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Machine Learning Overview
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Challenges with Data (4V’s of Data)

* Volume: Dealing with large volumes of data.
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Challenges with Data (4V’s of Data)

* Volume: Dealing with large volumes of data.
* Velocity: Handling the speed at which data is generated.

* Variety: Managing different types of data (structured, unstructured, semi-structured).
* Veracity: Ensuring data quality and reliability.
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Challenges with Data (5V’s of Data)

* Volume: Dealing with large volumes of data.
* Velocity: Handling the speed at which data is generated.
* Variety: Managing different types of data (structured, unstructured, semi-structured).

 Veracity: Ensuring data quality and reliability.

* Value: Extracting meaningful insights from data.




(Visual) Data Science

Analytics, Data-Driven Artificial
Bl Science Intelligence

Data Science

(theories, methods, technology, ...)

Machine Learning

Visualization . :
(incl. deep learning, ...)

Information Technology
(Information & Communication Technology)

User Studies - Algorithms

Social Informatics, Statistics,
Sciences Computer Science Mathematics



Introduction

* Machine Learning;:

* “Field of study that gives computers the ability to learn without being explicitly programmed.”

(1959) Arthur Samuel (pioneer in AI & ML)
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Introduction

« Hard to write a computer program
« 1040 legal moves variations (between 10%11 and 10%23)
« Cannot be brute forced
« Cannot be modeled
« Cannot be visualized

» Best players
* Rely on experience

 Computers
« Can obtain ,,experience” much faster
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Application Examples

Autonomous cars/drones

An abandoned prototype.

Source: http://theoatmeal.com/blog/google_self_driving_car



Application Examples

Adaption in games, imitation learning

e Black & White 3 (2001)

» Avatar learns from the player




Application Examples

» The main problems solved by ML
« classification
« clustering
« dimensionality reduction, embedding
« outlier detection
« prediction

Customers who bought this item also bought Page 10f 5

w0 §

Wi S 88 8 |

arzan § B
oGy 23 ¥ ¥
i g :




Application Examples

7

Relationship

“Cat”

https://www.edureka.co/blog/how-to-become-a-machine-learning-engineer/



https://www.edureka.co/blog/how-to-become-a-machine-learning-engineer/

Application Examples

ChatGPT

& GitHub Copilot



Application Examples

e ChatGPT

e You

How can artificial intelligence enhance data visualization techniques and tools?

ChatGPT

Artificial intelligence can enhance data visualization techniques and tools in several ways:

. Automated Insights: Al algorithms can analyze large datasets and automatically generate

insights, which can then be visualized in meaningful ways.

. Pattern Recognition: Al-powered data visualization tools can identify patterns, trends, and

anomalies within datasets, allowing users to gain deeper insights into their data.

. Personalized Visualizations: Al can analyze user behavior and preferences to create

personalized data visualizations tailored to individual needs and preferences.

. Interactive Visualizations: Al algorithms can enable more interactive and dynamic visualizations

by predicting user interactions and adjusting visualizations in real-time.

. Natural Language Processing (NLP): [NLP algorithms can extract insights from unstructured

data sources such as text documents and social media feeds, which can then be visualized to

provide a comprehensive view of the data.

. Predictive Analytics: Al can use machine learning algorithms to predict future trends and

outcomes, which can then be visualized to help users make data-driven decisions.

. Data Augmentation: Al techniques such as generative adversarial networks (GAINs) can be used

to generate synthetic data, which can then be visualized alongside real data to provide a more

comprehensive understanding of the dataset.

Overall, artificial intelligence can significantly enhance data visualization techniques and tools by
automating insights, enabling personalized visualizations, and facilitating more interactive and

dynamic visualizations.



