
draft of 5-11-2018

Self-encrypting deception: weaknesses in the
encryption of solid state drives (SSDs)

Carlo Meijer
Radboud University, the Netherlands

C.Meijer@cs.ru.nl

Bernard van Gastel
Radboud University, the Netherlands
Open University of the Netherlands

Bernard.vanGastel@{ru.nl,ou.nl}

Abstract—We have analyzed the hardware full-disk encryption
of several SSDs by reverse engineering their firmware. In theory,
the security guarantees offered by hardware encryption are
similar to or better than software implementations. In reality, we
found that many hardware implementations have critical security
weaknesses, for many models allowing for complete recovery of
the data without knowledge of any secret.

BitLocker, the encryption software built into Microsoft Win-
dows will rely exclusively on hardware full-disk encryption if
the SSD advertises supported for it. Thus, for these drives, data
protected by BitLocker is also compromised.

This challenges the view that hardware encryption is prefer-
able over software encryption. We conclude that one should not
rely solely on hardware encryption offered by SSDs.

I. INTRODUCTION

In recent years, protection of sensitive data has received
increased attention. Protection of digital data has become
a necessity, certainly in the light of new European Data
Protection Regulation. Technically, encryption is the go to
protection mechanism; it may be implemented in software
or hardware (or both). It can be applied on the level of
individual files, or the entire drive, which is called full-disk
encryption. Full-disk encryption is often the solution of choice
as it takes away concerns of sensitive data leakage through,
for example, temporary files, page files and caches. Several
software solutions for full-disk encryption exist, and modern
operating systems typically integrate it as a feature. However,
purely software-based encryption has inherent weaknesses,
such as the encryption key being present in RAM at all times
and performance drawbacks.

In an attempt to address these weaknesses, hardware full-
disk encryption is often proposed; the encryption is performed
within the drive itself, thereby confining the encryption key
exclusively to the drive. Typically, the encryption itself is per-
formed by a dedicated AES co-processor, whereas the software
on the drive (firmware) takes care of the key management.
It is often regarded as the successor of software full-disk
encryption. Full-disk encryption software, especially those
integrated in modern operating systems, may autonomously
decide to rely solely on hardware encryption in case it is
supported by the storage device (via the TCG Opal standard).
In case the decision is made to rely on hardware encryp-
tion, software encryption is disabled. In fact, BitLocker, the

full-disk encryption software built into Microsoft Windows,
switches off software encryption and completely relies on
hardware encryption by default if the drive advertises support.

Contribution. This paper evaluates both internal and external
storage devices, from multiple vendors, adhering to standards
for secure storage. The vendors combined produce close to
half of the SSDs currently sold. An overview is given of
possible flaws that apply in particular to hardware-based full-
disk encryption (Section V), and a methodology is provided for
the analysis (Section IV). We have analyzed firmwares from
different SSD models offering hardware encryption, focusing
on these flaws (see Section VI and Table I). The analysis
uncovers a pattern of critical issues across vendors. For multi-
ple models, it is possible to bypass the encryption entirely,
allowing for a complete recovery of the data without any
knowledge of passwords or keys. The situation is worsened by
the delegation of encryption to the drive by BitLocker. Due to
the default policy, many BitLocker users are unintentionally
using hardware encryption, exposing them to the same threats.
As such, we should reconsider whether hardware encryption
is a true successor to its software counterpart, and whether the
established standards actually promote sound implementations.

Related work. At OHM in 2013, Domburg demonstrated
the possibility of debugging a hard drive through JTAG
and created possibly the first publicly demonstrated hard
drive firmware rootkit [4]. Domburg’s work has inspired
more research around anti-forensics such as [20], [7]. Leaked
documents indicate that even the NSA is using these tech-
niques [11]. Besides, proprietary cryptographic systems have
often shown to be much weaker in practice than standardized
publicly available alternatives once implementation details
are uncovered [18]. Within the scope of storage devices
with integrated hardware encryption, serious vulnerabilities
have also previously been identified in external drives using
proprietary protection schemes. An example is the external
Secustick, which unlocks by simply sending a command (not
containing a password) [5]. Another example is the Western
Digital MyPassport family of external drives, which suffers
from RAM leakage, weak key attacks, or even hardcoded
keys [2]. However these findings are isolated incidents limited
to proprietary solutions, and neither consider implementations
of established standards for secure storage nor consider these



issues across multiple vendors.
Responsible disclosure. After discovering these vulnerabil-

ities, we followed a process of responsible disclosure. In
this case, the National Cyber Security Center (NCSC) of the
Netherlands was informed first, which assisted in the responsi-
ble disclosure process, by setting up the contact with the man-
ufactures involved. We cooperated with both manufacturers, to
fix their products and agreed not to disclose the vulnerabilities
for six months. Both vendors have confirmed all the reported
issues. For models currently being supported, firmware updates
are either released or currently in development.

II. BACKGROUND

A. Software vs Hardware Encryption

To avoid negatively impacting the data throughput when
encryption is switched on, SSDs with encryption support, or
self-encrypting drives (SEDs), house a dedicated AES co-
processor that provides for the encryption. Therefore, data
encryption is essentially ‘free’ in terms of computational
resources. These drives encrypt all data stored on them with
the disk encryption key (DEK), even in case when the data
is not password-protected. All drives considered in this paper
use this approach. This essentially transforms the problem of
protecting the data to protecting the DEK, introducing the
following benefits:

(i) The data stored can be wiped instantly by erasing the
DEK.

(ii) Setting or changing the password does not require re-
encryption of all user data.

B. Hardware encryption standards

ATA Security: The standard for ATA storage devices [17]
defines the security feature set, which allows for locking and
unlocking with a password. The goal of the ATA security
feature set was limited to access control: it did not aim
to stop a well-motivated attacker with physical access. At
the time SEDs surfaced the market, it made sense to re-
purpose the ATA security password for encryption. However,
since the feature set already existed, it does not standardize
cryptographic primitives, or even state that encryption should
be used.

SED manufacturers commonly advertise that their products
use strong cryptography, such as AES-256. Unfortunately,
drive manufacturers typically do not provide encryption im-
plementation details, or in case of ATA security, even state
whether the encryption is used at all. In our opinion, it is
reasonable to assume so. However, the standard is not violated
in any way in case the password is used for access control
alone. From the ATA standard [17]:

If security is enabled on the device, the use of the Master
password is indicated by the MASTER PASSWORD CAPABILITY
bit. The MASTER PASSWORD CAPABILITY bit represents High or
Maximum as described in this subclause. The MASTER PASSWORD
CAPABILITY bit is modified during the processing of a SECURITY
SET PASSWORD command that specifies a User password. If
the MASTER PASSWORD CAPABILITY bit is set to High (i.e.,
zero), either the User password or Master password are used

interchangeably. If the MASTER PASSWORD CAPABILITY bit is
set to Maximum (i.e., one), the Master password is not used with
the SECURITY DISABLE PASSWORD command and SECURITY UN-
LOCK command. The SECURITY ERASE UNIT command, however,
uses either a valid User password or Master password.

By default, the Master password is set by the manufacturer.
In case the user sets a password, he must take care to
either also change the Master password, or set the MASTER
PASSWORD CAPABILITY bit to Maximum. If he fails to do
so, the Master password allows anyone with knowledge of the
factory-default password to access his data.

TCG Opal: TCG Opal [9] is a newer specification for SEDs.
It encompasses a communication protocol that is layered
on top of ATA or NVMe. Furthermore, Opal mandates the
use of either AES-128 or AES-256. The encryption should
meet the bandwidth capability of the storage device. Opal
compliant drives allow multiple passwords (credentials in Opal
terminology) to be defined. Each can be assigned to perform
various actions within the Opal subsystem. Special Admin
credentials are used to perform provisioning and configuration.

A storage device can be divided into multiple locking
ranges, that can be locked or unlocked independently. Each
locking range is encrypted with a different DEK (Media
Encryption Key in Opal terminology), and each locking range
can be erased independently of the others. Cryptographic erase
is performed by generating a new DEK. A special global range
is defined as the range that covers all sectors of the disk not
covered in other ranges.

Multiple passwords can be assigned permission to unlock
a particular range. Additionally, a single password can be
assigned permission to unlock multiple ranges. Phrased dif-
ferently: a many-to-many relation exists between passwords
and locking ranges.

Proprietary alternatives: Several proprietary alternatives
exist. Examples are Seagate DriveTrust, the Western Digital
MyPassport family of drives and Samsung’s portable SSDs.
There are several reasons for manufacturers to prefer a pro-
prietary solution over an open one. For example, the standard
may have been introduced before Opal came into existence,
or because a simpler scheme is preferred over Opal.

III. ATTACKER MODEL

Here we list several attacker models relevant in the context
of full-disk encryption. In the rest of this article, we will
only be concerned with the last one, as the implications of
the first two are roughly equivalent when offsetting software
against hardware encryption. We do, however, list them all
here because it is in our opinion important to state why they
are equivalent.
Machine off, no awareness. The adversary has momentary
physical access to the powered-down machine, and the victim
is unaware of this, creating an opportunity for the so-called evil
maid attack. The encounter is used to install data exfiltration
software or hardware on the victim’s machine.

In case of a hardware modification, e.g. a physical key
logger device, to the best of our knowledge, no meaningful



countermeasure exists today. For software modifications, the
story is more nuanced. PCs fitted with a Trusted Platform
Module (TPM) can take advantage of the sealing functionality,
where cryptographic key material is bound to the software and
hardware.

Hardware full-disk encryption does not mitigate the evil
maid scenario in any meaningful way. Therefore, this attacker
model is out of scope.
Machine on. The adversary has physical access to a powered-
on machine while the encryption containers are unlocked.
Software-based encryption solutions typically keep the crypto-
graphic key in RAM, which is vulnerable to cold boot attacks,
DMA attacks, or any other means of data exfiltration, including
physical removal and readout with an external device. How-
ever, it is worth mentioning that software encryption exists
that defends against such attacks, by storing the secret keys in
CPU registers [12], [14].

An argument that is often put forward in favor of hardware
encryption is that the secret key is not stored in RAM, and
therefore is not vulnerable to the aforementioned attacks. In
reality, this argument is invalid for several reasons.

