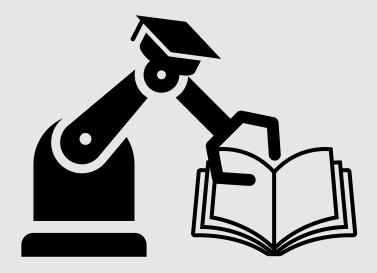
Unsupervised Learning



Clustering Algorithms

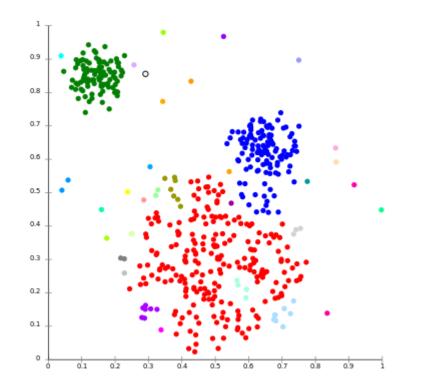
- Groups objects that are similar
- Typically organized by modeling approaches
- Two classes
 - Hard clustering
 - Fuzzy clustering

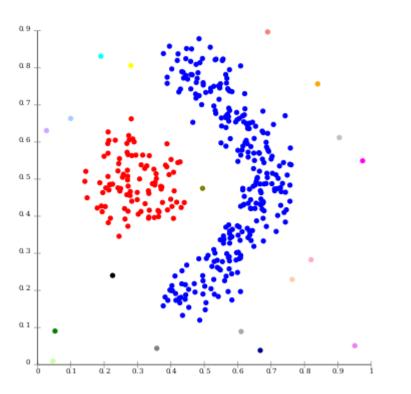
• Examples:

- Connectivity based clustering
- K-means
- Distribution based clustering
- Density based clustering

Connectivity-Based Clustering

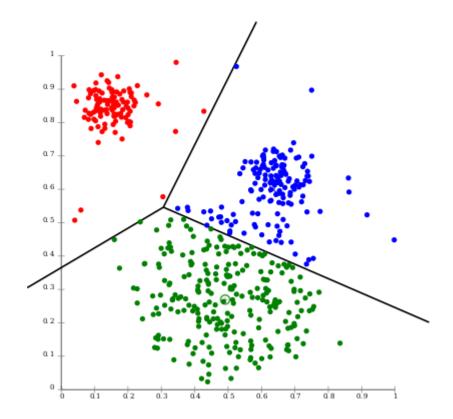
- Objects are more related to the nearby objects rather then those fare away
- Similarity measure Euclidian distance or anything else

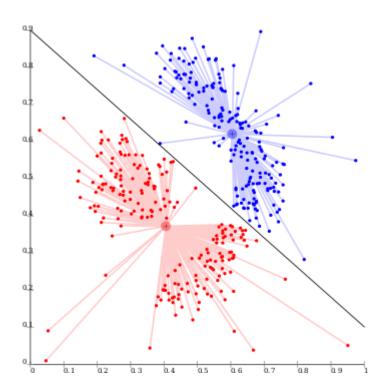


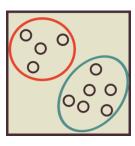


Centroid-Based Clustering

- Represented by center vector
- Center does not have to be necessary one of the data points