Principles

* Machine learning;:
» Data «tells» what the «good answers» are (training).
* No explicit commands coded
» Key point of ML is the training of the algorithm
* Three main learning styles:
* supervised
e unsupervised
e semi-supervised

MACHINE LEARNING

SUPERVISED
LEARNING

Develop predictive
model based on hoth
input and output data

/ REGRESSION

UNSUPERVISED
LEARNING
Group ond interpret
dota based only
on input doto

-,

CLASSIFICATIDN]

—} CLUSTERING

https://www.mathworks.com



Learning Styles

 Supervised learning
» Labeled input
* Model prepared through training that requires predictions, corrected when wrong
* Problem examples: classification, regression
 Algorithmic examples: neural networks, Bayes classifiers, decisions trees...

* Unsupervised learning

« Semi-supervised learning
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Supervised Learning

Relationship “ D o g ”

“Cat”

https://www.edureka.co/blog/how-to-become-a-machine-learning-engineer/
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Learning Styles

 Supervised learning
* Labeled input
* Model prepared through training that requires predictions, corrected when wrong

* Problem examples: classification, regression
 Algorithmic examples: neural networks, Bayes classifiers, decisions trees...

* Unsupervised learning

« Semi-supervised learning




Learning Styles

* Supervised Learning

* Unsupervised Learning
 Input not labeled, no known result
* Model is prepared by deducing structures in the data
* Problem examples: clustering, dimensionality reduction
» Algorithmic examples: a priori algorithm, k-means

* Semi-Supervised Learning
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Learning Styles

« Semi-Supervised Learning
» Input is a mixture of labeled and unlabeled data
* Model has to recognize structures and make predictions
* Problem examples: classification, regression
 Algorithmic examples: label propagation (adaptive learning)
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Learning Styles

« Semi-Supervised Learning
» Input is a mixture of labeled and unlabeled data
* Model has to recognize structures and make predictions
* Problem examples: classification, regression
 Algorithmic examples: label propagation (adaptive learning)
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Learning Styles

» Supervised Learning
« Unsupervised Learning

« Semi-Supervised Learning
» Input is a mixture of labeled and unlabeled data
* Model has to recognize structures and make predictions
* Problem examples: classification, regression
 Algorithmic examples: label propagation (adaptive learning)



Learning Styles

« Semi-Supervised Learning
» Input is a mixture of labeled and unlabeled data
* Model has to recognize structures and make predictions
* Problem examples: classification, regression
 Algorithmic examples: label propagation (adaptive learning)
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Principles

» The success of a ML algorithm is highly dependent on two key decisions:
Data representation
* Choice of the classifier



Principles

» The success of a ML algorithm is highly dependent on two key decisions:
« Datarepresentation
* Choice of the classifier

« Data representation:
*  What is the important information in the data?
 How simple can the data be represented?
« Is abasis change needed for a better representation?



Principles

» The success of a ML algorithm is highly dependent on two key decisions:
» Datarepresentation
* Choice of the classifier

* Classifier choice:
» The classifier makes the «decisions», a badly suited classifier will make bad decisions
» The choice of the classifier is dependent on:
» Size of the data
» Variance of the data
* Bias of the data



Algorithm Families

« Group the ML algorithms into groups based on their function

* There i1s no universal family structure, some algorithms can be placed into
multiple groups

* The following examples are only a fraction of the existing algorithms



Supervised Learning




Survival Time from Malignant Melanoma
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Survival Time from Malignant Melanoma
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Survival Time (in days)
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1. Automated Insights: Al algorithms can analyze large datasets and automatically generate

insights, which can then be visualized in meaningful ways.
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Regression Algorithms

« Modeling the relationship between variables
» Uses one (or multiple) independent variable
» Tries to explain or predict the outcome of the dependent variable
» Predict sales for a company based on weather, previous sales, GDP growth, etc.