(i) The software running on the host PC controlling the
hardware encryption, typically does keep a secret key
in RAM, introducing the same vulnerability. The reason
is to support Suspend-to-RAM (S3), a low-power state
wherein all peripheral devices are shut down. Since the
SSD is powered down, it must be unlocked again once
the system is resumed, and therefore either the operating
system must retain a copy of the secret key at all times,
or the user must enter it again. In virtually all imple-
mentations, including BitLocker, the former approach is
chosen [13].

(ii) The burden of keeping the secret key is moved to the
SSD, not eliminated. The SSD typically keeps the key in
the main memory of its controller. SSDs are not security-
hardened devices by any standard. In fact, many have a
debugging interface exposed on their PCB, allowing one
to attach a debugging device and extract the secret key
from the drive. Furthermore, several means of obtaining
code execution on the drive exist (See Section IV-B2).

(iii) A memory readout attack against software encryption
requires physical access. Given this, the attacker also
has the opportunity to carry out a hot-plugging attack
against hardware encryption. This has been demonstrated
in practice and poses a realistic threat [13].

As with the previous attacker model, opportunities and sub-
sequent impact are roughly equivalent compared to software
encryption. Therefore, this attacker model is also out of scope.
Machine off, awareness. The adversary has physical access
to a powered-down machine, and the victim is aware of this.
Therefore, from that point onward, the victim is unwilling to
enter key information into the machine. In this scenario, given
that the implementation is sound, software full-disk encryption
offers full confidentiality of the data, and hardware encryption
supposedly does so as well. In this paper, we focus on this
attacker model.

IV. METHODOLOGY

In order to assess how well the Opal standard performs in
practice, we argue that we should analyze its implementations.
This is, in our opinion, the most realistic measure. Such
an analysis is inherently a somewhat ad-hoc process, since
implementations vary wildly among manufacturers and mod-
els. However, to the extent possible, we document a generic
approach that is applied to every device subject to analysis. In
this remainder of section, we go through each step.

A. Obtaining a firmware image

The difficulty of obtaining a firmware image from an SSD
varies greatly among manufacturers and models. Below, we
list a few examples.

1) Downloading a firmware update: Most manufacturers
distribute firmware updates for their SSDs. Either by making
them available for download from their website, or through
their SSD management utility. For all the drives we studied,
firmware updates consist of the entire firmware image.

Firmware updates downloaded from a manufacturer’s web-
site often comprise of a bootable ISO image, containing an
operating system, firmware update utility, and the firmware
image itself. The update utility applies the update using the
0X92 DOWNLOAD MICROCODE ATA command. Extracting
the firmware from the ISO image is typically straightforward.

Obtaining a firmware image distributed through SSD man-
agement utility typically requires more effort, but is certainly
not impossible. For example, the utility may apply obfuscation
on its communication channels and/or firmware images that
require some reverse engineering in order to remove. Further-
more, in case the target drive already has the latest version of
the firmware installed, the utility may refuse to download the
update, complicating the matter.

Some manufacturers use encrypted firmware images; the
image is transferred to the drive, and subsequently decrypted
by the drive itself. In this case, a means of low level control
over the device, such as JTAG, or unsigned code execution, is
required in order to extract the encryption key used. However,
both means of control also allow us to simply extract the
currently running firmware from RAM.

2) Using a means of low level control: Low level control
over the device is valuable in itself, but, as stated above, can
also be used to obtain a copy of the firmware, by extracting
the currently running firmware from the device’s RAM. Below
we discuss several methods for gaining low level control.

B. Gaining low level control over the device

A firmware image allows for static analysis. However,
the possibility of dynamic analysis through e.g. JTAG is a
significant advantage. It allows us to quickly confirm (or
refute) assumptions and findings resulting from static analysis.
Furthermore, in case weaknesses are found in the crypto-
graphic scheme, a means of low level control is often required
in order to exploit them.



1) JTAG: JTAG allows full control over a device. Through
JTAG, we can halt/resume the CPU, read/modify registers and
place break-points. Given these primitives, we can read/write
arbitrarily in the address space, and execute arbitrary code.
Some SSDs expose a JTAG debugging interface on their PCBs.
Several standardized pin layouts exist. However, manufactur-
ers may opt for a proprietary one. The JTAGulator[8] allows
us to automatically determine whether a set of pins speak the
JTAG protocol, and if so, the purpose of each pin.

2) Unsigned code execution: Some SSD manufacturers
prefer to restrict what their end users can do with their devices.
Hence, they typically disable the JTAG feature of the storage
controller. In the absence of JTAG, a suitable alternative is
the ability to execute arbitrary code on the storage controller,
as it allows for essentially the same capabilities. However, all
drives in our study have countermeasures in place to prevent
this, such as cryptographic signature verification of firmware
updates.

Still, various means of gaining code execution exist:

(i) Use a vendor-specific undocumented command, if
present.

(ii) Exploit a vulnerability in the firmware, typically involv-
ing memory corruption.

(iii) Communicate directly with the drive’s memory chips
with an external reader device, and modify the currently
installed firmware.

(iv) Perform a fault injection attack (power, electro-magnetic,
or otherwise) in order to trick the drive into accepting a
modified firmware update with an invalid signature.

Vendor-specific commands Most manufacturers implement
vendor-specific commands for information gathering, diagnos-
tics, and other purposes. Through static analysis of firmware
images, we found examples in which a command exists that
allows for arbitrary values to be written to a memory address
of choice. This can be leveraged into arbitrary code execution,
e.g. by overwriting a function pointer.
Memory corruption The extent to which manufacturers
attempt to prevent memory corruption vulnerabilities varies.
Therefore, the success rate for identifying such a vulnerability
does so as well. Memory corruption vulnerabilities can in
many situations be leveraged into unsigned code execution,
a stack-based buffer overflow is an example of this.
Storage chip communication A more invasive technique
for gaining unsigned code execution is by using an external
reader device to make modifications to the currently installed
firmware. We make a distinction between NAND and NOR
memory.

The NAND flash chips usually contain the user-accessible
storage. Retrieving data from a NAND chip requires one to
know several chip characteristics, such as the page, block and
plane size. Some NAND chips have proprietary extensions,
e.g. in order to allow for assigning a region as SLC memory.
Furthermore, NAND chips in SSDs typically come as BGA
packages, requiring them to be desoldered from the PCB
before they can be directly communicated with.

Alternatively, some SSDs also house a NOR flash, con-
nected through SPI, a simple and well-supported protocol. SPI
flash chips usually expose their pins on the outside, allowing
for direct communication without the need for desoldering.
The purpose of this NOR flash varies. Typically, it contains
the drive’s capacity, serial number, NAND chip characteristics,
error logs, and more. In some occasions, it contains executable
code. In such a case, unsigned code execution may be possible
by making modifications to that executable code.
Fault injection attacks Finally, although we have not
attempted it during any of our case studies, a fault injection
attack may be used to obtain unsigned code execution. For
example, by triggering a clock glitch during a firmware update,
causing a conditional jump instruction to be skipped, tricking
the drive into accepting a firmware update with an invalid
cryptographic signature. In order to successfully mitigate fault
injection attacks, both hardware and software countermeasures
are necessary. Neither of which any of the drives we investi-
gated has in place. Moreover, to the best of our knowledge, no
SSD controller on the market exists today that has hardware
countermeasures against fault injection attacks. Hence, fault
injection is likely a means of gaining unsigned code execution
on SSDs now and in the foreseeable future.

C. Analyzing the firmware

Once a firmware image for a particular drive is acquired,
we analyze it. The file format used for firmware images differs
between manufacturers, and occasionally between different
models from the same manufacturer. For all drives we studied,
the image is divided in sections. Essential information about
these sections, such as their size, memory address, and offset
in the file, is usually contained within the image header.
This information is important for the analysis, since the
firmware code may at times refer to resources via absolute
memory addresses. In some cases, the section information
is immediately apparent by inspection. In other cases, some
reverse engineering of the code responsible for interpreting
firmware images is needed.

Once the sector information is uncovered, the firmware
image can be loaded into a disassembler and analysis tool.
We used the IDA Pro for this purpose.

When reverse engineering SSD firmwares, a good starting
point is identifying the ATA dispatch table, i.e. an array of
data structures containing the ATA opcode, the address of the
function that implements it, and possibly other data. All drives
in our study implement the ATA standard in a way similar to
this. Once the table is identified, the implementation of any
desired command can be studied by analyzing the code located
at the respective address.

For each of the possible issues given in Section V, we
attempt to find out whether the drive is susceptible to it by
studying the relevant code. Note that analyzing this many
drive firmwares for this many weaknesses is considerably
time-consuming. Therefore, it is in our opinion justified that
we skip the analysis of the other issues listed in Section V,
once we identify an issue that fully compromises the drive’s



encryption, since it does not contribute to the final assessment
of the security for that particular drive.

V. POSSIBLE SECURITY ISSUES WITH HARDWARE
ENCRYPTION

We argue that full disk encryption should be implemented
carefully by experts, and should be under public scrutiny
whenever possible. Properly implementing a hardware FDE
scheme is not trivial. To substantiate this claim we pose a
number possible implementation pitfalls. The list presented
in the remainder of this section is used as a guideline in
Section VI in order to assess how well hardware encryption
is generally implemented.

A. Password and DEK not linked

Obviously, the password should be required in order to
obtain the DEK, and this requirement should be crypto-
graphically enforced. Absence of this property is catastrophic.
Indeed, the protection of the user data then no longer depends
on secrets. All the information required to recover the user
data is stored on the drive itself and can be retrieved.

Unfortunately, implementing this properly is not entirely
trivial. As stated in Section II-B, standards dictate that multiple
passwords yield the same DEK and that passwords can be
changed independently.

B. Single DEK used for the entire disk

The Opal standard allows for multiple ranges to be defined,
each of which protected with different passwords. A naïve
implementation is to use a single DEK for the entire drive, and
store an encrypted variant of it for each password, whereas
a proper implementation produces different DEKs for each
range.

