Week 06: REST API, OpenAPI, Redis

Agenda

> GET /info/agenda
> Host: tutor.pbl3s8

HTTP/1.1 200
Content-Type: text/markdown;charset=utf-8
Server: Tutor

Seminar outline

- Prerequisites

HTTP methods

- HTTP response status codes

- REST API modelling activity

- Express.js

- Runtime validation with Zod

- OpenAPI

- Demo

- REST, Swagger, Redis repository

N N N N N N N N N N N N N NN
1

Prerequisites

e Working Docker/Podman

e A redis:latest Docker image (either you already have it pulled as per email, or you can pull it now,
before we start working)

e As usual, a working Node.js installation

HTTP methods in the context of REST - a quick recap
e v scase

GET Obtain a resource from the server

POST Submit data (resource) to the server

PUT Replace a resource on the server

PATCH Replace a part of the resource on the server
DELETE Delete a resource from the server

Requests can be

e Safe: Not altering the state of the server at all (all safe requests are also idempotent).

e |[dempotent: Making one request results in the same final effect as making multiple requests of the same
kind. (Example: One DELETE of an existing resource results in the resource being deleted, if the client has
the credentials. Multiple DELETE requests of the same resource with proper credentials also result in the
resource being deleted, even though from the second request onwards the HTTP status code changes)

e Unsafe: Making the request changes the state of the server, or creates some side effects.

HTTP response status codes - an even quicker recap

When designing an API, your APl communicates not only with the data you send, but also with HTTP status
codes. To ensure the correct behaviour of the apps that consume your API (might be only your app, but also
some general scraping tools that rely on status codes), you must use correct status codes to indicate the
status in response to the request the client has made.

200 Generic way to say that the request succeeded

201 Resource created

204 The operation was successful and did not retrieve data

301 The resource has moved somewhere else

307, 308 Redirect responses

400 Client has made a bad request

401 Not authorized for this operation

403 Not allowed to proceed with the operation with current authentication

500 Generic error on the server-side (usually don't want to reveal more information than
absolutely necessary)

For more information, visit Mozilla documentation of the HTTP response status codes. Also, there is an
elaborate list of cat images explaining different HTTP response status codes.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://http.cat/

Let's learn by modelling an e-commerce API

Imagine a situation, where you model an APl for an e-commerce website, such as alza.cz. What resources
does the site have? Focus on the user part. Discuss in groups of three to four people.

e |[dentify resources
e What methods will the APl expose over those resources and what URIs will exist??

o Hint:Imagine the website, think about the main features that the user can do with the web app,
transform them into operations on resources

e Let's name the resources according to the methodology presented in the lecture and create routes for
them

https://alza.cz/

Dvouleta
zaruka nyni
i pro firmy!

a alza.cz

o Moje Alza
Prihlasit se

S

B e

%

Alza dny - Velikonoce

LEGO® Slevy v appce pro
Cleny AlzaPlus+

Mohily, chytré hodinky, tablety
Pocitace a notebooky
Gaming, hry a zébava

TV, foto, audio-video

Velké spotiebice

Doméci a osobni spotiebice
DGm a domaci potreby

Dilna a zahrada

Hracky, pro déti a miminka
Drogerie

Parfumerie, Sperky a hodinky
Chovatelské potfeby

Sport a outdoor

Auto-moto

Kancelar a papirnictvi

Knihy, hudba, filmy a poukazy
Potraviny a alkohol

Zdravi

Nase znacky

7 Rozbalené zboZi a bazar

AlzaPlus+ >
Doruceni ZDARMA na cokoli.

AlzaNEO pronajem >

Pocitace a notebooky

E Notebooky ‘ Pocitace

2% Komponenty

B== Tiskarny a skenery P Software 5 Projektory
. Vylepsete si Home
‘ Apple novinky = Office

Otevri branu
do herniho sveta

™

Notebooky s Intel® Core
a Windows 11 Home

Vice zde

BE Windows 11

Notebooky,
které te | =
dostanou do hry

- 0d hraci
pro hrace

Vice zde | Vice zde

o

Nejnovéjsi clanky

’,

PR CLANEK

PR CLANEK

% ") .:(':"rmg-,-w

% Monitory - Sitové prvky

- PfisluSenstvi .q VR bryle

Do ptlnoci
objednas, ran
v AlzaBox

. PRELANEK

Vyhodny cenik
pro firmy
i Zivnostniky

Nakupte vie
na jednom misté.

Let's learn by modelling an e-commerce API

What routes have you created? What HTTP methods have you used? Your tutor(s) might also reveal their
solution.