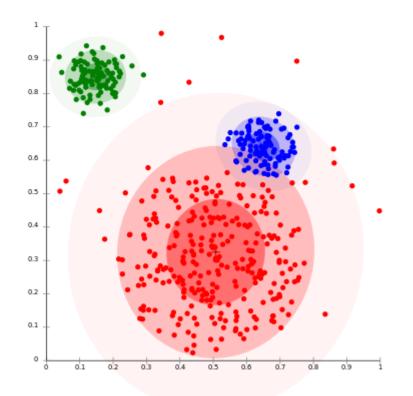


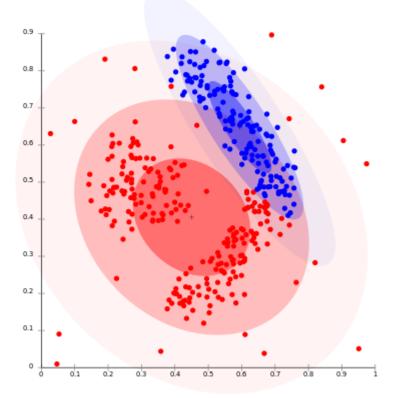




Distribution-Based Clustering

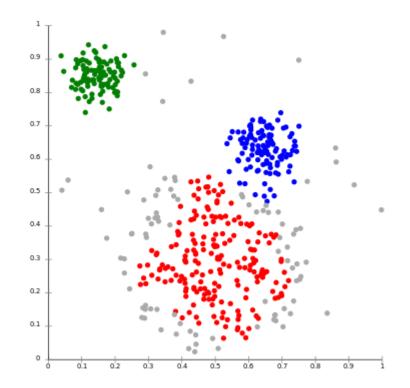
- Clusters defined as object belongings to the same distribution
- Convenient for artificial datasets, but suffer from overfitting in practice

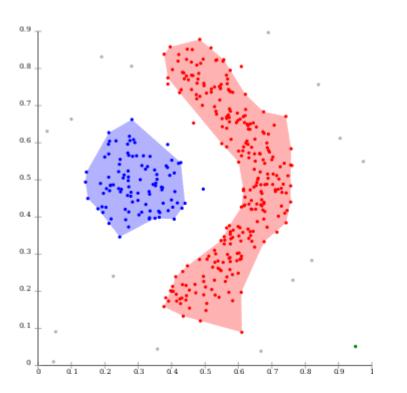


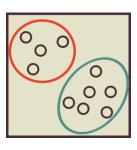


Density-Based Clustering

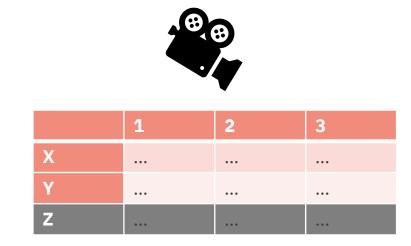
- Cluster defined as areas with higher density (require density drops)
- Objects in sparse areas considered to be noise



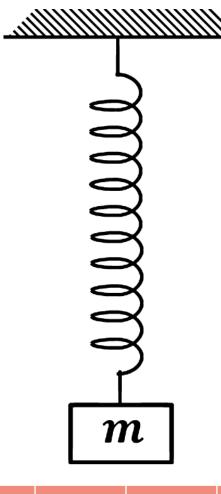


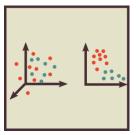


Intrinsic Dimensions

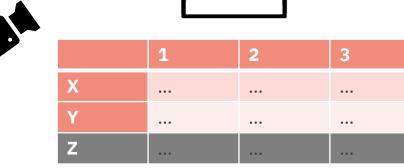


(∰ (∰)

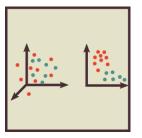




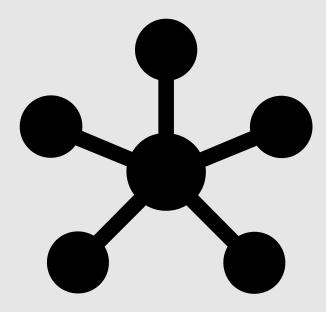
	1	2	3
Х			•••
Υ	•••	•••	•••
Z			



Dimensionality Reduction Algorithms



- Reducing number of random variables to a set a principal variables
- Finds structures in data to reduce dimensionality unsupervised
- Lower dimensional variables often visualized for labeling and further supervised learning
- Examples:
 - Principal component analysis (PCA)
 - Linear discriminant analysis (LDA)
 - t-distributed stochastic neighbor embedding (t-SNE)
 - Uniform manifold approximation and projection (UMAP)



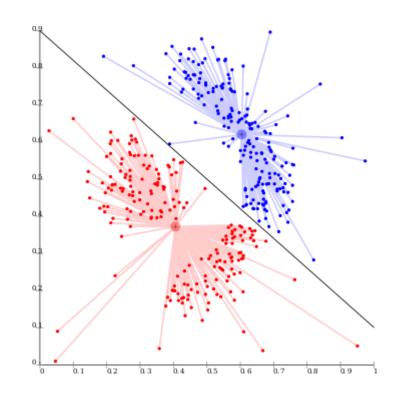
K-means Introduction

Centroid-based clustering

- Assumes Euclidean space/distance
- Advantage
 - Suitable for large datasets
 - Can be applied to non-well separated clusters

