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Challenges with Data (5V’s of Data)

• Volume: Dealing with large volumes of data.

• Velocity: Handling the speed at which data is generated.

• Variety: Managing different types of data (structured, unstructured, semi-structured).

• Veracity: Ensuring data quality and reliability.

• Value: Extracting meaningful insights from data.



(Visual) Data Science



Introduction

• Machine Learning:
• “Field of study that gives computers the ability to learn without being explicitly programmed.”

(1959) Arthur Samuel (pioneer in AI & ML)



Introduction

• Hard to write a computer program
• 1040 legal moves variations (between 10111 and 10123)

• Cannot be brute forced

• Cannot be modeled

• Cannot be visualized

• Best players
• Rely on experience

• Computers
• Can obtain „experience“ much faster

Why ML?

Fabiano Caruana (Photo by: Soeren Stache)



Application Examples
Autonomous cars/drones 

Source: http://theoatmeal.com/blog/google_self_driving_car



Application Examples

• Black & White 3 (2001)

• Avatar learns from the player

Adaption in games, imitation learning



• The main problems solved by ML
• classification

• clustering

• dimensionality reduction, embedding

• outlier detection

• prediction

• ...

Application Examples
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Application Examples



Application Examples

• ChatGPT



Principles

• Machine learning:
• Data «tells» what the «good answers» are (training).

• No explicit commands coded

• Key point of ML is the training of the algorithm

• Three main learning styles:

• supervised

• unsupervised 

• semi-supervised

https://www.mathworks.com
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• Model prepared through training that requires predictions, corrected when wrong

• Problem examples: classification, regression

• Algorithmic examples: neural networks, Bayes classifiers, decisions trees... 

• Unsupervised learning

• Semi-supervised learning
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Supervised Learning
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Learning Styles

• Supervised Learning

• Unsupervised Learning

• Input not labeled, no known result

• Model is prepared by deducing structures in the data

• Problem examples:  clustering, dimensionality reduction

• Algorithmic examples:  a priori algorithm, k-means

• Semi-Supervised Learning
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Principles

• The success of a ML algorithm is highly dependent on two key decisions:
• Data representation

• Choice of the classifier

• Data representation: 
• What is the important information in the data?

• How simple can the data be represented?

• Is a basis change needed for a better representation?



Principles

• The success of a ML algorithm is highly dependent on two key decisions:
• Data representation

• Choice of the classifier

• Classifier choice: 
• The classifier makes the «decisions», a badly suited classifier will make bad decisions

• The choice of the classifier is dependent on:

• Size of the data

• Variance of the data

• Bias of the data

• ….



Algorithm Families

• Group the ML algorithms into groups based on their function

• There is no universal family structure, some algorithms can be placed into 
multiple groups

• The following examples are only a fraction of the existing algorithms
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Supervised Learning



https://bookdown.org/dli/rguide/scatterplots-and-best-fit-lines-two-sets.html
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• Modeling the relationship between variables
• Uses one (or multiple) independent variable 

• Tries to explain or predict the outcome of the dependent variable

• Predict sales for a company based on weather, previous sales, GDP growth, etc.

• Iteratively refined using a measure of error in the prediction made by the model

• Examples:
• least squares regression

• linear regression

• step-wise regression

Regression Algorithms

X

X
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Least Squares Regression
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Gestalt Principles
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Instance-based Algorithms

• Instead of explicit generalization, compare new problems with instances seen in training

• Typically uses a database of example data

• Also called winner-take-all methods

• To reduce complexity and overfitting, instance reduction is used as preprocessing

• Examples:
• k-nearest neighbor

• kernel methods

Z

Y



Instance-based Algorithms

• Constructs feature vectors
• Color of eyes, distance between them, size of the nose 

• Use k-NN to compare with database
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Regularization Algorithms

• Rather an extension to other algorithms

• Introduce additional information to simplify models, reduce overfitting, create a more general 
algorithm

• Examples
• Dropout regularization

• Batch normalization

• Early stopping

https://www.analyticsvidhya.com/...

https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/


Regularization Algorithms

Predict animal character

Name, color, species, size Character

Ramses, black, cat, small Unfriendly

Snoop, brown, dog, medium Friendly

Boo, green, snake, small Friendly

Lucilia, white, cat, medium Unfriendly

Chap, yellow, dog, big Friendly

Lis, white, dog, medium Friendly

Napolen the third, orange, cat, small Unfriendly

Luke, brown, snail, small Friendly

Antonetta, black, cat, medium Unfriendly

Rule:

Pets with names shorter than 5 letters, that are not small (except for snakes and snails)

and that are not white (except for dogs) are friendly.



Regularization Algorithms

Name, color, species, size Character

Ramses, black, cat, small Unfriendly

Snoop, brown, dog, medium Friendly

Boo, green, snake, small Friendly

Lucilia, white, cat, medium Unfriendly

Chap, yellow, dog, big Friendly

Lis, white, dog, medium Friendly

Napolen the third, orange, cat, small Unfriendly

Luke, brown, snail, small Friendly

Antonetta, black, cat, medium Unfriendly

Predict animal character

Rule:

Cats are unfriendly.



