PA214 - Visualization II

Jan Byška

Machine Learning Overview

HCI^{LAB} : visitlab

Challenges with Data (4V's of Data)

• Volume: Dealing with large volumes of data.

Challenges with Data (4V's of Data)

- Volume: Dealing with large volumes of data.
- Velocity: Handling the speed at which data is generated.

By Maximilien Brice (CERN) – Wikimedia Commons, CC BY-SA 3.0

By Thomas Mc Cauley; Lucas Taylor - CMS Collaboration, CC BY-SA 4.0

Challenges with Data (4V's of Data)

- Volume: Dealing with large volumes of data.
- Velocity: Handling the speed at which data is generated.
- Variety: Managing different types of data (structured, unstructured, semi-structured).
- Veracity: Ensuring data quality and reliability.

Challenges with Data (5V's of Data)

- Volume: Dealing with large volumes of data.
- Velocity: Handling the speed at which data is generated.
- Variety: Managing different types of data (structured, unstructured, semi-structured).
- Veracity: Ensuring data quality and reliability.
- Value: Extracting meaningful insights from data.

(Visual) Data Science

Introduction

- Machine Learning:
 - "Field of study that gives computers the ability to learn without being explicitly programmed." (1959) Arthur Samuel (pioneer in AI & ML)

Introduction

Why ML?

- Hard to write a computer program
 - 10⁴⁰ legal moves variations (between 10¹¹¹ and 10¹²³)
 - Cannot be brute forced
 - Cannot be modeled
 - Cannot be visualized
- Best players
 - Rely on experience
- Computers
 - Can obtain "experience" much faster

Fabiano Caruana (Photo by: Soeren Stache)

Autonomous cars/drones

An abandoned prototype.

Source: http://theoatmeal.com/blog/google_self_driving_car

Adaption in games, imitation learning

- Black & White 3 (2001)
 - Avatar learns from the player

- The main problems solved by ML
 - classification •
 - clustering •
 - dimensionality reduction, embedding •
 - outlier detection .
 - prediction .

• • •

.

Customers who bought this item also bought

Socks

\$9.99 *Prime*

Socks

GetUBacK Hip-hop 3D Print Sport BascketBall Thicken Long Socks Unisex ****** 40 \$4.79 - \$7.99

Stepup 3D Print Colorful Zmart Women's Girls Fun Men's Athletic Sports Fashion No Show 3D

\$7.20 JPrime

Basketball Crew Crazy Fun Graphic Print Socks

DJDesigns Custom 3D Printed Socks In Various Designs

***** 124 \$9.99 *Prime* \$12.00 *Prime*

Oooh Yeah Men's Luxury Combed Cotton Crew Socks Funny

Zmart Women's Girls 3D President Donald Trump Funny Crazy Novelty No Crew Socks, Make Show Socks Value Pack America Great Again, ***** 56 Multicolor. One Size ...

****** 171

\$10.55 *Prime*

\$9.99 *Prime*

Custom Nike Elite Peanut Butter and Grape Jelly

***** 74

Socks

\$19.99

Socksmith Womens Novelty Crew Socks "Tacos" - Black ****** 18 \$8.57 JPrime

Page 1 of 5

>

https://www.edureka.co/blog/how-to-become-a-machine-learning-engineer/

GitHub Copilot

ChatGPT

How can artificial intelligence enhance data visualization techniques and tools?

ChatGPT

You

Artificial intelligence can enhance data visualization techniques and tools in several ways:

- 1. Automated Insights: Al algorithms can analyze large datasets and automatically generate insights, which can then be visualized in meaningful ways.
- 2. Pattern Recognition: Al-powered data visualization tools can identify patterns, trends, and anomalies within datasets, allowing users to gain deeper insights into their data.
- 3. **Personalized Visualizations:** Al can analyze user behavior and preferences to create personalized data visualizations tailored to individual needs and preferences.
- Interactive Visualizations: Al algorithms can enable more interactive and dynamic visualizations by predicting user interactions and adjusting visualizations in real-time.
- Natural Language Processing (NLP): NLP algorithms can extract insights from unstructured data sources such as text documents and social media feeds, which can then be visualized to provide a comprehensive view of the data.
- Predictive Analytics: Al can use machine learning algorithms to predict future trends and outcomes, which can then be visualized to help users make data-driven decisions.
- Data Augmentation: Al techniques such as generative adversarial networks (GANs) can be used to generate synthetic data, which can then be visualized alongside real data to provide a more comprehensive understanding of the dataset.