• Disadvantage

- Requires to select the number of clusters \pmb{k}



K-means Algorithm

- Input:
 - K (number of clusters)
 - Data set $\{x_1, x_2 \dots x_m\}$
- Algorithm
 - 1. Select randomly k centroids
 - 2. Assign cluster indices to each point based on the distance to centroids
 - 3. Update centroid locations
 - 4. Repeat 2-3 until convergence (i.e., no change)

Selecting k Value

- Try different values and look for the average distance to centroid as k increases
- Alternatively use silhouette

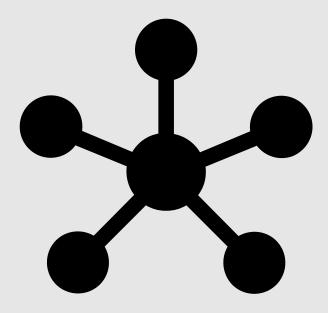
Selecting Starting Points

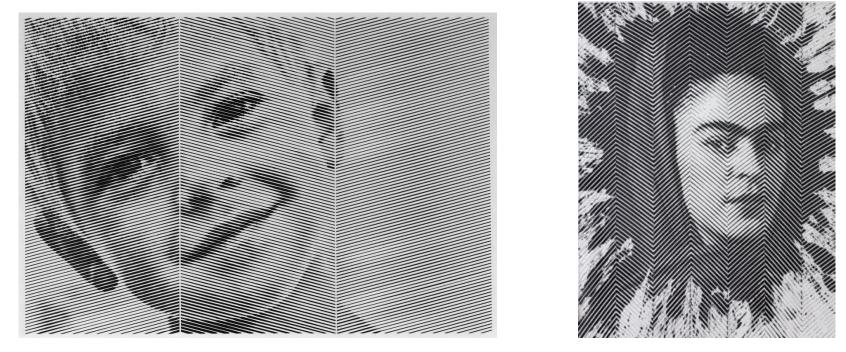
- Naïve Approach
 - Select points randomly
 - Possible problems when selecting points in same place
- Approach 1: Sampling
 - Cluster a smaller subset of data using different clustering algorithm
 - Pick representatives from each cluster
- Approach 2: Dispersed Set
 - Select first point randomly
 - Next points select such they have a largest possible distance from already selected points

Complexity

- In each round we examine each input points once
 - O(kn) for n points and k clusters
 - The problem is the number of rounds to converge