Regularization Algorithms

• Rather an extension to other algorithms

• Introduce additional information to simplify models, reduce overfitting, create a more general 
algorithm

• Examples
• Dropout regularization

• Batch normalization

• Early stopping

https://www.analyticsvidhya.com/...

https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/


Decision Tree Algorithms

Outlook

Humidity Wind

Sunny

Overcast

Rain

High Normal Weak Strong
Yes

No Yes Yes No

Example from (Machine Learning, Tom Mitchell)



Decision Tree Algorithms

• Construct decision tree as predictive model

• Finite target variable:  classification trees

• Continuous target variable:  regression trees

• Requires little data preparation

• Can handle numerical and categorical data

• Examples:
• CART (classification and regression trees)

• Decision stump (components in ensembles)

• Random forest (extension of bagging)



Recursive Partitioning

Example from (Machine Learning, Tom Mitchell)

Day Outlook Temperature Humidity Wind Play Tennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No
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Recursive Partitioning

Outlook

Overcast

Yes

Example from (Machine Learning, Tom Mitchell)

Sunny Rain



Recursive Partitioning
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D10 Rain Mild Normal Weak Yes
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Example from (Machine Learning, Tom Mitchell)



Recursive Partitioning

Day Outlook Temperature Humidity Wind Play Tennis

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D10 Rain Mild Normal Weak Yes

D14 Rain Mild High Strong No

Example from (Machine Learning, Tom Mitchell)



Recursive Partitioning

Day Outlook Temperature Humidity Wind Play Tennis

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D10 Rain Mild Normal Weak Yes

D14 Rain Mild High Strong No

Example from (Machine Learning, Tom Mitchell)



Recursive Partitioning

Wind

Weak Strong

Yes No

Example from (Machine Learning, Tom Mitchell)

Outlook

Sunny

Overcast

Rain
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Recursive Partitioning

Day Outlook Temperature Humidity Wind Play Tennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

Example from (Machine Learning, Tom Mitchell)



Recursive Partitioning

Day Outlook Temperature Humidity Wind Play Tennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

Example from (Machine Learning, Tom Mitchell)



Recursive Partitioning

Day Outlook Temperature Humidity Wind Play Tennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

Example from (Machine Learning, Tom Mitchell)



Recursive Partitioning

Wind

Weak Strong

Yes No

Example from (Machine Learning, Tom Mitchell)
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Bayesian Network

• Classification based on Bayes’ theorem

• 𝑃(A|B) =
𝑃(𝐵|𝐴) 𝑃(𝐴)

𝑃(𝐵)
  

• Very fast, real-time prediction

• Explainable = used in medicine

• Simplistic: presence of feature in a class is unrelated to presence of any other feature

• A fruit is an apple if it is round, red, 7cm in diameter

• Cancer: tobacco use, alcohol, unhealthy diet, excess body weight, physical inactivity

• Examples:

• Gaussian Bayes (normal distribution of features)

• Bernoulli Bayes (binary features)

https://towardsdatascience.com/...

https://towardsdatascience.com/introduction-to-bayesian-networks-81031eeed94e


Challanges



Challanges
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Neural Networks



Perceptron

𝑰𝟏

𝑰𝟐

𝑰𝟑

𝑰𝟒

𝑰𝟓

σ
Output

𝑦

Threshold

𝑊1

𝑊3

𝑊3

𝑊4

𝑊5

𝑦 = ቊ
1 𝑖𝑓 σ 𝑤𝑖 ⋅ 𝑥𝑖 + 𝑏𝑖  > 0

0 𝑖𝑓 σ 𝑤𝑖 ⋅ 𝑥𝑖 + 𝑏𝑖 ≤ 0



Multilayer Perceptron
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Deep Learning Algorithms

Source: mathworks.com



Personalized Sketch-Based Brushing in Scatterplots

• Predicting the user’s brushing goal
• Average brushing preference

• Improve the brushing technique while using it
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Recurrent Neural Network

Bao, Wei, Jun Yue, and Yulei Rao. "A deep learning framework for financial 

time series using stacked autoencoders and long-short term memory."

• Internal memory to include the result from previous classification

• Used in cases when temporal domain is important

• Used for speech recognition



Transformers



Transformers

https://builtin.com/artificial-intelligence/transformer-neural-network



Generative Networks

Ian j. Goodfellow et al.



Result Progression

2014

Goodfellow et al.

2015

Radfort et al.

2016

Liu and Tuzel

2017

Karras et al.



Generative Modeling of Cell Shape Using 3D GANs

• Obtaining real data may be expensive

• Generating synthetic cellular specimens 
to produce suitable testing datasets

Wiesner, D., Nečasová, T., & Svoboda, D. (2019)



Generative Modeling of Cell Shape Using 3D GANs

• Obtaining real data may be expensive

• Generating synthetic cellular specimens 
to produce suitable testing datasets

Wiesner, D., Nečasová, T., & Svoboda, D. (2019)



Result Progression

https://www.boredpanda.com/ai-fails/



Explainable AI



Using a Model to Explain Another

Source: Hung-yi Lee



Explainable ML

• ML explanation != completely know how ML work

Bernard et al. 2018

WARD et al. 2010



Explainable ML

http://juergen-bernard.de/

http://juergen-bernard.de/
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