Note: this solution is not complete, it's just a hint at how the API could be designed. We will work with a
slightly modified version of this during the demo.

e product

o Products also have some additional resources: photo s, review s, etc.
e category
e user

e /products - GET with query parameters as filters

e /product - POST for creating a new product

e /product/{productId} - GET for product detail; PUT, DELETE for product administration
e /categories - GET for getting all categories

e /category - POST for creating a new category

e /category/{categoryIdentifier} - GET subcategories of the category; PUT, DELETE - for category
administration

... and we could go on until we have the fully working backend.

Express.js - a Web Application Framework

e A Node.js framework that allows quickly building web applications and REST APIs with Node.js
e Provides a very minimal, precise set of tools necessary for creating web applications
e Used by many other JS/TS frameworks as their backbone

10

https://expressjs.com/

Express.js - Install

npm i express
TypeScript support:
npm i -D @types/express

11

https://expressjs.com/

Adding Express to the code

import express, { Express, Request, Response } from 'express';

const app: Express = express();
const port = 8080;

app.listen(port, () => {
console.log(Server is running at https://localhost:${port});

});

12

Express - middlewares,
routes and controllers

HTT P Re_queS't

REST API

HTTP Re_sPonse,

. Middleware 1 |

I

;

Middleware n

Gets passed to the
Feprerioke

Router

Chooses con'tro“er
which handles the

Controller

13

Express - middlewares

e The data is firstly processed by a pipeline of functions called middlewares

e These functions can, for example, check privileges or handle things that need to happen to every request
before it is processed individually

const app: Express = express();

/* Middlewares: */

api.use(express.json());
api.use(express.urlencoded({ extended: true }));

14

REST API

An HTTP request

TSON middleware parsing The HTTP
request [:ooly as o JSON objec't and
using it as an ob:le_c,'t

!

URLEncoded parsing The reauest,
a\“owing data te be encoded within
the URL of the request

y

Auth router

Protected route?

0
i

Authentication &
authorization
widdleware

continue with request
processing...

15

Express - routes (routers)

e The request then gets processed via a router
e Router routes the requests. It defines the flow of individual requests

// this import happens at the beginning of our project root file (typically “index.ts’)
import { productRouter } from './product/router';

api.use('/product', productRouter);

16

REST API

A request that has
pmsse_a‘ ‘throuah
middlewares

|

Router (For e)mmple for ‘/Proaluc‘t‘

route)
*/EproductIdd route POST */" reauest
/ \
Router W‘/Pmr:‘:t“-’z/f procluctTeld” Controller for creating o product
i)
/ X 5%

Send the HTTP
respov-se

Express - routes (routers) and controllers

e Each route has an assigned controller - a function that processes the request individually

// './product/router' file where the ‘productRouter’ is defined
import { Router } from 'express';
import { productControllers } from './controllers';

export const productRouter = Router();
const productSpecificRouter = Router();

/* post for /product’ router */
productRouter.post('/', productControllers.post);

/* get, put/patch, delete for '/product/productId’ router */
productRouter.use('/:productId', productSpecificRouter);
productSpecificRouter.get('/', productControllers.get);
productSpecificRouter.put('/', productControllers.edit);
productSpecificRouter.patch('/', productControllers.edit);
productSpecificRouter.delete('/', productControllers.delete);

Express - controllers

e The controller then provides the logic for handling of the specific request

// './product/controllers/' file where ‘productControllers’ 1is defined
const get = (req: Request, res: Response) => {
/* The logic is defined here. Calls to the database, parsing query params,
error handling, sending responses etc. */

};
/* ... rest of the file */

export const productControllers = {
get,

set,

/* ... */

s

19

Express - controllers

Note: The response of a controller should be fast.
In case an expensive operation is triggered, the
system should create a "session” and the client
should then poll the status of the task via periodic
requests to the session id endpoint

General rule: The quicker the response, the better
the UX of the client is.

REST API

Controller

A request coming From
o router

v

T ypiml use-cases

| ©)
(| D]

*a dedicated solution like object storage or a custom

separated in-house service is preferred

Runtime validation

Problem: During runtime of our application, we expect the HTTP bodies (within the REST context) to contain
objects with well-defined structure. We might help ourselves by defining types to work with these objects in
TypeScript. This works, if the shape of the data we receive matches the type we have defined. If it does not,
our application crashes on accessing undefined properties... How can we solve this issue?

type ProductCreateData = {
name: string,
description: string,

};

// within a controller:
const data: ProductCreate = req.body;

// we want to use the object properties for something, pass it to the DB repository, etc.

console.log(data.description);
// A Qur app might crash here as we cannot be sure this property exists!!!