Image Processing

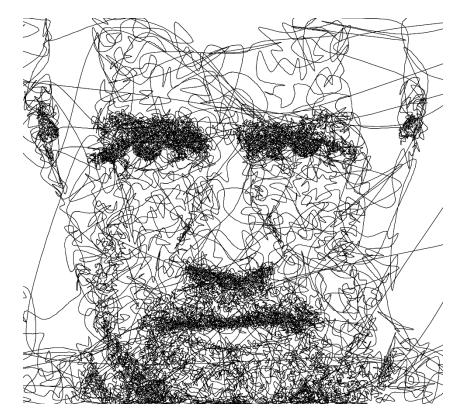




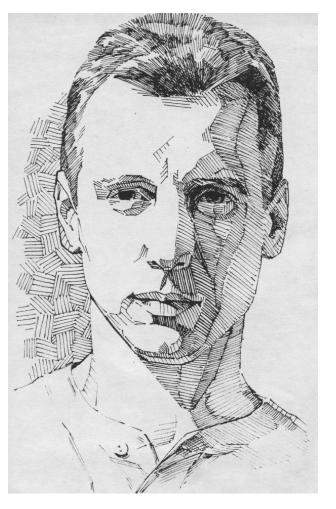
Machine

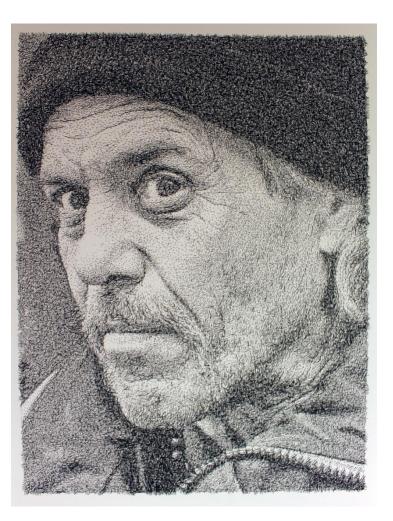
Human

Human



Machine



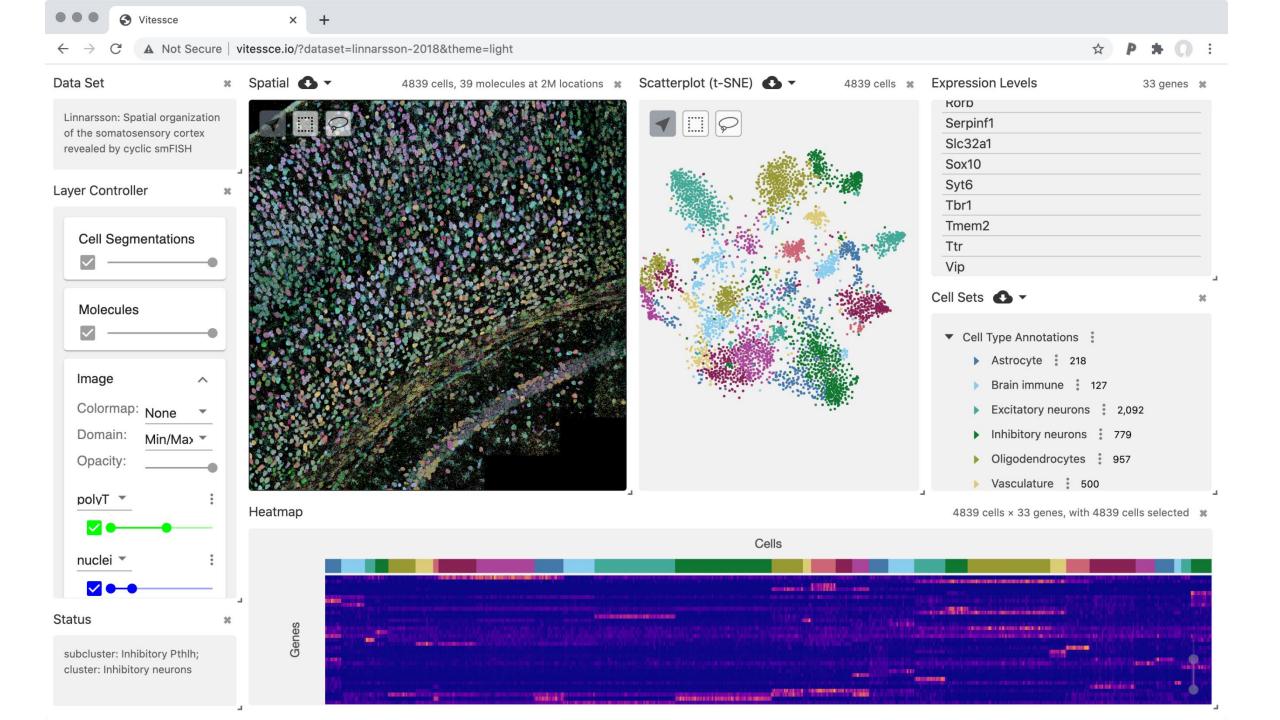


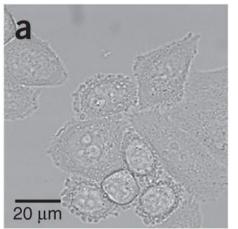
Human

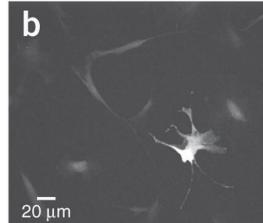
Machine

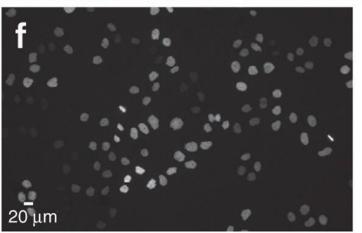
Machine

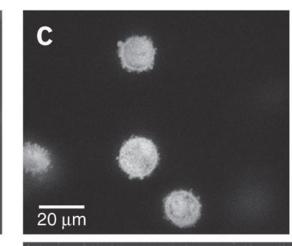
Human



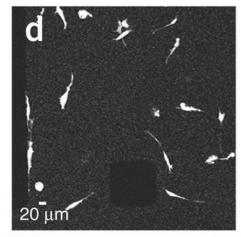


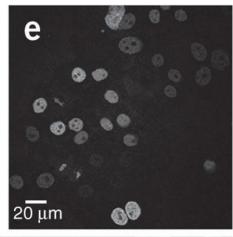


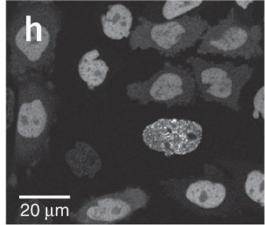


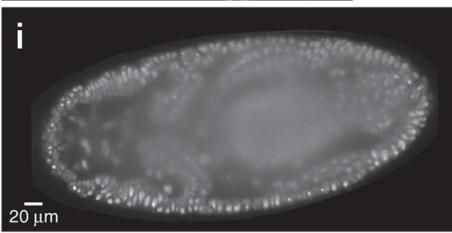


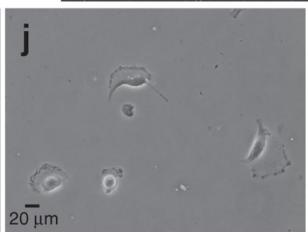
g



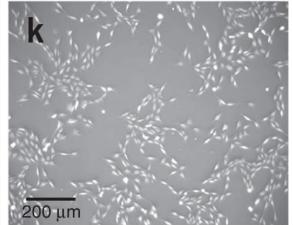








20 µm



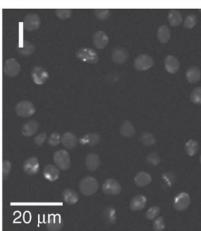
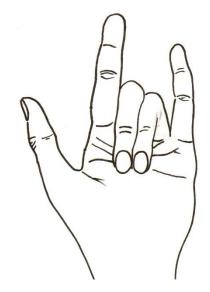


Image Recognition

- This lecture focuses on a single example of image recognition
- Humans mostly focus on local outstanding features and contours
 - Need a technique to detect those local characteristics



Source: Artwork by Matt Small