Overall, artificial intelligence can significantly enhance data visualization techniques and tools by automating insights, enabling personalized visualizations, and facilitating more interactive and dynamic visualizations.

- Machine learning:
 - Data «tells» what the «good answers» are (training).
 - No explicit commands coded
 - Key point of ML is the training of the algorithm
 - Three main learning styles:
 - supervised
 - unsupervised
 - semi-supervised

https://www.mathworks.com

- Supervised learning
 - Labeled input
 - Model prepared through training that requires predictions, corrected when wrong
 - Problem examples: classification, regression
 - Algorithmic examples: neural networks, Bayes classifiers, decisions trees...
- Unsupervised learning
- Semi-supervised learning

- Supervised learning
 - Labeled input
 - Model prepared through training that requires predictions, corrected when wrong
 - Problem examples: classification, regression
 - Algorithmic examples: neural networks, Bayes classifiers, decisions trees...
- Unsupervised learning
- Semi-supervised learning

Supervised Learning

https://www.edureka.co/blog/how-to-become-a-machine-learning-engineer/

- Supervised learning
 - Labeled input
 - Model prepared through training that requires predictions, corrected when wrong
 - Problem examples: classification, regression
 - Algorithmic examples: neural networks, Bayes classifiers, decisions trees...
- Unsupervised learning
- Semi-supervised learning

- Supervised Learning
- Unsupervised Learning
 - Input not labeled, no known result
 - Model is prepared by deducing structures in the data
 - Problem examples: clustering, dimensionality reduction
 - Algorithmic examples: a priori algorithm, **k-means**
- Semi-Supervised Learning

- Supervised Learning
- Unsupervised Learning
- Semi-Supervised Learning
 - Input is a mixture of labeled and unlabeled data
 - Model has to recognize structures and make predictions
 - Problem examples: classification, regression
 - Algorithmic examples: label propagation (adaptive learning)

- Supervised Learning
- Unsupervised Learning
- Semi-Supervised Learning
 - Input is a mixture of labeled and unlabeled data
 - Model has to recognize structures and make predictions
 - Problem examples: classification, regression
 - Algorithmic examples: label propagation (adaptive learning)

- Supervised Learning
- Unsupervised Learning
- Semi-Supervised Learning
 - Input is a mixture of labeled and unlabeled data
 - Model has to recognize structures and make predictions
 - Problem examples: classification, regression
 - Algorithmic examples: label propagation (adaptive learning)

- Supervised Learning
- Unsupervised Learning
- Semi-Supervised Learning
 - Input is a mixture of labeled and unlabeled data
 - Model has to recognize structures and make predictions
 - Problem examples: classification, regression
 - Algorithmic examples: label propagation (adaptive learning)

- The success of a ML algorithm is highly dependent on two key decisions:
 - Data representation
 - Choice of the classifier

- The success of a ML algorithm is highly dependent on two key decisions:
 - Data representation
 - Choice of the classifier
- Data representation:
 - What is the important information in the data?
 - How simple can the data be represented?
 - Is a basis change needed for a better representation?

- The success of a ML algorithm is highly dependent on two key decisions:
 - Data representation
 - Choice of the classifier
- Classifier choice:
 - The classifier makes the «decisions», a badly suited classifier will make bad decisions
 - The choice of the classifier is dependent on:
 - Size of the data
 - Variance of the data
 - Bias of the data
 -

Algorithm Families

- Group the ML algorithms into groups based on their function
- There is no universal family structure, some algorithms can be placed into multiple groups
- The following examples are only a fraction of the existing algorithms

Supervised Learning

Survival Time from Malignant Melanoma

https://bookdown.org/dli/rguide/scatterplots-and-best-fit-lines-two-sets.html

Survival Time from Malignant Melanoma

Survival Time from Malignant Melanoma

Regression Algorithms

- Modeling the relationship between variables
 - Uses one (or multiple) independent variable
 - Tries to explain or predict the outcome of the dependent variable
 - Predict sales for a company based on weather, previous sales, GDP growth, etc.
- Iteratively refined using a measure of error in the prediction made by the model
- Examples:
 - least squares regression
 - linear regression
 - step-wise regression

