
Week 08: Client-side routing, React forms
Petr Wehrenberg

Outline
Routing

Introduction to client-side routing
Routes definition
Links and NavLinks
Code splitting and lazy loading

Forms

Controlled and uncontrolled inputs
Basic form definition
Form validation
Form array fields

What is routing, and why do we need it?

UX problem
#1 Hey, look at these excellent products!

https://eshop.com
https://eshop.com/products

#2 Click and find all completed tasks!

https://todo.com
https://todo.com/tasks?filter=status~eq~completed

#3 Situation: The user clicks in the browser to go back, and nothing happens.

https://eshop.com/
https://eshop.com/products
https://todo.com/
https://todo.com/tasks?filter=status~eq~completed

DX problem
How can we handle more pages in our app?

const App: FC = () => {

const [currentPage, setCurrectPage] = useState("homepage");

return (

<div>

<Navbar onClick={(page) => setCurrectPage(page)} />

 {currentPage === "homepage" && <Homepage />}

 {currentPage === "preferences" && <Preferences />}

 {currentPage === "products" && <Products />}

 {/* another pages */}

</div>

);

};

Very naive approach. Do not use this!

Client-side routing introduction
We know our goal and the naive approach, but how can we do that?

We need ...

fake routing in the browser
all features of the old-style routing (search params, dynamic routes...)
simple API

Solution: React router DOM v6
Alternative: Tanstack Router

Routers in React router DOM
Browser router
Hash router
Memory router

Please, use only the Browser router in your projects and applications.

React router DOM - Route Object
Routes definition with RouteObject

import { createBrowserRouter, RouterProvider } from "react-router-dom";

const router = createBrowserRouter([

 {

path: "/preferences",

Component: PreferencesPage,

 },

 {

path: "/products",

Component: ProductListPage,

 },

]);

const App: FC = () => {

return <RouterProvider router={router} />;

};

React router DOM - Route Element
Also, possibility to define routes with elements:

import { BrowserRouter, Routes, Route } from "react-router-dom";

const App: FC = () => {

return (

<BroswerRouter>

<Routes>

<Route path="/preferences" Component={PreferencesPage} />

<Route path="/products" Component={ProductListPage} />

</Routes>

</BroswerRouter>

);

};

Nested routes
sometimes, we need to specify routes like /prefences/users/managers
we want to write the same part on multiple pages only once
we would like to see some nice structure

const router = createBrowserRouter([

 { path: "/preferences/users", Component: UsersPreferences },

 { path: "/preferences/users/managers", Component: ManagersPreferences },

 { path: "/preferences/products", Component: ProductsPreferences },

]);

Not like that.

Nested routes - Route Object

const router = createBrowserRouter([

 {

path: "/preferences",

Component: PreferencesLayout,

children: [

 { path: "users", Component: UsersPreferences },

 { path: "products", Component: ProductsPreferences },

],

 },

]);

const PreferencesLayout: FC = () => (

<div>

<PreferencesNavbar />

<Outlet /> {/* imported from React router dom */}

</div>

);

Nested routes - Route Elements

<BroswerRouter>

<Routes>

<Route path="/preferences" Component={PreferencesLayout}>

<Route path="users" Component={UsersPreferences} />

<Route path="products" Component={ProductsPreferences} />

</Route>

<Route path="/products" Component={ProductListPage} />

</Routes>

</BroswerRouter>

const PreferencesLayout: FC = () => (

<div>

<PreferencesNavbar />

<Outlet /> {/* imported from React router dom */}

</div>

);

Dynamic routes
We need a dynamic part of the URL for each product's detail page.

const router = createBrowserRouter([

 { path: "/preferences/1", element: <ProductDetail id={1} /> },

 { path: "/preferences/2", element: <ProductDetail id={2} /> },

 { path: "/preferences/3", element: <ProductDetail id={3} /> },

/* */

]);

Not like that.

Dynamic routes
be careful, you need to parse String to number
check always if the parameter exists

const router = createBrowserRouter([

 {

path: "/products/:productId",

Component: ProductDetail,

 },

]);

const ProductDetail: FC = () => {

const { productId } = useParams(); /* imported from React router dom */

const { product } = useProductDetail(productId);

return; /* html part with product detail */

};

Links in React router DOM
At the beginning, we mentioned that client-side routing is fake. So when we
need to use links in our SPA, and we can not use <a> , what is the solution?