Source: Arts with Miss Griffin; Types of Contours

Image Recognition

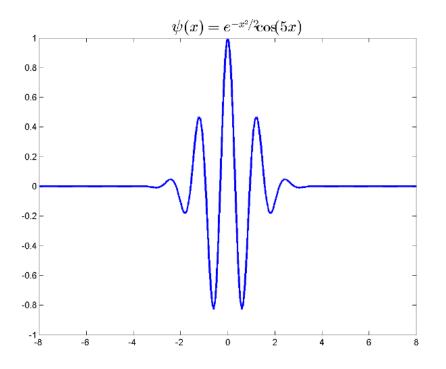
- Goal: a program that recognizes classes (circles and rectangles) in an image, learned through a labeled training set
- TODO's
 - Transfer the images to a basis suitable for edge detection and local features
 - Wavelet decomposition
 - Find the features associated with different classes
 - Principal components
 - Design a statistical decision mechanism for determination of new objects
 - Linear discrimination analysis

Decomposition Revisited

- Some well-known decompositions
 - SVD, PCA
 - ...
- There are many more decompositions out there
- Principle
 - Find a suitable basis
 - Find coefficients to represent the data
- Wavelet decomposition is yet another decomposition where the basis consists of wavelets

What is a Wavelet?

- A wavelet is an oscillation function, with an amplitude that begins at zero, increases and ends at zero.
- Wavelets can be combined to create other more complex functions.



