MUNI FI

PA221: Introduction

Course organization, introduction to HDL tools

Course Organization

- PC Labs (Week 01-07)
 - Mandatory -> absence -> e-mail in advance
 - A415, Wednesday 18:00 19:50
 - Solution from each week needs to be submitted into Information System before the forthcoming lab
- Individual projects (Week 08-13)
 - Consultations in A415, Wednesday 18:00 19:00 (might be longer if required)
- Project presentations and consultations (during examination period, concrete dates will be specified)

Prerequisites

- Expected knowledge: all topics of PV200 Introduction to hardware description languages
 - Combinational and sequential logic
 - Synchronous design
 - Simulations
 - Counters and clock dividers
 - Debouncers
 - Finite state machines
 - Nios II: simple system
- Both Verilog or VHDL knowledge is sufficient you will use Verilog throughout the course, but it should be easy to switch

Planned Schedule

- W01: Introduction and repeating Finite State Machines
- W02: Timing analysis, balancing and pipelining
- W03: DSP blocks and digital signal filtering
- W04: Signal tap, clock domains
- W05: Verification
- W06: NIOS II introduction
- W07: NIOS II memory buses and peripherals

It is a plan and most probably it will be changed...

General Recommendation

- Actively participate during laboratory classes
- Focus on the topic and the assignment
- We will try to help you, but we expect you ask for it
- Prepare at home if you cannot finish the task during the class, finish it at home – subsequent tasks are based on the previous ones
- Look for materials online:
 - <u>https://www.fpga4fun.com/</u>
 - <u>https://circuitcove.com/</u>
 - Google, Youtube, ...

IDE is Important

- Try different IDEs and try which one suits you best
- Some recommendations:
 - Sigasi (either Eclipse or VSCode version student licenses are available)
 - VSCode with suitable extension (e.g. Verilog-HDL/SystemVerilog...)
 - Emacs, Vim, ...
 - Simulations we can recommend these two options:
 - ModelSim (as part of Quartus for Intel FPGAs)
 - Ikarus Verilog (please see w01_ikurus_gtkwave.pdf in your Study Materials)

Task Assignment (as Homework)

- You should be able to finish this task yourself (the assignment only tests the prerequisites)
- Implement the following function as a synthesizable finite state machine in Verilog:
 - Inputs: clk, ce (clock enable), sw[7:0] (switches), btn_left (button left direction), btn_right (button right direction)
 - Outputs: leds [7:0]
 - sw[7:0] sets the initial state of leds[7:0]
 - Single-clock-cycle impulse on btn_left input (input is 1'b1 for one clk cycle) starts shifting the initial state of LEDs into left direction, shifting happens if ce = 1'b1, when all LEDs are inactive, they stay inactive until a new shifting is requested by a button
 - Similar behavior is expected for the btn_right input
 - Both btn_left and btn_right are expected to be the outputs of rising edge detector (module called find_rise.v in PV200) – you do not care about debouncing for this task

Graphical Function

sw = 8′b11000000 btn_right	sw = 8′b11001100 btn_left	sw = 8′b11001100 btn_left

WEEKO1: INTRODUCTION

Simulations

- Demonstrate the function of switches and both buttons in simulation
 - Either in ModelSim or Ikarus Verilog