Luckily, the react-router-dom includes two types of links:

Link is just a simple link to some location
NavLink is more suitable for navigation, like Menu or Navbar

Link
Links move us to the specified location.

import { Link } from "react-router-dom";

const SomeComponent: FC = () => {

return (

<div>

 {/* Absolute path */}

<Link to="/preferences">Go to preferences</Link>

 {/* Relative path */}

<Link to="../products" relative="path">

 Go to products

</Link>

</div>

);

};

NavLink
The isActive state is helpful when we are building some more intuitive Navbars

import { NavLink } from "react-router-dom";

const Navbar: FC = () => {

return (

<nav>

<NavLink

to="/preferences"

className={({ isActive }) =>

 clsx("navlink", isActive && "navlink--active")

 }

 >

 Preferences

</NavLink>

</nav>

);

};

Search parameters
Back to the first problem-solving. What if I create a link to my app
and specify some filters? After opening that link, the user will immediately
see the desired state of the application without additional clicking.

Naive solution:

const router = createBrowserRouter([

 { path: "/tasks/completed", Component: CompletedTasks },

 { path: "/tasks/in-progress", Component: InProgressTasks },

]);

We see that this solution will not work with all possible filters.

Search parameters
We can use search parameters:

const Menu: FC = () => {

return (

<Link to={{ path: "/products", search: "filter=status~eq~completed" }}>

 Completed tasks

</Link>

 </nav>

);

};

const Tasks: FC = () => {

let [searchParams, setSearchParams] = useSearchParams();

const filter = searchParams.get("filter");

return; /* render products */

};

Code splitting
We have simple routing:

import PreferencesPage from "./pages/PreferencesPage";

import ProductsPage from "./pages/ProductsPage";

const router = createBrowserRouter([

 {

path: "/preferences",

Component: PreferencesPage,

 },

 {

path: "/products",

Component: ProductsPage,

 },

]);

Code splitting
The final bundle has only one file. The file index-*.js is our application.

> routing-demo@0.0.0 build

> tsc && vite build

vite v5.2.8 building for production...

✓ 42 modules transformed.
dist/index.html 0.46 kB │ gzip: 0.30 kB
dist/assets/index-l8X_Fozx.css 27.31 kB │ gzip: 5.00 kB
dist/assets/index-DpfbmpuW.js 204.85 kB │ gzip: 66.39 kB
✓ built in 814ms

Code splitting
What if we lazy load the PreferencesPage ?

import { lazy } from "react";

import ProductsPage from "./pages/ProductsPage";

const PreferencesPage = lazy(() => import("./pages/PreferencesPage"));

const router = createBrowserRouter([

 {

path: "/preferences",

Component: PreferencesPage,

 },

 {

path: "/products",

Component: ProductsPage,

 },

]);

Code splitting
Now our application is split into PreferencesPage-*.js and index-*.js

> routing-demo@0.0.0 build

> tsc && vite build

vite v5.2.8 building for production...

transforming (1) index.html

✓ 43 modules transformed.
dist/index.html 0.46 kB │ gzip: 0.30 kB
dist/assets/index-l8X_Fozx.css 27.31 kB │ gzip: 5.00 kB
dist/assets/PreferencesPage-Dy_e6Zun.js 0.60 kB │ gzip: 0.36 kB
dist/assets/index-2YkGLfzO.js 205.43 kB │ gzip: 66.89 kB
✓ built in 856ms

The PreferencesPage is now fetched from the server only if the user visits the route.

Suspense
But of course, we do not want to have a white page when the part of our page is not available yet.

import { Suspense } from "react";

const App = () => {

return (

<Suspense fallback={<div>Loading...</div>}>

<AppLayout />

</Suspense>

);

};

The Suspense will render some fallback in that case.

Routing checkpoint
Definition of the routes with Route Elements or Route Objects
Dynamic routes with useParams hook to access the parameters
Nested routes with Outlet and layouts
Link and Navlink
Search parameters with useSearchParams hook
Code splitting and lazy loading

Forms

Why are forms important
The way, how user can somehow edit, create and delete data on server is throw forms. Because
lot of application aims to somehow manage data, implementing and designing forms on frontend
is important.

HTML Form
A pure HTML form is underestimated. It can do a lot of work. One of the main disadvantages
is interactiveness. We want to inform users about the form's invalid data before sending
it to the server.

Also, extensive and complicated forms are challenging to write in pure HTML. We need a lot
of JS scripting to solve some complex parts. There, React and other UI libs and frameworks
come into play.