On the surface, doing so may seem only a minor issue.
Indeed, access to at least one range is still required. How-
ever, the (probably) most popular Opal management software,
BitLocker, leaves the global range unprotected in order to
allow the partition table to be accessible. Consequently, the
DEK must be stored unprotected to allow for this, in effect
compromising the other ranges.

C. Lack of entropy in randomly generated DEKs

Within the ATA and Opal standards, no means exist for
the end user to specify the DEK himself. The only way to
affect its value is by randomizing it. This raises the question
whether sufficient random entropy is available during the DEK
generation.

In principle, the environment wherein SSDs are deployed
allows for sufficient entropy to be acquired. For example,
the drive’s temperature sensor and I/O requests from the
host PC. Furthermore, storing and restoring the random pool
upon reboots should not be an issue since we are concerned
with storage devices. However, random number generators in
embedded devices have a notoriously bad reputation [19].

D. Wear leveling

SSDs use flash memory for data storage. A property of flash
memory is that it can be put through a limited number of write-
erase-cycles before becoming unreliable. In order to prolong
the service life of the device, wear leveling is applied. It works
by arranging data so that erasures and re-writes are evenly
distributed across the medium. This way, no single block
prematurely fails due to a high concentration of write cycles.
Thus, multiple writes to the same logical sector typically
trigger writes to different physical sectors. Older copies of
a sector remain stored until overwritten (although not directly
retrievable by the end user).

This raises the question whether this applies to key infor-
mation as well. Suppose that the DEK is stored unprotected,
after which a password is set by the end user, replacing the
unprotected DEK with an encrypted variant. Due to wear
leveling, the new variant can be stored somewhere else within
the storage chip and the old location is marked as unused.
If not overwritten later by other operations, the unprotected
variant of the DEK can still be retrieved.

E. Power-saving mode: DEVSLP

DEVSLP is a feature that allow SATA drives to go in to a low
power ‘device sleep’ mode when sent the appropriate signal.
The advantage over other modes is that the SATA link need
not be powered to receive a wake-up trigger. Instead, an out-
of-band signal is sent over the rarely used and now obsolete
3.3V pins of the SATA power plug.

How much power is consumed when the drive is in DEVSLP
depends on the implementation. The ATA standard is not
explicit about how the power consumption reduction is to be
achieved. A manufacturer may freely choose, for example, to
have the drive write its internal state to non-volatile storage
and subsequently power down the RAM. The drive complies
to the standard as long as the it can become operational within
20ms of receiving the wake-up signal.

Suppose that a drive indeed writes its internal state to
non-volatile memory. Then care must be taken that the state
from non-volatile memory is erased upon wake-up, or else an
attacker may be able to extract the DEK from the last stored
state.

F. General Implementation Issues

All the issues depicted above in this section apply in par-
ticular to hardware-based disk encryption. However, potential
implementation issues in software-based encryption may also
apply. Examples include re-use of the initialization vectors and
using an insecure mode of operation.

Choosing the right mode of operation and implementing it
correctly can be tricky, as the chosen mode must allow for
both random read and write access, not allow for exchange
of ciphertexts, and not be malleable. Many software-based
solution, such as VeraCrypt and later versions of Microsoft
BitLocker, use the XTS mode of operation. A description of
XTS is given below.



The XTS, or XEX Tweakable Block Cipher with Ciphertext
Stealing [1], mode of operation was designed for cryptographic
protection of data on storage devices of fixed length data units.
It is an instantiation of Rogaway’s XEX (XOR Encrypt XOR)
tweakable block cipher [16], extended with ciphertext stealing
to support arbitrary length inputs. Furthermore, XEX mode
uses a single key for both encryption and tweaking, whereas
XTS mode uses two independent keys.

XTS mode provides confidentiality for the protected data.
Authentication is not provided, because one of the design goals
is to provide encryption without data expansion. In the absence
of authentication or access control, the best one can do is to
ensure that any alteration of the ciphertext will completely
randomize the plaintext, and rely on the application that uses
this transform to include sufficient redundancy in its plaintext
to detect and discard such random plaintexts. In light of this,
XTS provides more protection than other confidentiality-only
modes against manipulation of the encrypted data.

The XTS mode of operation has received criticism [15], [3].
An important point is that the granularity to which an attacker
has the ability to randomize plaintexts must equal the cipher’s
block size. In case of AES, this is 16 bytes. Ferguson has
designed a native diffuser function that addresses this problem
for application in BitLocker [6]. In the same publication, XTS
is not mentioned, but LRW mode with the same limitation is
criticized likewise.

VI. CASE STUDIES

A. Crucial MX100

The Crucial (Micron) MX100 is a SATA SSD released in
2014. It features MLC NAND flash memory. It supports ATA
security, as well as TCG Opal, both version 1 and 2. The
controller used in the MX100 is the Marvell 88SS9189. It
houses a dual-core 88FR102 V5 (ARM) CPU. At the time of
release, its performance is close to that of the competition,
although the drive is considerably less costly.

Firmware: A firmware update is available for download
through Micron’s website. It comes as a Linux-based bootable
ISO image. The firmware image is stored within the ISO
image, and is sent unmodified to the drive through the ATA
0X92 DOWNLOAD MICROCODE command. From this point
onward, the drive takes care of the firmware update process.

The firmware image is cryptographically signed using 2048-
bits RSA and SHA256. The signature verification is based on
mbedTLS’s rsa_pkcs1_verify function.

ARM14 JTAG

Fig. 1. JTAG pins on the Crucial
MX100.

Debugging: The MX100 has
a JTAG interface that can be
used to connect a debugger de-
vice. The location on the PCB
is depicted in Figure 1. The
standardized ARM14 JTAG pin
layout is used.

Findings: In this section, we
present our findings with re-
spect to the MX100. It covers

both ATA security and TCG Opal implementation. Further-
more, we discovered several proprietary vendor commands.
ATA security. We found that the implementation of the ATA
0xf2 security unlock command passes the incoming
password to the SHA256 hash function. Subsequently, the out-
put is compared to another buffer. If the comparison succeeds,
the drive unlocks. However, the original password buffer
remains unused during this process. Hence, cryptographic
binding between password and DEK is lacking.
TCG Opal. We discovered that the TCG Opal implementa-
tion works in a similar fashion; i.e. no cryptographic binding
between password and DEK is present.
Vendor-unique commands. The MX100 features several
vendor-specific commands that allow engineers to interact with
the device. By default, the commands are restricted: they must
be unlocked before they can be used. The list presented below
is far from exhaustive.
Unlocking. Unlocking the vendor-specific features is done by
issuing a 0xfd (vendor-specific) ATA command, with feature
code 0x55. Setting the LBA to 0x306775, and the block
count to 0x65 will unlock the vendor-specific commands.
Reading a page from NOR flash. The NOR flash stores
various data, among them is the device capacity, serial number,
error logs, and boot loader (the boot process is identical to that
of the MX200 and MX300, see Section VI-C). A page can be
retrieved with the 0xfa (vendor-specific) ATA command, with
feature code 0xd2. The LBA is the page number that is to be
retrieved. A NOR page is always 128 KB.
Erasing a page in NOR flash. A NOR page can be erased
with the 0xfc (vendor-specific) ATA command, with feature
code 0xe2. The LBA is page number. No data is transferred.
Writing to a page in NOR flash. A NOR page can be
written to with the 0xfb (vendor-specific) ATA command,
with feature code 0xd2. The LBA is once again set to the
page number. The transfer size should be 128 KB.
Arbitrary memory write. The MX100 has a command that
allows one to write arbitrary data to any desired address
within the address space. The command listens to opcode
0xfb (vendor-specific) and feature code 0x23. The command
expects a concatenated list of address-value tuples.

Security evaluation: The MX100 has critical security issues
in both the ATA security and TCG Opal implementation.
Namely, no cryptographic binding is present between pass-
word and DEK. The scheme is essentially equivalent to no
encryption, as the encryption key does not depend on secrets.
We demonstrated in practice that, by modifying the password
validation routine in RAM through JTAG, the MX100 unlocks
with any password, and the drive’s contents become accessible.
This applies to both ATA security and TCG Opal. We have not
studied the MX100 for the other weaknesses described in Sec-
tion V, since the drive’s encryption is already compromised.

Furthermore, we found that a vendor-specific command
allow for arbitrary modifications within the address space. This
enables malware with remote access to the host PC to infect
the drive’s firmware, allowing it to hide itself and/or to survive
re-installation of the host PC’s OS.



Attack strategy: Suppose that we want to recover the data
from a locked MX100 drive for which we do not have a valid
password. In order to do so, we connect a JTAG debugging
device to the pins depicted in Figure 1. Subsequently, we
use it to modify the password validation routine in RAM so
that it always validates successfully, regardless of the input
password. Finally, we unlock the drive as normal, with an
arbitrary password. The strategy is the same for both ATA
security and TCG Opal.

B. Crucial MX200

The Crucial MX200 is a SATA SSD released in 2015.
It is essentially an MX100 with an SLC write cache. The
MX200 is built around the same 88SS9189 controller. The
firmware is very similar to that of the MX100. Due to the
similarities, the analysis is limited to verifying whether the
same vulnerabilities are present.

Security evaluation: We found that the MX200 suffers from
the same lacks of cryptographic binding between password
and DEK. This applies to both ATA security and TCG Opal.
In both cases, we were able to demonstrate in practice that
the encryption can be completely bypassed by modifying the
password validation routine through JTAG.

Furthermore, the vendor-specific commands found in the
MX100 are also present in the MX200. As such, a remote
attacker is able to gain code execution on the device.

Attack strategy: The attack strategy is identical to that of
the MX100. See Section VI-A.

C. Crucial MX300

The Crucial MX300 is a SATA SSD released in 2016. It is
the successor to the MX200. Since the MX300, a switch has
been made to TLC memory. Similar to both its predecessors,
it supports the ATA security feature set, as well as TCG Opal
version 1 and 2. The MX300 is fitted with a Marvell 88SS1074
controller, the successor to the 88SS9189. The MX300’s
firmware differs from its predecessors in some aspects, includ-
ing the JTAG feature being switched off (although supported
by the controller), and the code related to cryptography being
subject to a major revision.

