MUNI FI

Evaluation of Word Embeddings

PA154 Language Modeling (8.2)

Pavel Rychlý

Natural Language Processing Centre

Faculty of Informatics, Masaryk University

April 4, 2023

Pavel Rychlý • Evaluation of Word Embeddings • April 4, 2023

Word Embeddings

- many hyperparameters, diffrent training data
- different results even for same parameters and data
- what is better?
- how to compare quality of vectors?
- evaluate a direct outcome: word similarities

Sketch Engine Thesaurus

Lemma	Score	Freq	
king	0.242	16,899	
prince	0.213	6,355	
<u>charles</u>	0.189	8,952	
elizabeth	0.177	3,567	
edward	0.176	6,484	
mary	0.173	6,870	
gentleman	0.171	6,274	
lady	0.170	11,905	
<u>husband</u>	0.167	11,669	
sister	0.167	8,062	
mother	0.164	27,536	
princess	0.160	2,944	
father	0.159	23,824	
wife	0.157	18,308	
brother	0.155	11,049	
henry	0.151	6,699	
daughter	0.150	11,216	
anne	0.149	4,386	

QUEEN^(noun) British National Corpus (BNC) freq = 7.872 (70.10 per million)

Thesaurus evaluation Gold standard

Most similar words to <i>queen</i>
•
king, brooklyn, bowie, prime minister, mary, bronx,
rolling stone, elton john, royal family, princess
monarch, ruler, consort, empress, regent, female ruler,
female sovereign, queen consort, queen dowager
king, prince, charles, elizabeth, edward, mary, gentle-
man, lady, husband, sister, mother, princess, father
princess, prince, king, emperor, monarch, lord, lady, sis-
ter, lover, ruler, goddess, hero, mistress, warrior
princess, prince, Princess, king, Diana, Queen, duke,
palace, Buckingham, duchess, lady-in-waiting, Prince
empress, sovereign, monarch, ruler, czarina, queen con-
sort, king, queen regnant, princess, rani, queen regent

Thesaurus evaluation Gold standard

- very low inter-annotater agreement
- there are many directions of similarities
- existing gold standards not usable

- evaluation of word embeddings (word2vec)
- "*a* is to *a*^{*} as *b* is to *b*^{*}", where *b*^{*} is hidden

- evaluation of word embeddings (word2vec)
- "*a* is to *a*^{*} as *b* is to *b*^{*}", where *b*^{*} is hidden
- syntactic: *good* is to *best* as *smart* is to *smarter*
- semantic: Paris is to France as Tokyo is to Japan
- agreement by humans:

- evaluation of word embeddings (word2vec)
- "*a* is to *a*^{*} as *b* is to *b*^{*}", where *b*^{*} is hidden
- syntactic: *good* is to *best* as *smart* is to *smarter*
- semantic: Paris is to France as Tokyo is to Japan
- agreement by humans:
 Berlin –

- evaluation of word embeddings (word2vec)
- "*a* is to *a*^{*} as *b* is to *b*^{*}", where *b*^{*} is hidden
- syntactic: *good* is to *best* as *smart* is to *smarter*
- semantic: Paris is to France as Tokyo is to Japan
- agreement by humans: Berlin – Germany

- evaluation of word embeddings (word2vec)
- "*a* is to *a*^{*} as *b* is to *b*^{*}", where *b*^{*} is hidden
- syntactic: *good* is to *best* as *smart* is to *smarter*
- semantic: Paris is to France as Tokyo is to Japan
- agreement by humans:
 Berlin Germany
 London –

- evaluation of word embeddings (word2vec)
- "*a* is to *a*^{*} as *b* is to *b*^{*}", where *b*^{*} is hidden
- syntactic: *good* is to *best* as *smart* is to *smarter*
- semantic: Paris is to France as Tokyo is to Japan

agreement by humans:
 Berlin – Germany
 London – England / Britain / UK ?

- evaluation of word embeddings (word2vec)
- "*a* is to *a*^{*} as *b* is to *b*^{*}", where *b*^{*} is hidden
- syntactic: good is to best as smart is to smarter
- semantic: Paris is to France as Tokyo is to Japan
- agreement by humans:
 Berlin Germany
 London England / Britain / UK ?
- best match for linear combination of vectors: arg max_{$b^* \in V$} cos($b^*, a^* - a + b$)

Alternatives to cosine similarity

•
$$cos(x, y) = \frac{v_x \cdot v_y}{\sqrt{v_x \cdot v_x} \sqrt{v_y \cdot v_y}}$$

• $arg \max_{b^* \in V} cos(b^*, a^* - a + b) =$

Alternatives to cosine similarity

Alternatives to cosine similarity

cos(x,y) =
$$\frac{v_x \cdot v_y}{\sqrt{v_x \cdot v_x} \sqrt{v_y \cdot v_y}}$$
 arg max_{b* \in V} cos(b*, a* - a + b) =
 arg max_{b* \in V} (cos(b*, a*) - cos(b*, a) + cos(b*, b))
 (CosAdd)
 arg max_{b* \in V} $\frac{cos(b^*, a^*)cos(b^*, b)}{cos(b^*, a)}$
 (CosMul)

 SkE uses Jaccard similarity instead of cosine similarity: JacAdd, JacMul

Thesaurus Evaluation

Results on capital-common-countries question set (462 queries)

	BNC		SkELL	
	count	percent	count	percent
CosAdd	58	12.6	183	39.6
CosMul	99	21.4	203	43.9
JacAdd	32	6.9	319	69.0
JacMul	57	12.3	443	95.9
word2vec	159	34.4	366	79.2

Results depends not only on data but also on the evaluation method.