Source: Mathworks

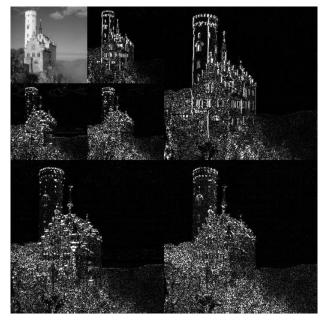
Why Wavelets?

- Wavelets are spatially localized
- Perfect for non periodic functions/signals
- Pyramid representation



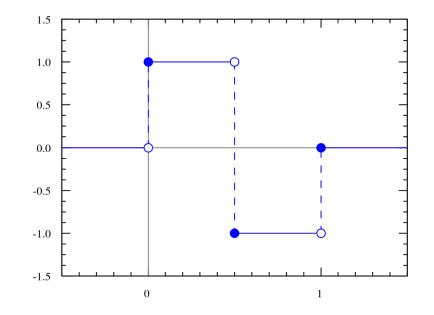
Wavelet Decomposition

- Wavelets are ideal way to represent multi-scale information
 - Very efficient in detecting and highlighting of edges
 - Image data is often represented in wavelets for machine learning and data analysis
 - Wavelets are able to detect local changes in the data they can «march along the data"

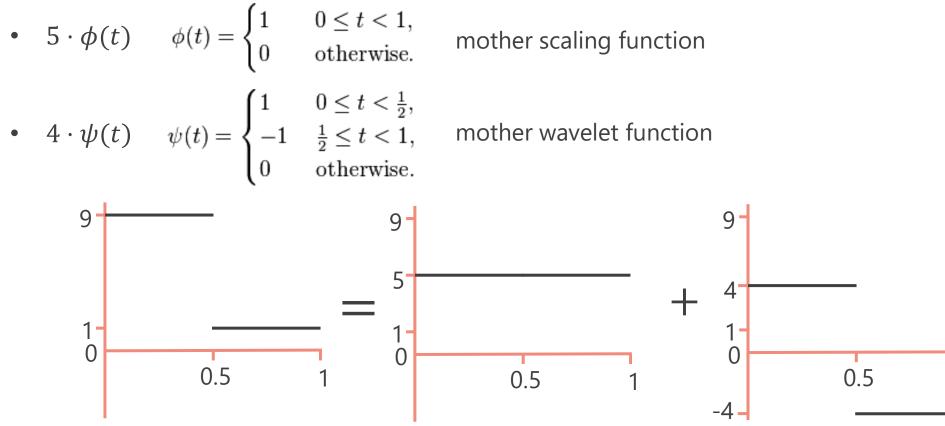


Wavelet Decomposition

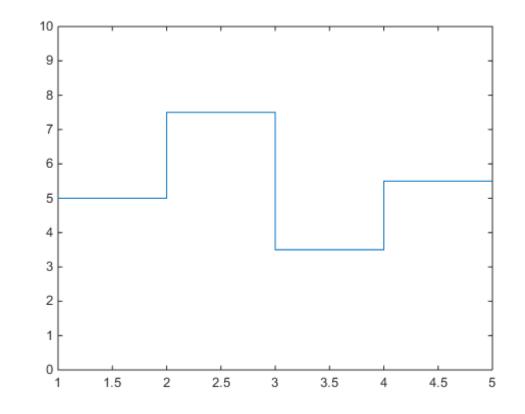
- Every wavelet can be described through a mother wavelet function ψ and a mother scaling function ϕ .
- The simplest wavelet is the Haar wavelet
 - Was developed by Alfred Haar in 1909
- The simplest and most widely adopted wavelet basis and looks like this:



- Let's start with an example
- The signal below can be expressed as a combination of an average and difference function:



- Now consider a more complex signal
- For a 1-D discrete signal with length 2^N we can remove the average & difference of two neighboring values to obtain 2^{N-1} scale coefficient and 2^{N-1} detail coefficients.