Debugging: A firmware image can be obtained through
Micron’s website. It uses the same file format as that of
its predecessors. Hence, the firmware can be analyzed. As
stated in Section IV-A2, JTAG allows for low level monitoring
and control of the storage controller’s CPU. It significantly
aids the analysis, as it allows for verification of assumptions
and findings, and possibly exploitation of weaknesses. Hence,
absence of this feature is problematic. Therefore, we used the
strategies listed in Section IV-B2 in order to acquire unsigned
code execution on the device.

We found that the vendor-specific commands present in
the MX100 and MX200 that allow us to gain unsigned code
execution, are still present. However, since the MX300, the
unlock command for vendor-specific commands is deprecated
and replaced by another that relies on asymmetric crypto-
graphic signatures. Hence, the vendor commands no longer

serve as a vehicle for unsigned code execution. Furthermore,
we identified several memory corruption vulnerabilities. None
of which we could successfully exploit in order to gain control
over the execution.

Below we describe how we acquired unsigned code execu-
tion by directly communicating with the drive’s NOR flash.

Findings: Obtaining unsigned code execution As stated
previously, we used an external reader device to communicate
with the NOR flash through SPI, allowing its contents to be re-
trieved and manipulated. In order to leverage this into unsigned
code execution, we must first understand the device’s boot
process, which we reverse engineered. A diagram depicting
the boot process is given in Figure 2.

88SS1074 Boot ROM Load stage 2 from SPI flash

Signature checks enabled?

Stage 2

Valid signature?

Load DEVSLP resume image

Load firmware from NAND

Boot firmware Failure

Success

Fail

No

Yes

Yes

Resume image exists No resume image

Success

Fail

No

Fig. 2. Crucial MX300 boot process.

SPI flash

Fig. 3. SPI flash chip on
the MX300 PCB.

Once the storage controller is pow-
ered on, the first instructions executed
by its CPU are stored in a ROM,
embedded in the controller. The ROM
code loads its next boot stage from the
SPI flash. It is located on the PCB as
indicated in Figure 3. We refer to the
code stored in the SPI flash as stage 2.

It is responsible for, among other things, initialization of the
NAND flash and DRAM memory. Subsequently, it retrieves
the drive’s firmware from NAND and copies it to DRAM.
Then, after a number of integrity checks, it transfers control
to the firmware.

We found that, in fact, the 88SS1074 controller supports
cryptographic signature verification of stage 2. However, the
MX300 does not take advantage of this feature. Hence, one can
freely make modifications to the stage 2 code by modifying
the contents of the SPI flash with an external reader device.

Ideally, we would like to have the capability of arbitrarily
retrieving and modifying code and data while the firmware is
running. Given these primitives, unsigned code execution is
possible as well. For example by using the write primitive to
overwrite a non-critical ATA command handler function with
the desired code and subsequently issuing the corresponding
command. We created a modified firmware image, which
includes these arbitrary read/write capabilities.

In order to convince the drive to accept the modified
firmware image, the cryptographic signature checks during
firmware updates need be bypassed. We accomplished this



by modifying stage 2, injecting a piece of code that modifies
the cryptographic signature verification function such that it
accepts invalid signatures. The injected code runs directly
after the firmware has been copied into RAM, and before
transferring control to it. After power-cycling the drive, it
accepts firmware images with invalid signatures and hence
our modified firmware image can be sent to the drive as a
firmware update. Once the modified firmware is installed, we
have arbitrary read/write capabilities, and thus unsigned code
execution.
Key derivation scheme We have reverse engineered the
full-disk encryption implementation of the MX300. Its key
derivation scheme is depicted in Figure 4. Compared to the
MX100 and MX200, the full-disk encryption implementation
differs significantly. Notably, cryptographic binding between
password and DEK is introduced.

Credential table

Range key (DEK) table

Stored Credential#0

Stored Credential#1

Stored Credential#2

Stored Credential#3

Stored Credential#4

...

Salt#2 Ciphertext#2

Decrypt

Incoming Password#2 PBKDF2 Key#2

Decrypt

RDS Key

Protected Range Key#0

Protected Range Key#1

Protected Range Key#2

Protected Range Key#3

Unprotected Range Key#4

...

Decrypt

Range Key#3

Device Key Decrypt Range Key#4

Fig. 4. Scheme used to obtain a range key (DEK) from the user-supplied
password. In this example, credential #2 is used to unlock range #3.

Each MX300 drive has a per-device unique key, which we
refer to as the device key. It is stored within a small chunk of
non-volatile memory contained within the controller. As such,
an attacker cannot obtain it, unless he has the ability to execute
unsigned code on the controller’s CPU.

As is mandated by TCG Opal, the scheme allows for mul-
tiple credentials and ranges. Each credential has an associated
data structure stored within the NOR flash. This is what we
refer to as the credential table. Entries within this table are
encrypted using the device key. Each entry contains a salt and
a ciphertext. The random salt and the user-supplied password
are fed to PBKDF2. Subsequently, the result is used as a key
in an attempt to decrypt the ciphertext. If the password is
correct, the decryption succeeds, and the decrypted result is
the so-called RDS key (referred to by the firmware as such).
All stored credentials contain an encrypted version of the same
RDS key, or a zero buffer, depending on the parameters used
during the creation of the data structure.

Each locking range is protected with its own unique DEK.
The DEKs are stored in the, what we refer to as, range key ta-
ble. All keys corresponding to protected ranges (i.e. requiring
a password before becoming accessible) are encrypted using

the RDS key. All other DEKs are encrypted using the device
key and are therefore always accessible.

From the description given above, we can already see that
the RDS key can be obtained once only a single password
is known. Subsequently, the RDS key allows access to all
protected ranges. The drive will refuse to unlock a range for
a user who does not have permission to access it. However,
this check is not cryptographically enforced. This is already a
weakness in the design of the key derivation scheme. However,
we found that even a single password need not be known,
which we explain in detail below.
Opal Setup During the set-up phase of TCG Opal, the
credential table and range key table are populated. In order
to better understand this process, we used our arbitrary write
capabilities to inject tracing functionality at various places
in the firmware. The execution trace generated during the
BitLocker set-up phase is given in Appendix A. In case the
full-disk encryption is set up using sedutil, an open-source
utility for TCG Opal, the result is similar. Pseudocode for some
of the routines captured is given in Appendix B.

From the execution trace, we can clearly see that once the
BitLocker set-up phase is completed, the RDS key is protected
(encrypted) with a zero buffer as a password, and stored in all
slots between 11 and 29, with the exception of slot 15.

Hence, the RDS key can be recovered from any of these
slots, by invoking the VerifyPasswd function with a zero buffer
as password. This can be accomplished by means of unsigned
code execution (Section VI-C). The result is that all DEKs can
be decrypted without a password.
ATA security Suppose that the drive is protected by
means of the ATA security feature set, rather than Opal. The
key derivation scheme is essentially equivalent, with some
differences:

(i) The range key table has a single entry: the DEK for the
entire drive.

(ii) The credential table has two entries: the ATA User and
Master password.

(iii) The RDS key used for protecting DEKs under Opal
differs from the one used under ATA. Hence, recovering
the RDS key as described above will work, but results in
an RDS key that cannot successfully decrypt the DEK.

As stated in Section II-B, the MASTER PASSWORD CAPA-
BILITY bit determines whether the factory-set Master pass-
word may unlock the drive. In order for the end user to redeem
himself from the Master password acting as a security bypass
mechanism, he either has to set the MASTER PASSWORD
CAPABILITY bit to Maximum, or change the Master password.

In the case of the MX300, the former approach is insuffi-
cient. We found that the Master password allows for successful
decryption of the RDS key, regardless of the MASTER PASS-
WORD CAPABILITY bit. Hence, in case the end user has set it
to Maximum, but has not changed the Master password, the
drive’s contents is still accessible to anyone in possession of
the default Master password. In the case of the MX300, this
is an empty string.



In order to exploit this vulnerability, we only need to
change the MASTER PASSWORD CAPABILITY bit located in
RAM. This can be accomplished through the arbitrary write
capability obtained previously. Once accomplished, the drive
successfully unlocks as normal, using an empty string as the
Master password.

Attack strategy: Suppose that we want to recover the data
from a locked MX300 drive for which we do not have a
valid password. In order to do so, we first install a modified
firmware that includes arbitrary read/write capabilities. The
process is described in detail in Section VI-C. The following
steps describe how to recover the data from a drive that is set
up through TCG Opal, or ATA security, respectively.
TCG Opal Once the custom firmware is installed, we use
its arbitrary write capability in order to write executable code
in the device’s address space. The code is crafted such that
it invokes the VerifyPasswd function with a zero buffer as
password, using credential slot 11 and with bExtractRdsKey
set to true. It should overwrite an existing non-critical ATA
command handler function, for example, the SMART command
handler. Issuing the corresponding ATA command then exe-
cutes the code. At this point, the RDS key is extracted and
copied to the global RDS key buffer and all protected range
keys can be decrypted.

By using the arbitrary write capability once more, we
modify the VerifyPasswd function such that it always returns
SUCCESS. Note that this also implies that the function will
no longer affect the global RDS key buffer, which is desired
behavior since it already contains the correct RDS key. At this
point, any password can be used to ‘authenticate’ successfully.
We use sedutil, an open-source TCG Opal utility, to
authenticate with an arbitrary password, and subsequently
unlock any desired range. Note that we should choose a
user that has permission to access that particular range. In
case of BitLocker, USER2 may access range #1, although
we can simply try all possible users. By default, sedutil
authenticates as ADMIN1. However, it is trivial to modify its
source code so that it authenticates as any other user.
ATA security We use the arbitrary write capability in order
to change the MASTER PASSWORD CAPABILITY bit in RAM
from Max (1) to High (0). Then, we authenticate to the drive
as normal, using an empty string as the Master password, and
unlock the drive.

Note that this approach will not work in case ATA security
is used instead of Opal, with the Master password changed
rather than disabled. However, we argue that this is an unlikely
scenario.