<form action="/products" method="POST">

<input name="title" />

<input name="description" />

<button>Submit</button>

</form>

Controlled and uncontrolled inputs
Two types of inputs are fundamental concepts of React. It can help us a lot or be a foot gun.

Controlled

const ProductForm: FC = () => {

const [value, setValue] = useState("");

const handleSubmit = (e) => {

 e.preventDefault();

console.log("Submitted form with: ", value);

 };

return (

<form onSubmit={handleSubmit}>

<input value={value} onChange={(e) => setValues(e.target.value)} />

<button>Submit</button>

</form>

);

};

Uncontrolled

const ProductForm: FC = () => {

const inputRef = useRef<HTMLInputElement>();

const handleSubmit = (e) => {

 e.preventDefault();

console.log("Submitted form with: ", inputRef.current?.value);

 };

return (

<form onSubmit={handleSubmit}>

<input ref={inputRef} />

<button>Submit</button>

</form>

);

};

React hook form
We need a library...

that can abstract the work with the form
that helps us with easy data validation
typescript friendly
that has performance and can be used on large forms

There are many libraries, but we recommend using the React hook form.

React hook form - Input registration

import { useForm } from "react-hook-form";

const ProductForm: FC = () => {

const { register, handleSubmit } = useForm();

const submitHandler = (values) => {

console.log("Submitted form with: ", inputRef.current.value);

 };

return (

<form onSubmit={handleSubmit(submitHandler)}>

<input {...register("title")} />

<button>Submit</button>

</form>

);

};

React hook form with Typescript
By defining the form type, we can get handy suggestions in the development process,
and of course, if we change the attribute or delete it, the build fails.

type CreateProduct = {

title: string;

description: string;

};

const ProductForm: FC = () => {

const { register, handleSubmit } = useForm<CreateProduct>();

const submitHandler: SubmitHandler<CreateProduct> = (values) => {

console.log("Submitted form with: ", values.title, values.description);

 };

return; /* form */

};

React hook form with validation
The form validation can be achieved with any validation library you want. You need
to write the resolver for your library. For well-known libs like Zod, the resolvers
are already written.

const productSchema = z.object({ title: z.string().min(3) });

type CreateProduct = z.infer<typeof productSchema>;

const ProductForm: FC = () => {

const { register, handleSubmit, formState } = useForm<CreateProduct>({

resolver: zodResolver(productSchema),

 });

return (

<form onSubmit={handleSubmit(submitHandler)}>

<input {...register("title")} />

 {formState.errors.title && <p>{formState.errors.title.message}</p>}

<button>Submit</button>

</form>

);

};

React hook form - Controller
In some cases, when the input is complicated or the library has limited API, we
can use the Controller for communication in a controlled way.

const ProductForm: FC = () => {

const { control, handleSubmit } = useForm<CreateProduct>();

return (

<form onSubmit={handleSubmit(submitHandler)}>

<Controller

control={control}

name="deliveryDate"

render={({ field }) => (

<ReactDatePicker onChange={field.onChange} selected={field.value} />

)}

 />

<button>Submit</button>

</form>

);

};

React hook form - useFieldArray
Sometimes, the form has some dynamic parts. For example, a button which adds
another user with a set of form fields. These array-like parts are not easy to
implement, but there is a hook in reacting hook form, which does all the job for us.

type User = {

name: string;

email: string;

};

type UserListForm = {

users: User[];

};

const Form: FC = () => {

const { control, handleSubmit } = useForm<UserListForm>();

const { append, remove, fields } = useFieldArray({ control, name: "users" });

return; /* form */

};

React hook form - useFieldArray

const Form: FC = () => {

const { control, handleSubmit } = useForm<UserListForm>();

const { append, remove, fields } = useFieldArray({ control, name: "users" });

const handleAddNew = () => append({ name: "", email: "" });

return (

<form onSubmit={handleSubmit(submitHandler)}>

 {fields.map((field, index) => (

<div key={field.id}>

<input {...register(`users.${index}.name`)} />

<input {...register(`users.${index}.email`)} />

<RemoveBtn type="button" onClick={() => remove(index)} />

</div>

))}

<AddBtn type="button" onClick={handleAddNew} />

<button>Submit</button>

</form>

);

};

Forms - checkpoint
we have controlled and uncontrolled inputs
React hook form with useForm hook
typescript support and data validation
Controller and its usage
complicated forms with useFieldArray