- Let's look at the values:
 - Y = [1, 9, 8, 7, 3, 4, 5, 6]
- The averages of the neighboring values and the differences:
 - cA = [5.0, 7.5, 3.5, 5.5] and cD = [-4.0, 0.5, -0.5, -0.5]
- Vector [cA,cD] is a single level wavelet decomposition
- Single level means that the decomposition step was performed once

- Let's look at the values:
 - Y = [1, 9, 8, 7, 3, 4, 5, 6]
- The averages of the neighboring values and the differences:
 - cA1 = [5.0, 7.5, 3.5, 5.5] and cD1 = [-4.0, 0.5, -0.5, -0.5]
- Repeat with new averages:
 - cA2 = [6.25, 4.5] and cD2 = [-1.25, -1]
- Oone last time:
 - cA3 = 5.375 and cD3 = 0.875
- The 3-level wavelet transform of Y is now [cA3,cD3,cD2,cD1]

Orthonormal Wavelet Basis

- Need orthonormal basis for representation
- Orthonormal if:
 - Means via: (a+b)/sqrt(2)
 - Differences via: (a-b)/sqrt(2)

Odd Length Signals

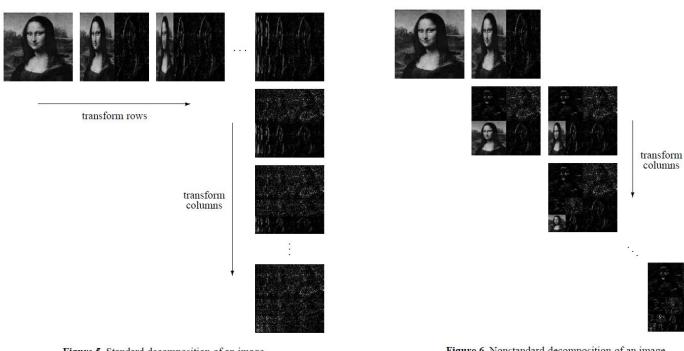
- Two strategies
 - Preferable: copy the last value
 - Alternative: remove last data point

- What about 2D?
- In 2D the principle stays the same, for single level decomposition:
 - Average over cells with four elements
 - Compute the horizontal differences
 - Compute the vertical differences
 - Compute the diagonal differences

2D Haar mother basis functions

Source: Wavelets for computer graphics: A Primer

- Multi-level decomposition one has to choose the order of the decomposition
- Iterate over averages
- Remeber all computed diffeerences



transform rows

Figure 5 Standard decomposition of an image. An example from Wavelets for Computer Graphics: A Primer [1] Figure 6 Nonstandard decomposition of an image.

An example from Wavelets for Computer Graphis: A Primer [1]

Source: https://chengtsolin.wordpress.com

0.1%

100%

1%

Back to Image Recognition

- Achieved: new representation of the labeled images
 - Local changes encoded
- TODO: create a decision mechanism based on edges
 - Circle vs. rectangle
- Create new data which encodes the edges
- Only small fraction of PC needed to describe the data sufficiently
 - Remember SVD
- Next step find a number of principal components which are associated with the objects

Underfitting / Overfitting



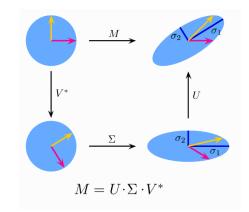
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/

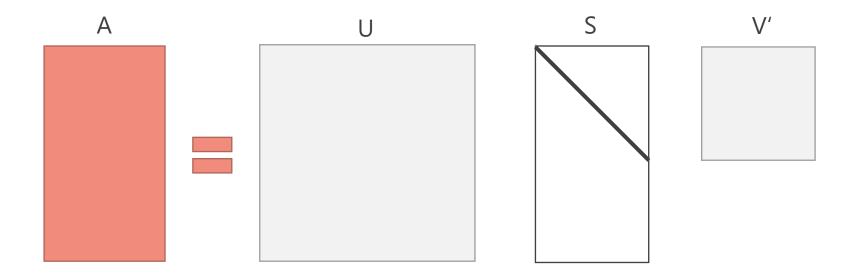
SVD for Image Recognition

- Assume we have the edge data of n cube images and m sphere images (ed_cu,ed_sp). We want to characterize the images based on k features.
- Perform SVD on the stacked data:
 - [U,S,V] = svd([ed_cu,ed_sp])
- Lets take a closer look at the decomposed matrices.