D. Samsung 840 EVO

The Samsung 840 EVO is a SATA SSD released in 2013.
It features TLC NAND memory, which is more cost-effective
than MLC and SLC. The 840 EVO features an SLC write
cache. It is connected through SATA. It supports ATA security,
as well as TCG Opal version 2. At its core is Samsung’s own
MEX controller, based on a triple-core Cortex R4 design. The
840 EVO boasts hardware AES-256 encryption.

Firmware: A firmware update can be downloaded through
Samsung’s website. It comes as a bootable ISO image. The
firmware image is stored within the ISO image, albeit in an
obfuscated form. De-obfuscation is performed by the update
utility itself. Hence, recovery of the obfuscation algorithm
is straightforward. The obfuscation algorithm has been pre-
viously reverse engineered1.

Once the image is de-obfuscated, it is transferred to the
drive using the ATA 0x92 DOWNLOAD MICROCODE opcode.
From this point onward, the firmware update process takes
place on the drive itself.

The firmware image is cryptographically signed with
ECDSA. The curve and its exact parameters are yet to be
determined. The hash function used is SHA256.

GND
TDO
TDI
TCK
TMS
VTref
Emergency_mode

Fig. 5. JTAG pins on the Sam-
sung 840 EVO.

Debugging: The 840 EVO has
a JTAG interface. The pin layout
is shown in Figure 5. The pin
layout was found with help of
the JTAGulator[8]. It was indepen-
dently found by [10].

Findings: In this section we
take a deep dive in the 840 EVO’s
encryption internals. Firstly, we
present the full key derivation
scheme from password to DEK.
Secondly, we describe several pro-
prietary vendor commands.

Key derivation scheme Before exploring the key derivation
scheme, we first describe some of the data structures where
the scheme is built upon.
Key storage The, what we refer to as, key stor-
age data structure is depicted in Figure 6. The pur-
pose is both password validation and key derivation.
A password candidate p′ is validated by computing
PBKDF2(HMAC_SHA256, p′, sverif). Then, the result is com-
pared against the stored PBKDF2(HMAC_SHA256, p, sverif).
If they match, then p = p′ is assumed. The de-
rived encryption key is then obtained by computing
PBKDF2(HMAC_SHA256, p′, sderiv).
Crypto blob All information related to disk encryption is
stored in a single, 64 KB binary blob, which we refer to as
the crypto blob. An overview of it is given in Figure 7. The
crypto blob is divided in 128-byte slots, totaling to 512 slots.
The purpose of each slot is determined by its slot number.

Every slot beyond number 451 is encrypted with
AES-256 in XTS mode, with a key derived from
known data. The purpose seems to be obfuscation.
The key is HMAC_SHA256(p, s), where salt s is
"bongbong.kim@samsung.com" (padded to 32 bytes),
and password p is a permutation of the value stored in slot

1URL: https://github.com/ddcc/drive_firmware

0 3132 6364 95

PBKDF2(HMAC_SHA256, p, sverif) sverif sderiv

Fig. 6. Key storage data structure for password p.

https://github.com/ddcc/drive_firmware


Password storage
Password↔ range

mapping table
Encrypted DEKs

Password Key 1 Key 2 DEK
Derive Decrypt Decrypt

478

479

480

...
492

0

1

2

...
377

456

457

458

...
464

Fig. 8. Relation between passwords and DEKs.

451. The key is computed during the drive’s boot sequence.
However, due to a bug in the firmware, retrieving slot 451
during early boot fails. Therefore, p is in fact a zero buffer.
Consequently, the resulting key is constant for all devices.

0

377

password↔ range
mapping (9×14×3)

378
447

Unknown

448 Blob allocation administration

449
450 Unknown

451 Obfuscation key seed
452
454 Unknown

455 Opal MBR image key
456

464

Encrypted Opal range
keys (0-8)

465

473

Range decryption keys
(for Opal unlocked)

474 Unknown (unused)
475 Sid password
476
477

Unknown (unused)

478

491

Credential key storage
(0-13)

492
501 Unused

502 ATA User key storage
503 ATA Master key storage
504
511 Unused



Fig. 7. Crypto blob.

Furthermore, the slot number is
used as the IV for the XTS mode.
However, due to a bug in either the
management code, or in the AES co-
processor itself, the IV value is ig-
nored and zero is used instead for
all slots. Due to this re-use of IV,
two slots that share a plaintext block
at some offset, will have the same
ciphertext for that block.

As the purpose of the encryption is
presumably obfuscation, confidential-
ity of user data is not affected.
From password to DEK Samsung’s
Opal implementation allows a total
number of 9 ranges and 14 passwords
to be specified. The password is fed
to the validation/derivation function,
using slot 478+u, where u is the user
id associated with the password. Once
the password has been validated, the
derived key is then used to decrypt
an entry in the password ↔ range
mapping table. The entry is located
at slot 0 + 27u + 3r, where u is the
user id and r is the range number.
Finally, the decrypted result is used to
decrypt slot 456+r, yielding the DEK
for range r. A diagram picturing the
process is given in Figure 8. The de-
rived key also successfully decrypts
slots 1+ 27u+3r and 2+ 27u+3r.
The purpose of these slots remains to be researched.
Vendor-unique commands The 840 EVO features several
vendor-specific commands. As is the case with the Crucial
drives, these commands require unlocking. Only a small subset
of commands are analyzed, since the vast majority have no
relation with security.
Unlocking. Unlocking the vendor-specific features is done by
issuing a 0x85 (vendor-specific) ATA command with feature
code 0x46. The payload is a single block (512 bytes) with

the last 16 bytes set to
C7D0B1B3C1BEC0CCB6AFB6AFBEEEBCAD

Retrieving the crypto blob. The crypto blob can be retrieved
by issuing a 0x83 (vendor-specific) ATA command, with
feature code 0x12. The output is the 64 KB crypto blob.
Storing the crypto blob The crypto blob can be stored by
issuing a 0x83 (vendor-specific) ATA command, with feature
code 0x13. The handler expects a 64 KB input, which is then
instantiated as the device’s crypto blob.

Security evaluation: We managed to identify several imple-
mentation mistakes. Two of which, depending on the circum-
stances, can be leveraged into full recovery of the data.
ATA security The ATA password may be cryptographically
bound to the DEK. This depends on the value of the MASTER
PASSWORD CAPABILITY bit during the ATA security setup.
Slots 502 and 503 of the crypto blob contain key storage data
structures (Figure 6) for the User and Master password, respec-
tively, allowing for password validation and key derivation.
The DEK is always stored encrypted in slot 451. In case the
MASTER PASSWORD CAPABILITY bit is set to Maximum, the
decryption key is derived from slot 502. Otherwise, the key
is stored in plain-text format in slot 465, and slot 502 and
503 are used for password validation only. Thus, allowing the
encryption to be bypassed. We successfully demonstrated in
practice that, by crippling the password validation routine in
RAM, the drive successfully unlocks with any password.
TCG Opal After reverse engineering and carefully studying
the design of the key derivation scheme used in Samsung’s
TCG Opal implementation, we have not identified any weak-
nesses.
Random entropy The 840 EVO has a hardware RNG.
Although in many situations, a pseudo RNG is used, which
works by encrypting an incrementing counter using the AES
co-processor. The key is generated at startup by the hardware
RNG. All key material is generated by the hardware RNG.

The hardware RNG passes all FIPS 140-2 tests over 1
Megabyte of random data. In theory this does not prove
absence of weaknesses in the RNG. However, reverse engi-
neering the hardware RNG is far beyond the scope of this
research. We therefore assume that the output generated by
the hardware RNG is cryptographically secure.
Wear leveling The Samsung 840 EVO stores its crypto
blob on the device’s NAND flash, albeit within a region
designated for internal data structures. Despite this, the crypto
blob storage is wear-leveled.

Suppose that at time t0, the drive is in an unprotected state,
i.e. neither ATA security nor TCG Opal is set up. In this state,
the drive has a single locking range defined that covers the
entire user-accessible storage. The DEK for this range is stored
encrypted in slot 456. The decryption key is stored in slot 465.
At time t0, the crypto blob is stored at physical sector s0 in
flash. Subsequently, at time t1, a password is set, either through
ATA security, with the MASTER PASSWORD CAPABILITY bit
set to Maximum, or through TCG Opal. As such, the DEK
cannot be extracted from the crypto blob without a password.
The updated crypto blob is stored at sector s1 in flash.



Due to the wear leveling mechanism, s0 = s1 is not
guaranteed. Therefore, at time t1, the DEK may be recoverable
by retrieving the crypto blob stored at physical sector s0. We
have successfully demonstrated this attack in practice. Once a
previous revision of the crypto blob has been recovered, it can
be instantiated through a vendor-specific command (see VI-D).

Empirical measurements indicate that s0 6= s1 occurs
approximately 1 in every 20 times the crypto blob stored (i.e.
every time crypto related information is updated).
Power-saving mode: DEVSLP Support for DEVSLP is
only present on the mSATA variant of the drive. Although
functionality related to DEVSLP is clearly also present in the
SATA variant’s firmware, we were unable to trigger it.
Mode of operation User-accessible data regions are en-
crypted using AES-256 in XTS mode. The key is obtained
through the key derivation scheme described in Section VI-D.
The IV used is obtained by taking b+n, where b is a base value
which is generated randomly during the drive’s initialization
phase, and n is the Logical Block Address (LBA) of the sector
of the data that is to be encrypted.

From the description presented here, we conclude that no
mode of operation related security issues are present in the 840
EVO, apart from XTS’s inherent weaknesses (Section V-F).

Attack strategy: Suppose that we want to recover the data
from a locked 840 EVO drive. The approach taken depends on
whether the drive is protected with the ATA security feature
set, with the MASTER PASSWORD CAPABILITY bit set to High.

If this is indeed the case, then the DEK is not cryptograph-
ically bound to the password. Hence, the only barrier we have
to overcome is the password validation routine. We connect
a JTAG debugging device to the pins depicted in Figure 5.
Through JTAG, we modify the password validation routine
such that it always validates successfully. Finally, we unlock
the drive as normal, with an arbitrary password.

If ATA security, with the MASTER PASSWORD CAPABILITY
bit set to Maximum, or TCG Opal is used, then the DEK is
cryptographically bound to the password. However, due to the
wear-leveling issue pointed out in Section VI-D, the data on
the drive may still be recoverable by reverting to a previous
version of the crypto blob that was used while the drive was
in an unprotected state.