Least Squares Regression

X	1	2	3	4	5	6	7
Y	2	1	5	3	7	6	8

$m = \frac{n * \sum xy - \sum x * \sum y}{x + \sum y}$	_ 7 * 158 - 28 * 32 _	1 071/2
$m = \frac{1}{n * \sum x^2 - (\sum x)^2}$	$-7*140-28^{2}$	- 1.07143

$$b = \frac{\sum y - m * \sum x}{n} = \frac{32 - 1.07143 * 28}{7} = 0.28571$$

X	Y	XY	X ²
1	2	2	1
2	1	2	4
3	5	15	9
4	3	12	16
5	7	35	25
6	6	36	36
7	8	56	49
28	32	158	140

Least Squares Regression

X	1	2	3	4	5	6	7
Y	2	1	5	3	7	6	8

$m = \frac{n * \sum xy - \sum x * \sum y}{x + \sum y}$	$-\frac{7*158-28*32}{-107143}$
$m = \frac{1}{n * \sum x^2 - (\sum x)^2}$	$-\frac{107143}{7*140-28^2}$ - 1.07143

$$b = \frac{\sum y - m * \sum x}{n} = \frac{32 - 1.07143 * 28}{7} = 0.28571$$

Х	Y	XY	X ²
1	2	2	1
2	1	2	4
3	5	15	9
4	3	12	16
5	7	35	25
6	6	36	36
7	8	56	49
28	32	158	140

Gestalt Principles

Instance-based Algorithms

- Instead of explicit generalization, compare new problems with instances seen in training
- Typically uses a database of example data
- Also called winner-take-all methods
- To reduce complexity and overfitting, instance reduction is used as preprocessing
- Examples:
 - k-nearest neighbor
 - kernel methods

Instance-based Algorithms

- Constructs feature vectors
 - Color of eyes, distance between them, size of the nose
- Use k-NN to compare with database

Instance-based Algorithms

- Instead of explicit generalization, compare new problems with instances seen in training
- Typically uses a database of example data
- Also called winner-take-all methods
- To reduce complexity and overfitting, instance reduction is used as preprocessing
- Examples:
 - k-nearest neighbor
 - kernel methods

2. Pattern Recognition: Al-powered data visualization tools can identify patterns, trends, and anomalies within datasets, allowing users to gain deeper insights into their data.

- Rather an extension to other algorithms
- Introduce additional information to simplify models, reduce overfitting, create a more general algorithm
- Examples
 - Dropout regularization
 - Batch normalization
 - Early stopping

https://www.analyticsvidhya.com/...

Predict animal character

Name, color, species, size	Character
Ramses, black, cat, small	Unfriendly
Snoop, brown, dog, medium	Friendly
Boo, green, snake, small	Friendly
Lucilia, white, cat, medium	Unfriendly
Chap, yellow, dog, big	Friendly
Lis, white, dog, medium	Friendly
Napolen the third, orange, cat, small	Unfriendly
Luke, brown, snail, small	Friendly
Antonetta, black, cat, medium	Unfriendly

Rule:

Pets with names shorter than 5 letters, that are not small (except for snakes and snails) and that are not white (except for dogs) are friendly.

Predict animal character

Name, color, species, size	Character
Ramses, black, cat , small	Unfriendly
Snoop, brown, dog , medium	Friendly
Boo, green, snake , small	Friendly
Lucilia, white, cat , medium	Unfriendly
Chap, yellow, dog , big	Friendly
Lis, white, dog , medium	Friendly
Napolen the third, orange, cat , small	Unfriendly
Luke, brown, snail , small	Friendly
Antonetta, black, cat , medium	Unfriendly

Rule:

Cats are unfriendly.

- Rather an extension to other algorithms
- Introduce additional information to simplify models, reduce overfitting, create a more general algorithm
- Examples
 - Dropout regularization
 - Batch normalization
 - Early stopping

https://www.analyticsvidhya.com/...

