
Week 08: Prisma queries & transactions, repository pattern

1

Agenda
Recapitulat ion from the lectures
Repository pattern
Creat ing a simple repository

2

Let's remember what we learned during the last two lectures

3

CRUD operations in Prisma
Prisma allows several different CRUD (create, read, update, delete) operat ions. As in the previous :

findMany , findFirst , findUnique : all read data (and behave different ly) - obvious from names
create , createMany : Creates a record/creates many records in a batch query
update , updateMany : Updates a single record/updates many records in a batch query
upsert : Create OR update a record (updates an exist ing record, or creates it if it does not exist)
delete , deleteMany : Deletes a single record/deletes many records in a batch query

Let 's make an example with a music st reaming plat form (side note: this will be a part of the third iterat ion's
assignment)!

// find all artists

const artists = await prisma.artist.findMany();

4

Prisma queries
Prisma query is comprised of some parts:

where f ield: specif ies the condit ions under which we want to run the query with
select f ield: which data we want to retrieve from the database (if not included, the whole model/record

gets retrieved)
data f ield: specif ies what data we want to update/create
include : joining data from relat ions in the response - does not work with select on the same level,
select can also join the related records if we want to only retrieve some parts of the model/record!
orderBy : the ordering of the data - we want to let the db do the ordering whenever possible
take : number of records to retrieve, can be used only in conjunct ion with orderBy to ensure

determinist ic behavior
skip : enables paginat ion

And many more, see the whole client documentat ion for the detailed explanat ion

5

https://www.prisma.io/docs/concepts/components/prisma-client

Prisma query example

// find all albums where their description contains the word 'rap'

const albums = await prisma.album.findMany({

where: {

description: {

contains: 'rap'

 },

 },

});

6

Prisma transactions
Encapsulate a code that needs to either succeed as a whole or fail as a whole
Either sequent ial or interact ive
When an error is encountered, the t ransact ion rolls back - as if it was never executed

Interactive transactions

Should perform only the necessary operat ions
Use them together with Isolat ion levels to avoid race condit ions within t ransact ions
Use them with caut ion!

Read the whole documentat ion about t ransact ions for more details.

7

https://www.prisma.io/docs/concepts/components/prisma-client/transactions

Prisma interactive transaction example

const result = await prisma.$transaction(async (transaction) => {

// use "transaction" parameter of this async function instead of regular "prisma" calls

const albums = await transaction.album.findFirst({

// whatever query here

 });

if (albums) {

// we can now write some logic within the transaction, whatever the condition

// or intended reason for this custom logic is

 }

return await transaction.artist.update({

// perform some operation that is dependent on the previous query

// and previous logic within the transaction

 });

});

8

Many-to-many relationships: implicit & explicit
Prisma can handle basic many-to-many relat ionships by defining lists of items in both affected Prisma
models in the schema
In case you need to store more informat ion than just the many-to-many relat ion, you need to create an
explicit many-to-many relat ion by defining a join table with all necessary propert ies.
We recommend using implicit relat ionships only if you don' t wish to extend them in the future.

9

Exceptions from Prisma
As with everything, Prisma calls can also fail due to mult iple reasons:

Failed constraints during the query execut ion
Conflict ing query creat ion (using select together with include on the same level)
Unable to connect to the database (for various reasons)
The database does not have correct models (connect ion successful, but migrat ions have not been
executed yet)

Always write Prisma queries within a t ry-catch block:

try {

// write some prisma query(/ies) or transaction(s)

const something = await prisma.entity.operation(/*...*/)

} catch (e) {

// handle error

}

10

Repository pattern
Separates the database logic from the rest of the applicat ion
Creates an API to work with your database

The API stays the same, even if the underlying implementat ion is completely rewrit ten
This separates the need to rewrite the whole app when there are database changes (migrat ing to a
different DBMS, rewrit ing queries for eff iciency, etc.) and isolates the implementat ion into its own
"subpart "
Makes working with the database in your applicat ion (REST API, GraphQL app, gRPC microservice, etc.)
as simple, as calling an async funct ion (with correct parameters) and await ing the result

Read more here.

import { albumRepository } from './repository.ts';

// reading all albums in the database

const result = await albumRepository.read.all();

11

https://learn.microsoft.com/en-us/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/infrastructure-persistence-layer-design

Repository pattern
As always, we don' t want the repository to throw an except ion
We' ll focus on error handling with the help of the Result pattern you've already seen several t imes and
should be familiar with by now
Look in the documentat ion of the @badrap/result

12

https://github.com/badrap/result

Let's code!
As always, the assignment zip can be found in the interact ive syllabus

13