In order to do this, first, we craft code that searches the
raw NAND flash for crypto blobs, at the region designated for
internal data structures. Crypto blobs can be easily identified,
as slot 450 always starts with the string "secu0.01clas".
We once again connect a JTAG debugging device, load the
code into the device’s address space and execute it. In case
the drive is in an unprotected state, slot 465 contains the
decryption key for the DEK at slot 456. Hence, for all crypto
blobs found, we check if slot 465 is not a zero buffer. In case
a crypto blob with this property is found, we have recovered
all the cryptographic secrets needed for a full recovery.

With the previous version of the crypto blob at our disposal,
the next step is to instantiate it (i.e. revert the crypto blob
on the drive to this previous version). As discussed in Sec-
tion VI-D, a vendor-specific command exists that conveniently

allows us to do so. Once executed, at this point, in case the
drive was protected through ATA security, the contents are
accessible as normal. In the case of TCG Opal, the drive is
in an in-between state, in the sense that the cryptographic
secrets are known to the drive, but it still requires a password.
However, this is a minor obstacle that can be overcome by,
once more, modifying the password validation routine through
JTAG so that it accepts any password. Finally, the drive can be
unlocked as normal through sedutil, with any password.

E. Samsung 850 EVO

The Samsung 850 EVO is a SATA SSD released in 2014.
Similar to the 840 EVO, it features TLC NAND with an SLC
write cache, and supports TCG Opal version 2. It is based
around Samsung’s MGX controller, which, contrary to the 840
EVO, is a dual-core Cortex R4.

Firmware: Similar to the 840 EVO, firmware updates can be
downloaded through Samsung’s website that come as bootable
ISO images. The firmware image is once again obfuscated,
though the obfuscation function is different. De-obfuscation is
still performed on the host PC. The image is encrypted with
AES-256 in ECB mode. The key is contained within the update
utility executable, as a BASE64-encoded string. As is the case
with the 840 EVO, the firmware image is cryptographically
signed with ECDSA. The implementation is likely a copy of
that of the 840 EVO.

Debugging: The 850 EVO has the exact same JTAG pin
layout that the 840 EVO also has (Figure 5).

Findings: The motivation for analyzing the 850 EVO in-
ternals is twofold. Firstly, it is valuable to verify whether the
weaknesses identified in the 840 EVO are also present in their
successor. Secondly, the 850 EVO supports DEVSLP, and other
drives of the same family likely use the same or a very similar
implementation. In case DEVSLP is not implemented carefully,
it may compromise the encryption (Section V-E).
Key derivation scheme The Opal key derivation scheme
has not changed significantly since the 840 EVO. The imple-
mentation is still based around a crypto blob, although the
number of slots has doubled, resulting in a 128 KB crypto
blob. The exact reason for this remains to be researched. The
Opal key derivation scheme is identical, except for a change
of slot numbers. Furthermore, the vendor-unique commands
listed in Section VI-D have remained unaltered.
DEVSLP mode In case the DEVSLP signal is received,
Core 1 encrypts all secret key information present
in its private SRAM region using AES-XTS. The
key used is the output of PBKDF2(HMAC_SHA256,
"yoochan.kim@samsung.com", "This is
4DEVSLP"). Hence, it is constant for all drives. Once
the encryption has finished, the contents of the SRAM is
copied to DRAM. Four ‘magic’ numbers are written to
DRAM, and finally, the cores and SRAM are powered down.

In order to determine whether portions of secret key infor-
mation reach non-volatile storage, we reverse engineered the
boot process of the drive. A diagram picturing the code flow
during the boot process is given in Figure 9.



Stage 1

Emergency mode

Load stage 2 from NAND Stage 2

Resume from DEVSLP

Load firmware from NAND

Boot firmware

Failure

Emergency pin grounded

Else Success

Fail Resume image existsNo resume image

Success
Fail

Fig. 9. Samsung 850 EVO boot process.

The first portion of code is, what we refer to as, the Stage
1 boot loader. Presumably, it is based in ROM. Essentially,
its purpose is to retrieve Stage 2 from NAND and execute it.
However, in case the emergency pin (Figure 5) is grounded,
or in case the firmware cannot be retrieved, the drive goes into
an emergency state. In this state, the drive accepts firmware
images through a proprietary protocol layered over UART. The
protocol was reverse engineered by [10].

Once Stage 2 is reached, the DRAM is initialized. Shortly
after, the decision is made to either resume from a previous
state, or to perform a normal startup procedure. The decision
is made based on hardware I/O address 0x10050040, bit 3.
Before reverting to the previous state, a check is performed on
whether the magic numbers written to RAM previously have
remained unaltered.

No I/O addresses related to NAND are interacted with,
indicating that the DRAM is kept powered during DEVSLP.
We devised the following steps in order to confirm it:

(i) Modify a firmware image, such that within the Stage 2
boot loader, all references to 0x10050040 are replaced
so that a DEVSLP resumption scenario is simulated.
Furthermore, at the point in the code where the magic
numbers are checked, an infinite loop is inserted.

(ii) Modify the currently running firmware in RAM such that
it accepts firmware updates with invalid signatures.

(iii) Flash the modified firmware image through the ATA
0X92 DOWNLOAD MICROCODE command. The drive
will not reboot.

(iv) Send the DEVSLP signal. The drive goes into DEVSLP
mode.

(v) Power up the drive by sending the DEVSLP signal again.
(vi) The execution is stuck at the point where the infinite loop

is inserted. Halt the execution and verify that the magic
numbers in DRAM are present.

(vii) Power down the drive by removing the power plug.
(viii) Power it up again. The execution is stuck at the same

point. In case the magic numbers still exist in DRAM,
they must have originated from non-volatile storage. If
absent, either the non-volatile storage device is erased
during (v), or volatile storage is used.

(ix) Use the emergency mode to flash an unmodified version
of the firmware, repeat all previous steps and omit (v)
and (vi). Absence of the magic values in DRAM confirms
that volatile storage is used.

By pursuing the above steps, we confirmed that the secret key

information is indeed kept in volatile storage. The reason for
encrypting it with a constant key remains unclear.

Security evaluation: With respect to the implementation
of full-disk encryption, the 850 EVO is very similar to its
predecessor. Regarding ATA security; we verified that, as with
the 840 EVO, the drive can be tricked into granting access to
its contents, in case the MASTER PASSWORD CAPABILITY bit
is set to High.

Since TCG Opal implementation is mostly identical to its
predecessor, no weaknesses have been identified. As is the case
with the 840 EVO, the 850 EVO features a hardware RNG,
with the added possibility to use a PRNG based on AES.
Wear leveling Unfortunately, despite numerous efforts, we
were unable to identify the routines responsible for storing/re-
trieving the crypto blob from NAND flash. However, during
the responsible disclosure trajectory, a contact at Samsung
informed us that from the 850 EVO series onward, the crypto
blob storage is no longer wear leveled. Instead, a fixed
physical address in NAND is used for the crypto blob storage.
Therefore, contrary to its predecessor, the 850 EVO is not
vulnerable to the crypto blob recovery attack presented in the
previous section.
DEVSLP mode We confirmed that, while the drive is in
DEVSLP mode, secret key information is stored in volatile
memory that is kept powered. Therefore, the DEVSLP imple-
mentation introduces no security vulnerabilities.

Attack strategy: The attack strategy is identical to that of
the 840 EVO, with the exception of the wear leveling issue
not being present. See Section VI-D.

F. Samsung T3 portable

The Samsung T3 portable SSD is an external drive con-
nected through USB-3.1 Gen 1. It offers optional password
protection through a proprietary command set. The drive
comes with a tool that allows the user to set or remove a
password, lock and unlock.

Opening up the drive uncovers that it is essentially an 850
EVO mSATA behind a USB to mSATA bridge, albeit fitted
with a special firmware supporting the proprietary command
set. No firmware image for this drive can be found online.
Fortunately, as is the case with the 840 EVO and 850 EVO,
the drive has a JTAG interface exposed on the PCB (Figure 5).
Through JTAG, the currently running firmware can be pulled
from RAM.

Capturing USB packets with the help of Wireshark during
locking and unlocking of the drive reveals that the ATA
opcode 0x8e (vendor-specific) is used for both operations.
Analysis of the firmware reveals that the implementation of
the operations is built upon the ATA security functionality of
the 850 EVO. However, it resembles the behavior observed
when the MASTER PASSWORD CAPABILITY bit is set to High.
Thus, the password is not cryptographically linked to the DEK.

Attack strategy: The password validation routine can be
bypassed by modifying the running firmware in RAM through
JTAG in such a way that it accepts any password. We con-



firmed that, by doing so, the drive unlocks successfully with
an arbitrary password.

G. Samsung T5 portable

The Samsung T5 portable SSD is the successor of the T3. It
uses the same MGX controller found in the 850 EVO and the
T3. A notable difference between the T5 and its predecessor is
that its USB to mSATA converter support for USB-3.1 Gen 2.

Another important difference is that the JTAG feature is
disabled. Additionally, the emergency pin (Figure 5) is also
no longer functional. Finally, no firmware updates for the T5
are available for download. Hence, for this drive, we do not
have a firmware image at our disposal.

The T5 features the same vendor-specific commands found
in all other Samsung SSDs (Section VI-D). Thus, despite
the lack of a firmware image and debugging capabilities, the
crypto blob can still be transferred from/to the device.

