that:

 $\sigma(\mathbf{W} \cdot \mathbf{C}_1) + \sigma(\mathbf{W} \cdot \mathbf{C}_2) + \sigma(\mathbf{W} \cdot \mathbf{C}_3) + \sigma(\mathbf{W} \cdot \mathbf{C}_4) + \sigma(\mathbf{W} \cdot \mathbf{C}_5) + \sigma(\mathbf{W} \cdot \mathbf{C}_6)$

is **high**

• Create a corrupt example by choosing a random word w'

[a cow or **comet** close to calving] $C_1 \quad C_2 \quad C_3 \quad W' \quad C_4 \quad C_5 \quad C_6$

Try setting the vector values such that:

 $\sigma(\mathbf{W}' \cdot \mathbf{C}_1) + \sigma(\mathbf{W}' \cdot \mathbf{C}_2) + \sigma(\mathbf{W}' \cdot \mathbf{C}_3) + \sigma(\mathbf{W}' \cdot \mathbf{C}_4) + \sigma(\mathbf{W}' \cdot \mathbf{C}_5) + \sigma(\mathbf{W}' \cdot \mathbf{C}_6)$

is low

▲□▶▲舂▶▲壹▶▲壹▶ 壹 の�?

The training procedure results in:

- $w \cdot c$ for **good** word-context pairs is **high**.
- $w \cdot c$ for **bad** word-context pairs is **low**.
- $w \cdot c$ for **ok-ish** word-context pairs is **neither high nor low**.

As a result:

- Words that share many contexts get close to each other.
- Contexts that share many words get close to each other.

At the end, word2vec throws away C and returns W.

◆□▶ ◆舂▶ ◆壹▶ ◆壹▶ □ ● ● ●

Imagine we didn't throw away C. Consider the product WC^{\top}

・ロト・(量)・(目)・(目)・目 のQの

Imagine we didn't throw away C. Consider the product WC^{\top}

The result is a matrix *M* in which:

- Each row corresponds to a word.
- Each column corresponds to a context.
- Each cell correspond to w · c, an association measure between a word and a context.

Does this remind you of something?

▲□▶▲□▶▲≣▶▲≣▶ ≣ のQの

Does this remind you of something? Very similar to SVD over distributional representation:

▲□▶▲圖▶▲≣▶▲≣▶ ≣ め∢で

context matters

What's in a Context?

- Importing ideas from embeddings improves distributional methods
- Can distributional ideas also improve embeddings?
- Idea: change SGNS's default BoW contexts into dependency contexts

Example

Australian scientist discovers star with telescope

Target Word

Australian scientist discovers star with telescope

Bag of Words (BoW) Context

Australian scientist discovers star with telescope

Bag of Words (BoW) Context

Australian scientist discovers star with telescope

Bag of Words (BoW) Context

Australian scientist discovers star with telescope

Syntactic Dependency Context

Australian scientist discovers star with telescope

Syntactic Dependency Context

Syntactic Dependency Context

Embedding Similarity with Different Contexts

Target Word	Bag of Words (k=5)	Dependencies
	Dumbledore	Sunnydale
	hallows	Collinwood
Hogwarts	half-blood	Calarts
(Harry Potter's school)	Malfoy	Greendale
	Snape	Millfield
Related to Harry Potter		Schools

Embedding Similarity with Different Contexts

Target Word	Bag of Words (k=5)	Dependencies
	nondeterministic	Pauling
	non-deterministic	Hotelling
Turing	computability	Heting
(computer scientist)	deterministic	Lessing
	finite-state	Hamming
Related to computability		Scientists

Embedding Similarity with Different Contexts

Target Word	Bag of Words (k=5)	Dependencies
dancing (dance gerund)	singing	singing
	dance	rapping
	dances	breakdancing
	dancers	miming
	tap-dancing	busking
	Related to dance	Gerunds

What is the effect of different context types?

- Thoroughly studied in distributional methods
 - Lin (1998), Padó and Lapata (2007), and many others...

General Conclusion:

- Bag-of-words contexts induce *topical* similarities
- Dependency contexts induce *functional* similarities
 - Share the same semantic type
 - Cohyponyms
- Holds for **embeddings** as well

- Same algorithm, different inputs -- very different kinds of similarity.
- Inputs matter much more than algorithm.
- Think about your inputs.