Results on other corpora

More English corpora, using JacMul

Corpus	size (M)	correct
BNC	112	57
SkELL	1,520	443
araneum maius (LCL sketches)	1,200	224
enclueweb16	16,398	448
ententen 08	3,268	0
ententen 12	12,968	0
ententen 13	22,878	439

- Pair of words does not define an exact relation
- Berlin Germany: capital, biggest city
- in what time?
- Canberra

- Pair of words does not define an exact relation
- Berlin Germany: capital, biggest city
- in what time?
- Canberra, Rome

- Pair of words does not define an exact relation
- Berlin Germany: capital, biggest city
- in what time?
- Canberra, Rome
- rare words/phrases
- Baltimore Baltimore Sun: Cincinnati –

- Pair of words does not define an exact relation
- Berlin Germany: capital, biggest city
- in what time?
- Canberra, Rome
- rare words/phrases
- Baltimore Baltimore Sun: Cincinnati Cincinnati Enquirer

Outlier detection

list of words

- find the one which is not part of the cluster
- examples:
 - red, blue, green, dark, yellow, purple, pink, orange, brown

Outlier detection

list of words

- find the one which is not part of the cluster
- examples:
 - red, blue, green, dark, yellow, purple, pink, orange, brown
 - t-shirt, sheet, dress, trousers, shorts, jumper, skirt, shirt, coat

Evaluating Outlier Detection

- original data set by Camacho-Collados, Navigli
- 8 pairs of 8 words in a cluster and 8 outliers
- 8 × 8 = 64 queries
- Accuracy the percentage of successfully answered queries,
- Outlier Position Percentage (OPP) Score average percentage of the right answer (Outlier Position) in the list of possible clusters ordered by their compactness

- English only
- needs extra knowledge
 - Mercedes Benz, BMW, Michelin, Audi, Opel, Volkswagen, Porsche, Alpina, Smart

- needs extra knowledge
 - Mercedes Benz, BMW, Michelin, Audi, Opel, Volkswagen, Porsche, Alpina, Smart
 - (Bridgestone, Boeing, Samsung, Michael Schumacher, Angela Merkel, Capri, pineapple)

- needs extra knowledge
 - Mercedes Benz, BMW, Michelin, Audi, Opel, Volkswagen, Porsche, Alpina, Smart
 - (Bridgestone, Boeing, Samsung, Michael Schumacher, Angela Merkel, Capri, pineapple)
 - Peter, Andrew, James, John, Thaddaeus, Bartholomew, Thomas, Noah, Matthew

- needs extra knowledge
 - Mercedes Benz, BMW, Michelin, Audi, Opel, Volkswagen, Porsche, Alpina, Smart
 - (Bridgestone, Boeing, Samsung, Michael Schumacher, Angela Merkel, Capri, pineapple)
 - Peter, Andrew, James, John, Thaddaeus, Bartholomew, Thomas, Noah, Matthew
 - January, March, May, July, Wednesday, September, November, February, June

- needs extra knowledge
 - Mercedes Benz, BMW, Michelin, Audi, Opel, Volkswagen, Porsche, Alpina, Smart
 - (Bridgestone, Boeing, Samsung, Michael Schumacher, Angela Merkel, Capri, pineapple)
 - Peter, Andrew, James, John, Thaddaeus, Bartholomew, Thomas, Noah, Matthew
 - January, March, May, July, Wednesday, September, November, February, June
 - tiger, dog, lion, cougar, jaguar, leopard, cheetah, wildcat, lynx
- mostly proper names (7 out of 8)

New data set: HAMOD

- 7 languages: Czech, Slovak, English, German, French, Italian, Estonian
- 128 clusters (8 words + 8 outliers)
- https://github.com/lexicalcomputing/hamod

New data set – example

Color	S	Electro	nics
Czech	English	Czech	English
červená	red	televize	television
modrá	blue	reproduktor	speaker
zelená	green	notebook	laptop
žlutá	yellow	tablet	tablet
fialová	purple	mp3 přehrávač	mp3 player
růžová	pink	mobil	phone
oranžová	orange	rádio	radio
hnědá	brown	playstation	playstation
dřevěná	wooden	blok	notebook
skleněná	glass	sešit	workbook
temná	dark	kniha	book
zářivá	bright	CD	CD
pruhovaný	striped	energie	energy
puntíkovaný	dotted	světlo	light
smutná	sad	papír	paper
nízká	low	ráno	morning

Pavel Rychlý • Evaluation of Word Embeddings • April 4, 2023

Evaluation

9 clusters only, 72 queries

	OOP	Accuracy
Czes2	92.2	70.8
czTenTen12	93.4	79.2
csTenTen17	94.3	81.9
czTenTen12 (fasttext)	97.7	87.5
Czech Common Crawl	98.1	95.8

Construction

- each human evaluator goes through all the sets (only once) for their native language
- 1 exercise: 8 inliers + 1 outlier (randomly chosen from the list of outliers for each set)
- in each turn, the evaluator selects the outlier
- simple web interface for the exercise
- Inter-Annotator Agreement: Estonian 0.93, Czech 0.97