We retrieved a copy of the crypto blob by means of the
vendor command both before and after setting a password, and
inspected the differences. We refer to these blobs as B0 and
B1, respectively. The crypto blobs are encrypted (obfuscated)
with a per-device key stored within the controller itself. As
such, it can only be retrieved through JTAG or unsigned code
execution. Both of which we do not have. However, since
XTS mode is used, we can observe whether or not the two
blobs differ on a per-block (16 bytes) granularity. By studying
the T3 firmware, and assuming the implementation is broadly
the same, we found that the differences between B0 and B1

are explained by the following modifications to the plain-text
crypto blob:

(i) The crypto blob revision number.
(ii) The bitmap determining for each slot in the crypto blob

whether or not it is in use.
(iii) The key storage data structure for the password (Fig-

ure 6).
(iv) The so-called ‘security state’ byte (referred to in the

firmware as such).
Given the above, by using only the vendor-specific crypto blob
storage and retrieval commands, we can already confirm (or
refute) that the cryptographic binding between password and
DEK is absent on the T5 as well. We do so by reverting
the security state byte to its previous state. In the absence
of cryptographic binding, the security state byte alone likely
determines the locking state of the drive, and reverting it will
result in the drive being unlocked. We create a new crypto
blob B′

1, which is constructed by taking B1 and selectively
reverting the 16-byte block containing the security state byte
by taking its ciphertext value from B0. Subsequently we
upload the B′

1 crypto blob to the drive through the designated
vendor-specific command.

We found that the drive successfully unlocks after pursu-
ing the steps above, confirming that cryptographic binding
between password and DEK is indeed absent.

Attack strategy: Although the steps given above confirm
that the T5 lacks cryptographic binding between password and
DEK, the steps themselves do not serve as an attack strategy,

as (a portion of) the crypto blob from a previous state, B0,
is needed. However, as we confirmed, protection of the user
data is not cryptography enforced. Hence, a means of low
level control over the device, e.g. unsigned code execution,
will allow us to bypass it.

Acquiring unsigned code execution on the device is con-
siderably time-consuming and labor-intensive. Given that we
exploited the issue in practice on the T5’s predecessor, the T3,
and given that the exact same issue is confirmed to exist in the
T5, it is in our opinion justified to skip the act of acquiring
code execution on the T5, solely for the purpose of developing
an exploit for this issue.

For completeness: unsigned code execution may by accom-
plished via one of the methods described in Section IV-B2.
Once accomplished, one can deploy the same strategy as with
the T3 (Section VI-F), i.e. modifying the password routine
in RAM so that it accepts any password, and subsequently
unlocking the drive as normal with an arbitrary password.

VII. DISCUSSION

An overview of possible flaws in hardware-based full-disk
encryption was given. We have analyzed the hardware full-
disk encryption of several SSDs by reverse engineering their
firmware, with focus on these flaws. The analysis uncovers a
pattern of critical issues across vendors. For multiple models,
it is possible to bypass the encryption entirely, allowing for
a complete recovery of the data without any knowledge of
passwords or keys. Table I gives an overview of the models
studied and the flaws found.

The situation is worsened by the delegation of encryption
to the drive if the drive supports TCG Opal, as done by
BitLocker. In such case, BitLocker disables the software en-
cryption, relying fully on the hardware implementation. As this
is the default policy, many BitLocker users are unintentionally
using hardware encryption, exposing them to the same threats.

The results presented in this paper show that one should
not rely solely on hardware encryption as offered by SSDs for
confidentiality. We recommend users that depend on hardware
encryption implemented in SSDs to employ also a software
full-disk encryption solution, preferably an open-source and
audited one. In particular, VeraCrypt allows for in-place en-
cryption while the operating system is running, and can co-
exist with hardware encryption. Furthermore, BitLocker users
can change their preference to enforce software encryption
even if hardware encryption is supported by adjusting the
Group Policy setting2. However, this has no effect on already-
deployed drives. Only an entirely new installation, including
setting the Group Policy correctly and securely erasing the
internal drive, enforces software encryption. VeraCrypt can
be an alternative solution for these existing installations, as
it offers in-place encryptions.

It is important to ask ourselves what problem SEDs are
actually trying to address. As described in Section III, SEDs

2See https://docs.microsoft.com/en-us/previous-versions/windows/
it-pro/windows-server-2012-R2-and-2012/jj679890(v=ws.11)
#configure-use-of-hardware-based-encryption-for-fixed-data-drives.

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/jj679890(v=ws.11)#configure-use-of-hardware-based-encryption-for-fixed-data-drives
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/jj679890(v=ws.11)#configure-use-of-hardware-based-encryption-for-fixed-data-drives
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/jj679890(v=ws.11)#configure-use-of-hardware-based-encryption-for-fixed-data-drives


Drive 1 2 3 4 5 6 7 8 9 Impact
Crucial MX100
(all form factors)

7 7 7 7 Compromised

Crucial MX200
(all form factors)

7 7 7 7 Compromised

Crucial MX300
(all form factors)

X X X 7 X X X X 7 Compromised

Samsung 840
EVO (SATA)

7 X X X X X 7 X ∼ Depends

Samsung 850
EVO (SATA)

7 X X X X X X X ∼ Depends

Samsung T3
(USB)

7 7 Compromised

Samsung T5
(USB)

7 7 Compromised

1 Cryptographic binding in ATA Security (High mode)
2 Cryptographic binding in ATA Security (Max mode)
3 Cryptographic binding in TCG Opal
4 Cryptographic binding in proprietary standard
5 No single key for entire disk
6 Randomized DEK on sanitize
7 Sufficient random entropy
8 No wear leveling related issues
9 No DEVSLP related issues

TABLE I
OVERVIEW OF CASE STUDY FINDINGS.

do not offer any meaningful mitigations in situations where
software encryption falls short. However, as demonstrated, in
situations where software encryption offers full data confiden-
tiality, hardware encryption often does not. Hence, at best, the
security guarantees of SEDs are similar to that of software
encryption, and often much less. Finally, nowadays since the
AES-NI extension on x86 CPUs has become mainstream, it
seems legitimate to question the supposed performance and
side-channel susceptibility benefits of SEDs as well.

Hardware encryption currently comes with the drawback
of having to rely on proprietary, non-public, hard-to-audit
crypto schemes designed by their manufacturers. Correctly
implementing disk encryption is hard and the consequences of
making mistakes are often catastrophic. For this reason, im-
plementations should be audited and subject to as much public
scrutiny as possible. Manufacturers that take security seriously
should publish their crypto schemes and corresponding code
so that security claims can be independently verified.

A pattern of critical issues across vendors indicates that the
issues are not incidental but structural, and that we should
critically assess whether this process of standards engineering
actually benefits security, and if not, how it can be improved.
The complexity of TCG Opal contributes to the difficulty
of implementing the cryptography in SEDs. From a security
perspective, standards should favor simplicity over a high
number of features. The requirements as specified by the Opal
standard, having a many-to-many relation between passwords
and keys, and allowing for multiple independent ranges with
adjustable bounds, makes it very hard to implement it cor-
rectly.

Finally, TCG should publish a reference implementation of
Opal to aid developers. This reference implementation should
also be made available for public scrutiny. It should take into
account that wear-leveling is applied for non-volatile storage.
Opal’s compliance tests should cover the implementation of
the cryptography and these tests should be independently
assessed.

REFERENCES

[1] Ieee standard for cryptographic protection of data on block-oriented
storage devices. IEEE Std 1619-2007, pages c1–32, April 2008.

[2] Gunnar Alendal, Christian Kison, and modg. got hw crypto? on the
(in) security of a self-encrypting drive series. IACR Cryptology ePrint
Archive, 2015:1002, 2015.

[3] David Clunie, Rich Shroeppel, Phillip Rogaway, Vijay Bharadwaj, and
Neils Ferguson. Public comments on the xts-aes mode. Collected email
comments released by NIST, available from their web page, 2008.

[4] J Domburg. Hard disk hacking, 2013. See http://spritesmods.com/?art=
hddhack.

[5] J Domburg and Tweakers.net. Secustick gives false sense
of security, 2007. See https://tweakers.net/reviews/683/
secustick-gives-false-sense-of-security.html.

[6] Niels Ferguson. Aes-cbc+ elephant diffuser: A disk encryption algorithm
for windows vista, 2006.

[7] Travis Goodspeed. Active disk antiforensics and hard disk backdoors. In
Talk at 0x07 Sec-T Conference (video: https://www.youtube.com/watch?
v=8Zpb34Qf0NY), volume 8, 2014.

[8] J Grand. Jtagulator: assisted discovery of on-chip debug interfaces. In
21st DefCon Conference, Las Vegas, 2013.

[9] Trusted Computing Group. Tcg storage security subsystem class: Opal
specification version 2.01, 2015.

[10] P Gühring. The missing Samsung EVO 840 - 250 GB SSD repair man-
ual. See http://www2.futureware.at/~philipp/ssd/TheMissingManual.pdf,
2016-2018.

[11] J Horchert, J Appelbaum, and C Stöocker. Shopping for spy gear:
Catalog advertises nsa toolbox. Der Spiegel, 2013.

[12] Tilo Müller, Felix C Freiling, and Andreas Dewald. Tresor runs
encryption securely outside ram. In USENIX Security Symposium,
volume 17, 2011.

[13] Tilo Müller, Tobias Latzo, and Felix C Freiling. Self-encrypting
disks pose self-decrypting risks. In the 29th Chaos Communinication
Congress, pages 1–10, 2012.

[14] Tilo Müller, Benjamin Taubmann, and Felix C Freiling. Trevisor.
In International Conference on Applied Cryptography and Network
Security, pages 66–83. Springer, 2012.

[15] T Ptacek and E Ptacek. You don’t want xts, 2014. See https://sockpuppet.
org/blog/2014/04/30/you-dont-want-xts/.

[16] Phillip Rogaway. Efficient instantiations of tweakable blockciphers and
refinements to modes ocb and pmac. In International Conference on the
Theory and Application of Cryptology and Information Security, pages
16–31. Springer, 2004.

[17] CE Stevens. AT Attachment 8-ATA/ATAPI Command Set – 4 (ACS-4).
Working Draft, American National Standard, Revision 14, 2016.

[18] Roel Verdult. The (in) security of proprietary cryptography. Sl: sn,
2015.

[19] J Wetzels and A Abbasi. Wheel of fortune: Analyzing embedded os
random number generators. 2016.