Solution: We import a well written runtime validation library with full TypeScript support like zod(preferred) or
yup, and we create schemas for the objects we want to use!

2]

https://www.npmjs.com/package/zod
https://www.npmjs.com/package/yup

Runtime validation - zod schema + validation

If the parsing returns success, the data we put to the validator was checked during runtime and passed the
validation. Now, TypeScript also knows it can rely on the exact shape of the data the schema specified. We
can now sdfely pass this data to the rest of the application, for example to the database repository, or a
function which executes some form of calculation. Amazing, isn't it?

import z from 'zod';

// define object schema, possibly with additional restrictions on the types
const ProductCreateSchema = z.object({

name: z.string().min(4),

description: z.string().min(20),
}).strict();

export type ProductCreateData = z.infer<typeof ProductCreateSchema>;

// usage within a controller (async version was used, as this can be computationally heavy and we don't want a blocking operation):
const validationResult = await ProductCreateSchema.safeParseAsync(req.body);

if (!validationResult.success) {
// handle the error and use early return, you now have the “.error’ property available
return res.status(400).send({ error: validationResult.error });

F

// handle the success where ‘validationResult.data exists, which iIs now typesafe (has type ‘ProductCreateData’)!
const { data } = validationResult;

await productRepository.create(data);
// and continue with the business logic of your controller

22

Open APl - documentation, documentation, documentation

Documentation is the key for every APl consumer. What is not documented is unknown, especially once the
project grows in scale. OpenAPl documentation solves this by:

e Providing a standardized way of writing documentation for APIs
e Allowing developers to easily document their API:
o Routes & Methods
o Expected data within request bodies/headers
o APl consumer input conditions (what goes into request bodies, query parameters, etc.)
o Potential responses from the API
e Allowing consumers of the APl to understand it without seeing the internals

Most of the time the implementation of the APl you consume is private -> government APIs, corporate APIs,
closed-source services. You might not have the permission to look into the source code of a product even
within your company.

23

Adding Swagger documentation into your project

Adding the OpenAPl documentation tools is as easy as adding these few dependencies for your express
project: swagger-ui-express, yaml

npm 1 swagger-ui-express yaml
And adding them to your Express application

import express, { Express } from 'express';
import swaggerUi from 'swagger-ui-express';
import fs from 'fs';

import yaml from 'yaml';

const api: Express = express();
const documentationFile = fs.readFileSync('../docs/swagger.yml');
const swaggerDocument = yaml.parse(documentationFile);

/* Add the api-documentation endpoint */
api.use('/api-documentation', swaggerUi.serve, swaggerUi.setup(swaggerDocument));

24

Get inspired by the demo!

The demo application already has the documentation complete and exposed for you. You can see how to
write the documentation, and how to embed swagger within your express.js application.

25

Run the demo application - start Redis

Our demo application connects to a Redis service. The application uses a database repository*, which allows
us to persistently store data. We will use the repository as a "blackbox” - we input data and retrieve the data

from the repository. The repository hides all the implementation details of communication with the Redis
service.

docker run -d --name redis -p 6379:6379 redis

* You will learn how to create database repositories (and the whole idea behind this design pattern) later
during the course. For now, we will learn how to consume the repositories to load and store data within a
database solution of choice.

26

Run the demo application

We're now able to start the application.

install dependencies if you have not already
npm 1

run the api in watch mode - the express app will keep refreshing on changes
npm start

Go to http://localhost:6001/api-documentation to see the documentation.

27

http://localhost:6001/api-documentation

Live coding: Implement the REST APl an e-commerce site

The OpenAPl docs we made provide you with all information necessary to create the e-commerce API. Let's

start!

(The demo is available in the interactive syllabus)

28

There are many tools that you can use to test
your APIs, even your web browser is a very

powerful one. For a more robust development
experience, you might want to look into ,

which is an open-source tool for testing REST APIs.

The Free version covers everything you'll need in
the context of this course (and more). It even has
a VSCode extension!

You might have heard about or

. These solutions transitioned into paid
services (Saa$s) in recent years and the user
base has started to shift away from them. A
version of Insomnia that some people started
to use instead is - a privacy-
oriented fork of Insomnia.

@ bruno

[Collections

~ sample-collection
Create
PUT Update
GET User Not Found

G Users

«= [sample-collection

GET

Params

Key

https://reqres.infapifusers?page=2

No Environment

>

2000K 75ms 1.1KB

"page": 2,
"per_page": 6,
"total": 12,
"total pages": 2,

29

https://www.usebruno.com/
https://insomnia.rest/download
https://www.postman.com/downloads/
https://github.com/ArchGPT/insomnium

Questions?

30