« Tteratively refined using a measure of error in the prediction made by the model

« Examples:
 least squares regression
* linear regression Y
» step-wise regression




Least Squares Regression (LX\LI/
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Least Squares Regression (LX\LI/
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Gestalt Principles
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Instance-based Algorithms

 Instead of explicit generalization, compare new problems with instances seen in training
» Typically uses a database of example data

* Also called winner-take-all methods

* To reduce complexity and overfitting, instance reduction is used as preprocessing

« Examples: v
» k-nearest neighbor
« kernel methods
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Instance-based Algorithms

» Constructs feature vectors
» Color of eyes, distance between them, size of the nose

* Use k-NN to compare with database




Instance-based Algorithms

 Instead of explicit generalization, compare new problems with instances seen in training
» Typically uses a database of example data

* Also called winner-take-all methods

* To reduce complexity and overfitting, instance reduction is used as preprocessing

« Examples: v
» k-nearest neighbor
« kernel methods
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2. Pattern Recognition: Al-powered data visualization tools can identify patterns, trends, and

anomalies within datasets, allowing users to gain deeper insights into their data.




Regularization Algorithms

« Rather an extension to other algorithms

 Introduce additional information to simplify models, reduce overfitting, create a more general
algorithm

* Examples
* Dropout regularization
« Batch normalization
 Early stopping

X
Underfitting Just right! overfitting

https://www.analyticsvidhya.com/...



https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/

Regularization Algorithms

Predict animal character

Name, color, species, size Character

Ramses, black, cat, small Unfriendly
Snoop, brown, dog, medium Friendly
Boo, green, snake, small Friendly
Lucilia, white, cat, medium Unfriendly
Chap, yellow, dog, big Friendly
Lis, white, dog, medium Friendly
Napolen the third, orange, cat, small Unfriendly
Luke, brown, snail, small Friendly
Antonetta, black, cat, medium Unfriendly
Rule:

Pets with names shorter than 5 letters, that are not small (except for snakes and snails)
and that are not white (except for dogs) are friendly.



Regularization Algorithms

Predict animal character

Name, color, species, size Character

Ramses, black, cat, small Unfriendly
Snoop, brown, dog, medium Friendly
Boo, green, snake, small Friendly
Lucilia, white, cat, medium Unfriendly
Chap, yellow, dog, big Friendly
Lis, white, dog, medium Friendly
Napolen the third, orange, cat, small Unfriendly
Luke, brown, snail, small Friendly
Antonetta, black, cat, medium Unfriendly
Rule:

Cats are unfriendly.



Regularization Algorithms

« Rather an extension to other algorithms

 Introduce additional information to simplify models, reduce overfitting, create a more general
algorithm

* Examples
* Dropout regularization
« Batch normalization
 Early stopping

X
Underfitting Just right! overfitting

https://www.analyticsvidhya.com/...
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Decision Tree Algorithms

Outlook

Humidity

Example from (Machine Learning, Tom Mitchell)



Decision Tree Algorithms

» Construct decision tree as predictive model

* Finite target variable: classification trees

« Continuous target variable: regression trees
* Requires little data preparation

« Can handle numerical and categorical data

* Examples:
» CART (classification and regression trees)
 Decision stump (components in ensembles)
« Random forest (extension of bagging)




Recursive Partitioning

Sunny High Weak
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

Example from (Machine Learning, Tom Mitchell)



Recursive Partitioning

Sunny High Weak
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

Example from (Machine Learning, Tom Mitchell)



Recursive Partitioning
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Example from (Machine Learning, Tom Mitchell)
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Recursive Partitioning
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Recursive Partitioning

Outlook

Humidity

Example from (Machine Learning, Tom Mitchell)



Bayesian Network D&

* Classification based on Bayes’ theorem

P(B|A) P(A)
P (B) 6. Predictive Analytics: Al can use machine learning algorithms to predict future trends and

. P(A|B) =

outcomes, which can then be visualized to help users make data-driven decisions.