[20] Jonas Zaddach, Anil Kurmus, Davide Balzarotti, Erik-Oliver Blass,
Aurélien Francillon, Travis Goodspeed, Moitrayee Gupta, and Ioannis
Koltsidas. Implementation and implications of a stealth hard-drive back-
door. In Proceedings of the 29th annual computer security applications
conference, pages 279–288. ACM, 2013.

http://spritesmods.com/?art=hddhack
http://spritesmods.com/?art=hddhack
https://tweakers.net/reviews/683/secustick-gives-false-sense-of-security.html
https://tweakers.net/reviews/683/secustick-gives-false-sense-of-security.html
https://www.youtube.com/watch?v=8Zpb34Qf0NY
https://www.youtube.com/watch?v=8Zpb34Qf0NY
http://www2.futureware.at/~philipp/ssd/TheMissingManual.pdf
https://sockpuppet.org/blog/2014/04/30/you-dont-want-xts/
https://sockpuppet.org/blog/2014/04/30/you-dont-want-xts/


APPENDIX A
EXECUTION TRACE CAPTURED ON A CRUCIAL MX300 DRIVE DURING THE BITLOCKER SET-UP PHASE.

VerifyPasswd(szPasswd="AEGIS_ACADIA_MSID_12456789012345", bExtractRdsKey=true, dwSlotNo=2)
VerifyPasswd(szPasswd="AEGIS_ACADIA_MSID_12456789012345", bExtractRdsKey=true, dwSlotNo=2)
CopyCredential(dwSourceSlot=2, dwDestinationSlot=10)
ProtectPasswd(szPasswd=[0x00× 32], bStoreRdsKey=true, dwSlotNo=11) . szPasswd is zero buffer
CopyCredential(dwSourceSlot=11, dwDestinationSlot=12)
CopyCredential(dwSourceSlot=11, dwDestinationSlot=13)
CopyCredential(dwSourceSlot=11, dwDestinationSlot=14)
CopyCredential(dwSourceSlot=11, dwDestinationSlot=15)
CopyCredential(dwSourceSlot=11, dwDestinationSlot=16)
CopyCredential(dwSourceSlot=11, dwDestinationSlot=17)
CopyCredential(dwSourceSlot=11, dwDestinationSlot=18)
CopyCredential(dwSourceSlot=11, dwDestinationSlot=19)
CopyCredential(dwSourceSlot=11, dwDestinationSlot=20)
CopyCredential(dwSourceSlot=11, dwDestinationSlot=21)
CopyCredential(dwSourceSlot=11, dwDestinationSlot=22)
CopyCredential(dwSourceSlot=11, dwDestinationSlot=23)
CopyCredential(dwSourceSlot=11, dwDestinationSlot=24)
CopyCredential(dwSourceSlot=11, dwDestinationSlot=25)
CopyCredential(dwSourceSlot=11, dwDestinationSlot=26)
CopyCredential(dwSourceSlot=11, dwDestinationSlot=27)
CopyCredential(dwSourceSlot=11, dwDestinationSlot=28)
CopyCredential(dwSourceSlot=11, dwDestinationSlot=29)
StoreCryptoContextInSpiFlash()
VerifyPasswd(szPasswd="AEGIS_ACADIA_MSID_12456789012345", bExtractRdsKey=true, dwSlotNo=2)
VerifyPasswd(szPasswd="AEGIS_ACADIA_MSID_12456789012345", bExtractRdsKey=true, dwSlotNo=10)
VerifyPasswd(szPasswd="AEGIS_ACADIA_MSID_12456789012345", bExtractRdsKey=true, dwSlotNo=2)
ProtectPasswd(szPasswd=«BitLocker SID password», bStoreRdsKey=true, dwSlotNo=2))
StoreCryptoContextInSpiFlash()
VerifyPasswd(szPasswd="AEGIS_ACADIA_MSID_12456789012345", bExtractRdsKey=true, dwSlotNo=10)
ProtectPasswd(szPasswd=«BitLocker SID password», bStoreRdsKey=true, dwSlotNo=10)
StoreCryptoContextInSpiFlash()
VerifyPasswd(szPasswd=[0x00× 32], bExtractRdsKey=true, dwSlotNo=15)
GenerateRandomDekAndWrap(dwRangeNo=1, bIsProtectedRange=false)
VerifyPasswd(szPasswd=[0x00× 32], bExtractRdsKey=true, dwSlotNo=15)
StoreCryptoContextInSpiFlash()
UnwrapDek(dwRangeNo=1, bIsProtectedRange=false)
VerifyPasswd(szPasswd=[0x00× 32], bExtractRdsKey=true, dwSlotNo=15)
VerifyPasswd(szPasswd=[0x00× 32], bExtractRdsKey=true, dwSlotNo=15)
VerifyPasswd(szPasswd=[0x00× 32], bExtractRdsKey=true, dwSlotNo=15)
VerifyPasswd(szPasswd=[0x00× 32], bExtractRdsKey=true, dwSlotNo=15)
VerifyPasswd(szPasswd=[0x00× 32], bExtractRdsKey=true, dwSlotNo=15)
VerifyPasswd(szPasswd=[0x00× 32], bExtractRdsKey=true, dwSlotNo=15)
VerifyPasswd(szPasswd=[0x00× 32], bExtractRdsKey=true, dwSlotNo=15)
VerifyPasswd(szPasswd=[0x00× 32], bExtractRdsKey=true, dwSlotNo=15)
UnwrapDek(dwRangeNo=1, bIsProtectedRange=false)
WrapDek(dwRangeNo=1, bIsProtectedRange=true)
VerifyPasswd(szPasswd=[0x00× 32], bExtractRdsKey=true, dwSlotNo=15)
ProtectPasswd(szPasswd=«BitLocker user password», bStoreRdsKey=true, dwSlotNo=15)
StoreCryptoContextInSpiFlash()
VerifyPasswd(szPasswd=«BitLocker user password», bExtractRdsKey=true, dwSlotNo=15)
VerifyPasswd(szPasswd=«BitLocker user password», bExtractRdsKey=true, dwSlotNo=15)



Algorithm 3 UnwrapDek
Require: abRdsKey, abDeviceKey, aabRangeKeyTable,

aabUnwrappedRangeKeyTable
Ensure: Range key dwRangeNo is unwrapped

function UNWRAPDEK(dwRangeNo, bIsProtectedRange)
if bIsProtectedRange then

abKey ← abRdsKey
else

abKey ← abDeviceKey
abCiphertext ← aabRangeKeyTable[dwSlotNo]
abPlaintext ← DECRYPT(abKey, abCiphertext)
if decrypt failed then

return ERROR
aabUnwrappedRangeKeyTable[dwSlotNo] ← abPlaintext
return SUCCESS

APPENDIX B
PSEUDOCODE OF VARIOUS ROUTINES IN THE CRUCIAL

MX300 FIRMWARE.
The ProtectPasswd function (Algorithm 1) takes a password

and stores it in the credential table so that an incoming
password can be checked for validity at a later point in time.
The bStoreRdsKey parameter determines whether the stored
credential should encapsulate the RDS key (discussed in the
previous section). In this case, the credential allows access to
protected ranges (see Figure 4).

Algorithm 1 ProtectPasswd
Require: abRdsKey, abDeviceKey, aabCredentialTable
Ensure: Credential szPasswd is stored in aabCredentialTable at dwSlotNo

procedure PROTECTPASSWD(szPasswd, bStoreRdsKey, dwSlotNo)
if bStoreRdsKey then

abPlaintext ← abRdsKey
else

abPlaintext ← [0x00× 32] . abPlaintext is a zero buffer
abSalt ← RANDOM(32 bytes)
abKey ← PBKDF2(szPasswd, abSalt)
abCiphertext ← ENCRYPT(abKey, abPlaintext)
stProtectedPasswd ← (abSalt, abCiphertext)
abOutput ← ENCRYPT(abDeviceKey, stProtectedPasswd)
aabCredentialTable[dwSlotNo] ← abOutput

The function VerifyPasswd (Algorithm 2) is the inverse of
ProtectPasswd. It has two purposes: checking the validity of a
password, and, in case the bExtractRdsKey parameter is set,
using the password to decrypt the RDS key and copying it to
the global RDS key buffer, allowing other functions to use it.

Algorithm 2 VerifyPasswd
Require: abRdsKey, abDeviceKey, aabCredentialTable
Ensure: Verify szPasswd and set global RDS key if bExtractRdsKey = true

function VERIFYPASSWD(szPasswd, bExtractRdsKey, dwSlotNo)
abInput ← aabCredentialTable[dwSlotNo]
stProtectedPasswd ← DECRYPT(abDeviceKey, abInput)
if decrypt failed then

return ERROR
(abSalt, abCiphertext) ← stProtectedPasswd
abKey ← PBKDF2(szPasswd, abSalt)
abPlaintext ← DECRYPT(abKey, abCiphertext)
if decrypt failed then

return ERROR
if bExtractRdsKey then

abRdsKey ← abPlaintext
return SUCCESS

Furthermore, the UnwrapDek function (Algorithm 3) takes
an entry from the range key table, and decrypts it using either
the RDS key, or the device key (for protected and unprotected
ranges, respectively), as determined by the bIsProtectedRange
parameter. Obviously, for protected ranges, the RDS key must
be decrypted, prior to invoking UnwrapDek.

Finally, we implicitly define the functions WrapDek, Copy-
Credential, GenerateRandomDekAndWrap, and StoreCrypto-
ContextInSpiFlash as their functionality is clear from their
names.


	Introduction
	Background
	Software vs Hardware Encryption
	Hardware encryption standards

	Attacker model
	Methodology
	Obtaining a firmware image
	Downloading a firmware update
	Using a means of low level control

	Gaining low level control over the device
	JTAG
	Unsigned code execution

	Analyzing the firmware

	Possible Security Issues with Hardware Encryption
	Password and DEK not linked
	Single DEK used for the entire disk
	Lack of entropy in randomly generated DEKs
	Wear leveling
	Power-saving mode: DEVSLP
	General Implementation Issues

	Case Studies
	Crucial MX100
	Crucial MX200
	Crucial MX300
	Samsung 840 EVO
	Samsung 850 EVO
	Samsung T3 portable
	Samsung T5 portable

	Discussion
	References
	Appendix A: Execution trace captured on a Crucial MX300 drive during the BitLocker set-up phase.
	Appendix B: Pseudocode of various routines in the Crucial MX300 firmware.

