
Unsupervised Learning



Clustering Algorithms

• Groups objects that are similar

• Typically organized by modeling approaches

• Two classes
• Hard clustering

• Fuzzy clustering

• Examples:
• Connectivity based clustering

• K-means

• Distribution based clustering

• Density based clustering



Connectivity-Based Clustering

• Objects are more related to the nearby objects rather then those fare away

• Similarity measure – Euclidian distance or anything else

https://en.wikipedia.org/wiki/Cluster_analysis

https://en.wikipedia.org/wiki/Cluster_analysis


Centroid-Based Clustering

• Represented by center vector

• Center does not have to be necessary one of the data points

https://en.wikipedia.org/wiki/Cluster_analysis

https://en.wikipedia.org/wiki/Cluster_analysis


Distribution-Based Clustering

• Clusters defined as object belongings to the same distribution

• Convenient for artificial datasets, but suffer from overfitting in practice

https://en.wikipedia.org/wiki/Cluster_analysis

https://en.wikipedia.org/wiki/Cluster_analysis


Density-Based Clustering

• Cluster defined as areas with higher density (require density drops)

• Objects in sparse areas considered to be noise

https://en.wikipedia.org/wiki/Cluster_analysis

https://en.wikipedia.org/wiki/Cluster_analysis


Intrinsic Dimensions
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Dimensionality Reduction Algorithms

• Reducing number of random variables to a set a principal variables

• Finds structures in data to reduce dimensionality unsupervised

• Lower dimensional variables often visualized for labeling and further supervised learning

• Examples:
• Principal component analysis (PCA)

• Linear discriminant analysis (LDA)

• t-distributed stochastic neighbor embedding (t-SNE)

• Uniform manifold approximation and projection (UMAP)



K-means



K-means Introduction

• Centroid-based clustering

• Assumes Euclidean space/distance

• Advantage
• Suitable for large datasets

• Can be applied to non-well separated clusters 

• Disadvantage
• Requires to select the number of clusters k



K-means Algorithm

• Input:
• K (number of clusters)

• Data set {𝑥1, 𝑥2 … 𝑥𝑚}

• Algorithm

1. Select randomly k centroids

2. Assign cluster indices to each point based on the distance to centroids

3. Update centroid locations

4. Repeat 2-3 until convergence (i.e., no change)



Selecting k Value

• Try different values and look for the average distance to centroid as k increases

• Alternatively use silhouette 



Selecting Starting Points

• Naïve Approach
• Select points randomly

• Possible problems when selecting points in same place

• Approach 1: Sampling
• Cluster a smaller subset of data using different clustering algorithm

• Pick representatives from each cluster

• Approach 2: Dispersed Set
• Select first point randomly

• Next points select such they have a largest possible distance from already selected points



Complexity

• In each round we examine each input points once
• O(kn) for n points and k clusters

• The problem is the number of rounds to converge



Image Processing



Short Turing Test

Machine Human
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Short Turing Test

Machine Human







Image Recognition

• This lecture focuses on a single example of image recognition

• Humans mostly focus on local outstanding features and contours

• Need a technique to detect those local characteristics

Source: Artwork by Matt Small Source: Arts with Miss Griffin; Types of Contours



Image Recognition

• Goal: a program that recognizes classes (circles and rectangles) in an image, learned 
through a labeled training set

• TODO’s

• Transfer the images to a basis suitable for edge detection and local features 

• Wavelet decomposition

• Find the features associated with different classes 

• Principal components

• Design a statistical decision mechanism for determination of new objects 

• Linear discrimination analysis



Decomposition Revisited

• Some well-known decompositions

• SVD, PCA 

• ...

• There are many more decompositions out there 

• Principle

• Find a suitable basis 

• Find coefficients to represent the data

• Wavelet decomposition is yet another decomposition where the basis consists of 
wavelets



What is a Wavelet?

• A wavelet is an oscillation function, with an amplitude that begins at zero, 
increases and ends at zero.

• Wavelets can be combined to create other more complex functions.

Source: Mathworks



Why Wavelets?

• Wavelets are spatially localized

• Perfect for non periodic functions/signals

• Pyramid representation



Wavelet Decomposition

• Wavelets are ideal way to represent multi-scale information

• Very efficient in detecting and highlighting of edges

• Image data is often represented in wavelets for machine learning and data analysis

• Wavelets are able to detect local changes in the data - they can «march along the data“

Source: Wikipedia Wavelet_transform



Wavelet Decomposition

• Every wavelet can be described through a mother wavelet function 𝜓 and a mother scaling 
function 𝜙.

• The simplest wavelet is the Haar wavelet

• Was developed by Alfred Haar in 1909

• The simplest and most widely adopted wavelet basis and looks like this:



Haar Wavelet

• Let’s start with an example

• The signal below can be expressed as a combination of an average and difference 
function:

• 5 ⋅ 𝜙(𝑡)

• 4 ⋅ 𝜓(𝑡)
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Haar Wavelet

• Now consider a more complex signal

• For a 1-D discrete signal with length 2𝑁 we can remove the average & difference of two 
neighboring values to obtain 2𝑁−1scale coefficient and 2𝑁−1 detail coefficients.