Decision Tree Algorithms

Decision Tree Algorithms

- Construct decision tree as predictive model
- Finite target variable: classification trees
- Continuous target variable: regression trees
- Requires little data preparation
- Can handle numerical and categorical data
- Examples:
 - CART (classification and regression trees)
 - Decision stump (components in ensembles)
 - Random forest (extension of bagging)

Day	Outlook	Temperature	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Day	Outlook	Temperature	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Day	Outlook	Temperature	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	Νο
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Day	Outlook	Temperature	Humidity	Wind	Play Tennis
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	Νο
D10	Rain	Mild	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	Νο

Day	Outlook	Temperature	Humidity	Wind	Play Tennis
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	Νο
D10	Rain	Mild	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	Νο

Day	Outlook	Temperature	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	Νο
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	Νο
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Day	Outlook	Temperature	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	Νο
D2	Sunny	Hot	High	Strong	Νο
D8	Sunny	Mild	High	Weak	Νο
D9	Sunny	Cool	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes

Day	Outlook	Temperature	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	Νο
D2	Sunny	Hot	High	Strong	Νο
D8	Sunny	Mild	High	Weak	Νο
D9	Sunny	Cool	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes

Bayesian Network

- Classification based on Bayes' theorem
- $P(A|B) = \frac{P(B|A) P(A)}{P(B)}$
- Very fast, real-time prediction
- Explainable = used in medicine

6. **Predictive Analytics:** Al can use machine learning algorithms to predict future trends and outcomes, which can then be visualized to help users make data-driven decisions.

- Simplistic: presence of feature in a class is unrelated to presence of any other feature
 - A fruit is an apple if it is round, red, 7cm in diameter
 - Cancer: tobacco use, alcohol, unhealthy diet, excess body weight, physical inactivity
- Examples:
 - Gaussian Bayes (normal distribution of features)
 - Bernoulli Bayes (binary features)

Challanges

Challanges

Visual Assistance in Development and Validation of Bayesian Networks for Clinical Decision Support

Juliane Müller-Sielaff, Seyed Behnam Beladi, Stephanie W. Vrede, Monique Meuschke, Peter J.F. Lucas, Johanna M.A. Pijnenborg, Steffen Oeltze-Jafra

Neural Networks

Perceptron

Multilayer Perceptron

Deep Learning Algorithms

Personalized Sketch-Based Brushing in Scatterplots

- Predicting the user's brushing goal
 - Average brushing preference
- Improve the brushing technique while using it

Personalized Sketch-Based Brushing in Scatterplots

- Predicting the user's brushing goal
 - Average brushing preference
- Improve the brushing technique while using it

- 3. **Personalized Visualizations:** Al can analyze user behavior and preferences to create personalized data visualizations tailored to individual needs and preferences.
- 4. Interactive Visualizations: Al algorithms can enable more interactive and dynamic visualizations
- by predicting user interactions and adjusting visualizations in real-time.

Recurrent Neural Network

- Internal memory to include the result from previous classification
- Used in cases when temporal domain is important
- Used for speech recognition

Transformers

Transformers

5. Natural Language Processing (NLP): NLP algorithms can extract insights from unstructured data sources such as text documents and social media feeds, which can then be visualized to provide a comprehensive view of the data.

Generative Networks

Ian j. Goodfellow et al.

Result Progression

2014 Goodfellow et al.

2015 Radfort et al.

2016 Liu and Tuzel

2017 Karras et al.

Generative Modeling of Cell Shape Using 3D GANs

- Obtaining real data may be expensive
- Generating synthetic cellular specimens to produce suitable testing datasets

Wiesner, D., Nečasová, T., & Svoboda, D. (2019)

Generative Modeling of Cell Shape Using 3D GANs

- Obtaining real data may be expensive
- Generating synthetic cellular specimens to produce suitable testing datasets

Wiesner, D., Nečasová, T., & Svoboda, D. (2019)
Result Progression

https://www.boredpanda.com/ai-fails/

Explainable Al

Using a Model to Explain Another

Source: Hung-yi Lee

Explainable ML

• ML explanation != completely know how ML work

Explainable ML

http://juergen-bernard.de/

Interactive Machine Learning

Visual-Interactive Labeling (VIAL)

Visual Analytics for Time-Oriented Data

Segmentation and Labeling of Multivariate Time Series

Design Studies and Applications

Experiments and Empirical Work

Visual Analytics in Health Care

😳 🛄 💷 📲 🛄 🚎 🖙 📰 👬

Data Sets (Open Access)

Theoretical Foundations of Visualization