* Very fast, real-time prediction
» Explainable = used in medicine

» Simplistic: presence of feature in a class is unrelated to presence of any other feature
* A fruitis an apple if it is round, red, 7cm in diameter
« Cancer: tobacco use, alcohol, unhealthy diet, excess body weight, physical inactivity

P(C=T) P(C=F)

« Examples:
« Gaussian Bayes (normal distribution of features)
* Bernoulli Bayes (binary features)

https://towardsdatascience.com/...



https://towardsdatascience.com/introduction-to-bayesian-networks-81031eeed94e
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Challanges
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Visual Assistance in Development and Validation
of Bayesian Networks for Clinical Decision
Support
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Neural Networks




Perceptron
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Multilayer Perceptron




Deep Learning Algorithms

HOW A DEEP NEURAL NETWORK SEES
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Personalized Sketch-Based Brushing in Scatterplots

* Predicting the user’s brushing goal Database from 50 users

 Average brushing preference a - _
Sketching interaction

» Improve the brushing technique while using it o § raining

15t round (S

Single user

5th round (S4




Personalized Sketch-Based Brushing in Scatterplots

* Predicting the user’s brushing goal Database from 50 users

Data viswalization
» Average brushing preference m) _
Sketching interaction

» Improve the brushing technique while using it o § raining
CNN (S,)

1st round (Sg fine-tuning

CNN (5]
nd round (51 fine<tuning
] CNN (S:)
fine-tuning
CNN (5:)

4th round (S3

fine-tuning

Single user CNN (1)

‘ fine-tuning

3. Personalized Visualizations: Al can analyze user behavior and preferences to create

5th round (S4

personalized data visualizations tailored to individual needs and preferences.

4. Interactive Visualizations: Al algorithms can enable more interactive and dynamic visualizations

by predicting user interactions and adjusting visualizations in real-time.




Recurrent Neural Network

 Internal memory to include the result from previous classification

« Used in cases when temporal domain is important

» Used for speech recognition

U:.t:—
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=

Bao, Wei, Jun Yue, and Yulei Rao. "A deep learning framework for financial
time series using stacked autoencoders and long-short term memory."



Transformers
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Transformers

5. Natural Language Processing (NLP): MNLP algorithms can extract insights from unstructured
data sources such as text documents and social media feeds, which can then be visualized to

provide a comprehensive view of the data.
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Generative Networks

Ian |. Goodfellow et al.

D: Detective
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Result Progression

2014 2015 2016 2017
Goodfellow et al. Radfort et al. Liu and Tuzel Karras et al.



Generative Modeling of Cell Shape Using 3D GANs

* Obtaining real data may be expensive

* Generating synthetic cellular specimens
to produce suitable testing datasets

Wiesner, D., NeCasova, T., & Svoboda, D. (2019)



Generative Modeling of Cell Shape Using 3D GANs

* Obtaining real data may be expensive

* Generating synthetic cellular specimens
to produce suitable testing datasets

7. Data Augmentation: Al techniques such as generative adversarial networks (GAIMNs) can be used

to generate synthetic data, which can then be visualized alongside real data to provide a more

comprehensive understanding of the dataset.

Wiesner, D., NeCasova, T., & Svoboda, D. (2019)



Result Progression

https://www.boredpanda.com/ai-fails/
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Using a Model to Explain Another
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Explainable ML

« ML explanation != completely know how ML work
User interaction/collaboration and control
Analysis, Computational and Synchronization Tools
\ \ p?

Data Visual e

(multiple views

(information) tables structures isual things)
Data/flow Visual View

transformations mappings transformations

User interaction/collaboration actions
WARD et al. 2010

Labeling Loop

, Feedback ;
Interpretation
"4 N f’ I..lbeling
!m-ﬂm

Preprocessing B, “ 9 "'"l Result
“B( Feat. Extraction.) Yer allul;lnn

Explaration Labeling

Bernard et al. 2018

Analyst, Oracle,
Domaln Expert




Explainable ML

http://juergen-bernard.de/

Interactive Machine Learning
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Visual-Interactive Labeling (VIAL)
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