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“Neural computation, just like in the brain!”

How does this actually work?
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How does word2vec work?

word2vec implements several different algorithms:

Two training methods

I Negative Sampling
I Hierarchical Softmax

Two context representations

I Continuous Bag of Words (CBOW)
I Skip-grams

We’ll focus on skip-grams with negative sampling.

intuitions apply for other models as well.
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How does word2vec work?

I Represent each word as a d dimensional vector.
I Represent each context as a d dimensional vector.
I Initalize all vectors to random weights.
I Arrange vectors in two matrices, W and C.



How does word2vec work?
While more text:

I Extract a word window:
A springer is [ a cow or heifer close to calving ] .

c1 c2 c3 w c4 c5 c6

I w is the focus word vector (row in W ).
I ci are the context word vectors (rows in C).

I Try setting the vector values such that:

σ(w · c1)+σ(w · c2)+σ(w · c3)+σ(w · c4)+σ(w · c5)+σ(w · c6)

is high

I Create a corrupt example by choosing a random word w ′
[ a cow or comet close to calving ]

c1 c2 c3 w ′ c4 c5 c6

I Try setting the vector values such that:

σ(w ′· c1)+σ(w ′· c2)+σ(w ′· c3)+σ(w ′· c4)+σ(w ′· c5)+σ(w ′· c6)

is low
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How does word2vec work?

The training procedure results in:
I w · c for good word-context pairs is high.
I w · c for bad word-context pairs is low.
I w · c for ok-ish word-context pairs is neither high nor low.

As a result:
I Words that share many contexts get close to each other.
I Contexts that share many words get close to each other.

At the end, word2vec throws away C and returns W .



Reinterpretation

Imagine we didn’t throw away C. Consider the product WC>

The result is a matrix M in which:
I Each row corresponds to a word.
I Each column corresponds to a context.
I Each cell correspond to w · c, an association measure

between a word and a context.
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Reinterpretation

Does this remind you of something?

Very similar to SVD over distributional representation:
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context matters



What’s in a Context?

• Importing ideas from embeddings improves distributional methods

• Can distributional ideas also improve embeddings?

• Idea: change SGNS’s default BoW contexts into dependency contexts

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014



Australian scientist discovers star with telescope

Example
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Target Word
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Bag of Words (BoW) Context
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Australian scientist discovers star with telescope

Syntactic Dependency Context
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Syntactic Dependency Context

prep_withnsubj

dobj
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Embedding Similarity with Different Contexts

Target Word Bag of Words (k=5) Dependencies

Dumbledore Sunnydale

hallows Collinwood

Hogwarts half-blood Calarts

(Harry Potter’s school) Malfoy Greendale

Snape Millfield

Related to 
Harry Potter

Schools

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014



Embedding Similarity with Different Contexts

Target Word Bag of Words (k=5) Dependencies

nondeterministic Pauling

non-deterministic Hotelling

Turing computability Heting

(computer scientist) deterministic Lessing

finite-state Hamming

Related to 
computability

Scientists

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014



Embedding Similarity with Different Contexts

Target Word Bag of Words (k=5) Dependencies

singing singing

dance rapping

dancing dances breakdancing

(dance gerund) dancers miming

tap-dancing busking

Related to
dance

Gerunds

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014



What is the effect of different context types?

• Thoroughly studied in distributional methods
• Lin (1998), Padó and Lapata (2007), and many others…

General Conclusion:

• Bag-of-words contexts induce topical similarities

• Dependency contexts induce functional similarities
• Share the same semantic type
• Cohyponyms

• Holds for embeddings as well

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014



• Same algorithm, different inputs -- very different 
kinds of similarity. 

• Inputs matter much more than algorithm. 

• Think about your inputs.