SVD for Image Recognition

- [U,S,V] = svd([ed_cu,ed_sp])= svd(A)
- S: impact of single values
- objects=S*V' is a new basis
- Size of objects is dependent on the number of samples only



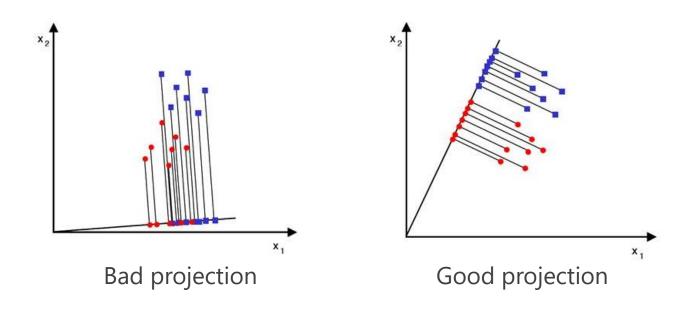


Linear Discrimination Analysis

- Having detected a number of principal components of a class we can now set up a statistical decision mechanism to identify objects in new images.
- One possible way to do so is to use linear discrimination analysis (LDA)
- LDA aims to reduce the dimensionality while preserving as much of the class discriminatory information as possible

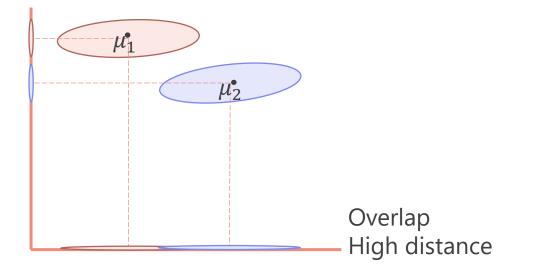
LDA Illustration

- Assume we have a set of high dimensional samples x with two classes ω_1 and ω_2 : spheres and cubes.
- We seek to obtain a scalar y by projecting the samples x onto a line, $y = w^T x$.
- Of all the possible lines we want to select the one that maximizes the separability of the two groups.



LDA

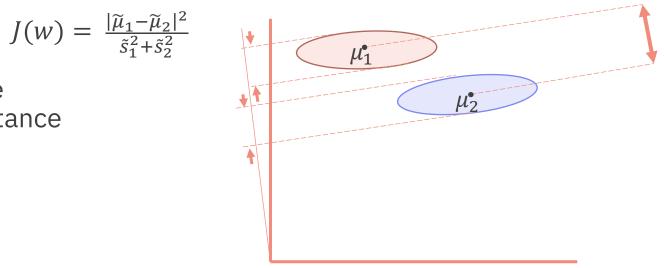
- In order to find a good projection we need to define a measure of separation.
- One possibility is to compute the mean vector μ_i of each class ω_i and use the distance between the projected means as our objective function: $\tilde{S}_B = |\tilde{\mu}_1 - \tilde{\mu}_2| = |w^T (\mu_1 - \mu_2)(\mu_1 - \mu_2)^T w| = w^T S_B w$
- But considering just he mean is not enough:



- Fisher suggested maximizing the difference between the means, normalized by a measure of the within-class differences.
- For each class define the scatter, an equivalent of the variance as

$$S_W = \sum_{j=1}^{-} \sum_{x} (x - \mu_j) (x - \mu_j); \quad \tilde{S}_W = w^T S_W w$$

- The Fisher linear discriminant is defined as the linear projection *w* that maximizes the criterion function
- Such a projection mimizes the distance within the class and maximizes the distance between classes



• Solving the generalized eigenvalue problem $S_W^{-1}S_Bw = J(w) = \lambda w$ gives us the solution:

$$w^* = \arg \max \left[\frac{w^T S_B w}{w^T S_W w} \right] = S_W^{-1} (\mu_1 - \mu_2)$$

- This solution is known as Fisher's linear discriminant, even though this is not a discriminant but a specific choice of the projection direction of the data down to one dimension.
- This projection can now be used to distinguish between the two groups.
- One simple method: $w^*x > threshold \Rightarrow$ cube, everything else is a sphere.
- More sophisticated methods can be used for the classification