Haar Wavelet

• Let's look at the values:

• Y = [1, 9, 8, 7, 3, 4, 5, 6]

• The averages of the neighboring values and the differences:

• cA = [ 5.0, 7.5 , 3.5, 5.5] and cD = [ -4.0, 0.5 , -0.5, -0.5] 

• Vector [cA,cD] is a single level wavelet decomposition

• Single level means that the decomposition step was performed once 



Haar Wavelet

• Let's look at the values:

• Y = [1, 9, 8, 7, 3, 4, 5, 6]

• The averages of the neighboring values and the differences:

• cA1 = [ 5.0, 7.5 , 3.5, 5.5] and cD1 = [ -4.0, 0.5 , -0.5, -0.5] 

• Repeat with new averages: 

• cA2 = [6.25,  4.5]  and cD2 = [ -1.25,  -1 ] 

• Oone last time: 

• cA3 = 5.375 and cD3 = 0.875

• The 3-level wavelet transform of Y is now [cA3,cD3,cD2,cD1]



Orthonormal Wavelet Basis

• Need orthonormal basis for representation

• Orthonormal if:

• Means via: (a+b)/sqrt(2)

• Differences via: (a-b)/sqrt(2)



Odd Length Signals

• Two strategies
• Preferable: copy the last value

• Alternative: remove last data point



Haar Wavelet

• What about 2D?

• In 2D the principle stays the same, for single level decomposition:

• Average over cells with four elements

• Compute the horizontal differences

• Compute the vertical differences

• Compute the diagonal differences

Source: Wavelets for computer graphics: A Primer



Haar Wavelet

• Multi-level decomposition one has to choose the order of the decomposition

• Iterate over averages 

• Remeber all computed diffeerences



Haar Wavelet

Source: https://chengtsolin.wordpress.com



Back to Image Recognition

• Achieved: new representation of the labeled images

• Local changes encoded

• TODO: create a decision mechanism based on edges

• Circle vs. rectangle

• Create new data which encodes the edges

• Only small fraction of PC needed to describe the data sufficiently

• Remember SVD 

• Next step find a number of principal components which are associated with the 
objects



Underfitting / Overfitting

https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/

https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/


SVD for Image Recognition

• Assume we have the edge data of n cube images and m sphere images 
(ed_cu,ed_sp). We want to characterize the images based on k features.

• Perform SVD on the stacked data:

• [U,S,V] = svd([ed_cu,ed_sp])

• Lets take a closer look at the decomposed matrices.



SVD for Image Recognition

• [U,S,V] = svd([ed_cu,ed_sp])= svd(A)

• S: impact of single values

• objects=S*V’ is a new basis 

• Size of objects is dependent on the number of samples only

A U S V‘



Linear Discrimination Analysis

• Having detected a number of principal components of a class we can now set up a 
statistical decision mechanism to identify objects in new images.

• One possible way to do so is to use linear discrimination analysis (LDA)

• LDA aims to reduce the dimensionality while preserving as much of the class 
discriminatory information as possible



LDA Illustration

• Assume we have a set of high dimensional samples 𝑥 with two classes 𝜔1 and 𝜔2: 
spheres and cubes. 

• We seek to obtain a scalar 𝑦 by projecting the samples 𝑥 onto a line, 𝑦 = 𝑤𝑇𝑥.

• Of all the possible lines we want to select the one that maximizes the separability of 
the two groups.

Bad projection Good projection



LDA

• In order to find a good projection we need to define a measure of separation.

• One possibility is to compute the mean vector 𝜇𝑖 of each class 𝜔𝑖 and use the distance 
between the projected means as our objective function:

ሚ𝑆𝐵 = 𝜇1 − 𝜇2 = 𝑤𝑇 𝜇1 − 𝜇2 𝜇1 − 𝜇2
𝑇𝑤 = 𝑤𝑇 𝑆𝐵 𝑤

• But considering just he mean is not enough:

Overlap 

High distance 

𝜇1

𝜇2



LDA

• Fisher suggested maximizing the difference between the means, normalized by a measure of 
the within-class differences.

• For each class define the scatter, an equivalent of the variance as

𝑆𝑊 = 

𝑗=1

2



𝑥

(𝑥 − 𝜇𝐽) 𝑥 − 𝜇𝑗 ; ሚ𝑆𝑊 = 𝑤𝑇𝑆𝑊𝑤

• The Fisher linear discriminant is defined as the linear  projection 𝑤 that maximizes the criterion 
function

𝐽(𝑤) = 𝜇1−𝜇2
2

ǁ𝑠1
2+ ǁ𝑠2

2

• Such a projection mimizes the distance 
within the class and maximizes the distance 
between classes

𝜇1

𝜇2



LDA

• Solving the generalized eigenvalue problem 𝑆𝑊
−1𝑆𝐵𝑤 = 𝐽 𝑤 = 𝜆𝑤 gives us the solution:

𝑤∗ = arg 𝑚𝑎𝑥
𝑤𝑇𝑆𝐵𝑤

𝑤𝑇𝑆𝑊𝑤
= 𝑆𝑊

−1 𝜇1 − 𝜇2

• This solution is known as Fisher’s linear discriminant, even though this is not a 
discriminant but a specific choice of the projection direction of the data down to one 
dimension.

• This projection can now be used to distinguish between the two groups.

• One simple method: 𝑤∗𝑥 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ⇒ cube, everything else is a sphere. 

• More sophisticated methods can be used for the classification
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