
1

PV207 - Business Process Management

Introduction to
Enterprise Integration

Mgr. Ivo Bek

Senior Product Manager

Previous lesson

2

Already
covered

▸ Business process

▸ Business process management

▸ Business process management systems

S
em

es
te

r t
im

e
Practice

Seminars

Process ModelingTechnologyBusiness

Project

PV207 helicopter view

3

BPM Fundamentals

System Integration I

System Integration II

Business & Domain
analysis

BPMN modeling L1

BPMN modeling L2

BPMN modeling Best
practices

Project intermezzo

Guest lecture BPMS

Process Architecture

Economic Aspects

BPMS technology

Project consultations

HW 2 modelling

HW 1 installation

HW 3 modeling

Lecture

Homework

Project

Legend:

Discipline

Seminar

NOW

Agenda

4

What we’ll
discuss today

▸ Implementing business processes connecting to
enterprise systems

▸ Core principles of interoperability in software
systems

▸ Handling the differences between Requester and
Provider

▸ Message processing

▸ Integration patterns

Process-driven Applications

5

Insurance
Claims
Processing
Underwriting
Quoting
Rating
Commissioning

KYC
Loan Origination
Credit
Decisioning
Sales Advisory
Payments

Banking

Recommendation
Campaign Mgmt
Order Mgmt
Pricing
Self-service

Retail

Order Mgmt
Billing
Contract Mgmt

Manufacturing

Offer
Configuration
Order Mgmt
Fraud Detection
Loyalty Programs
Network
Monitoring

Telco

Workforce Mgmt
Loyalty Programs
Customer Service
Billing

Transportation

6

Example: Insurance claim processing

Implementing business processes connecting to enterprise systems

Key enterprise integration elements

7

to enable communication and functionality across enterprise applications and systems

8

ServiceInterface Characteristics

- Implements contracts
- Exposes endpoint
- Sends / receives messages
- Governed by policy

▸ Data

▸ Technical interface - transport, protocol, data format

▸ Interaction type - request/response, fire/forget,

sync/async, individual/batch, publish/subscribe

▸ Integrity - validation, transactional, stateful, idempotence

▸ Security - identity, privacy

▸ Reliability - availability, delivery assurance

▸ Error handling

▸ Performance - response times, throughput, concurrency,

message size, volumes over time

Communication and API architectural styles

9

Defining how services communicate over a network

▸ REST and OpenAPI - in web and mobile applications

▸ SOAP Web Services - in enterprise-level web services, financial services, payment gateways, and telco services which

require comprehensive security and transactional reliability

▸ gRPC - in high-performance APIs and microservices which require low latency and real-time communication, can be used for

request-response or streaming

▸ GraphQL - in data-driven applications which require complex, nested data queries

▸ Message-driven (JMS / AMQP / MQTT) - in distributed systems which require asynchronous communication

▸ Streaming / Event-driven (Kafka, Serverless) - in real-time systems which require streaming data processing and

immediate reactions

▸ Websockets - in web applications requiring continuous data exchange in real-time

▸ Webhooks - in web applications which require to receive / send external events (notifications) in realtime, asynchronously

Interface Catalog

10

System
Name

Transmission
Protocol

Data
Format

Data
Object(s)

Interaction …

CRM HTTP / REST JSON Customer,
Order

Request-response, sync

Shipping JDBC SQL Text Order Summary Request-response, sync

Printing JMS String Order
Confirmation

Fire-forget, message,
async

Product
Catalogue

gRPC Binary
protobuf

Product Details Request-response, sync

Billing
System

HTTP / SOAP XML Customer,
Order

Request-response, sync

11

Investigation and Assessment

Business analyst

▸ 1. Create high level process model

▸ 2. Establish data objects used by process

▸ 5. Establish functional usage (operations) of data

Integration Specialist

▸ 3. Establish systems containing the data objects

▸ 4. Establish technical interfaces exposing the data

Implementing business processes connecting to enterprise systems

Team Project
Integration Task #1

12

As an integration specialist build an interface catalog
listing at least 5 different system connections and their
interfaces, including their transmission protocol, data
format, data objects and interaction types / behavior.
The system connections need to be used in business
processes but they don’t need to be implemented. The
chosen service interfaces should be realistic to what
technology you would select today (e.g. a preference for
REST API + JSON) or how they were implemented
historically.

Deliverables

● Interface catalog in project
documentation

Core principles of interoperability in software systems

13

Publish / subscribe
messaging Message routing Event streaming

Data integration API management Workflow orchestration

Direct messages between services based on predefined rules

14

Message routing

Core principles of interoperability in software systems

▸ Dynamic path selection - decouples producers and

consumers

▸ Content-based routing - receive a message and examine the

content of the message to determine its destination

･ Message filter - passes the message to another channel if

the message content matches certain criteria, otherwise

discards the message

▸ Aggregator - receive a stream of messages, identify related

messages and combine them into a single message

▸ Splitter - receive a single message, break it down into multiple

messages, each containing a subset of the data from the original

message

･ Recipient list - determine a list of recipients based on

criteria within the message, and send copies of the message

to each determined recipient

Publisher A Content-based
router

Message
Filter

Aggregator

Consumer A

Consumer B

Consumer C

Publisher B

Publisher C

0-1

1

12+

1

1

Splitter Consumer DPublisher D 2+1

Data integration

15

Improve data quality, remove unnecessary

data, combine data from multiple sources,

convert data from one form or structure to

another, and enrich data.

Data SynchronizationData Processing

Facilitate seamless operations across

disparate systems, maintain data integrity,

replicate database and apply change data

capture.

Data Migration

Integrate disparate systems, transition to

cloud, consolidate data centers or upgrade

systems.

Facilitate flow of data between systems

Core principles of interoperability in software systems

Coordinate and automate flow of tasks

16

Workflow orchestration

▸ Coordinate interactions between microservices

▸ Orchestrate data pipelines using workflows

▸ Features
･ Parallel execution

･ Branching

･ Timeouts

･ Callbacks

･ Compensation

･ Error handling

▸ Operational control over workflows to troubleshoot with the ability to

pause, resume, restart, retry, debug, and terminate

▸ Monitoring and tracking progress of workflows, identifying

bottlenecks and failures for continuous improvement

Core principles of interoperability in software systems

Questions?
Break 10mins

Handling the differences between Requester and Provider

18

Integration

Service consumer Service

▸ What is the primary objective of the integration?

▸ What do we need to do with the message?

▸ When do events occur?

▸ Are there specific performance targets or SLAs?

▸ Does the requester need to ensure (eventual)

consistency?

▸ Will the requester produce duplicate requests?

▸ Should the requester get access to all data?

▸ What are the interface specifications?

▸ How are authentication and authorization handled in both systems?

▸ What are the error handling and retry mechanisms in case of failed

requests or responses?

▸ Are there any rate limiting or quota restrictions imposed by the

service provider?

Architecture and Design Patterns
Enterprise Integration Patterns

https://developers.redhat.com/topics/red-hat-architecture-and-design-patterns?source=sso
https://www.enterpriseintegrationpatterns.com/

Data integration

Data integration from CSV to XML

19

Format transformation

Input Stream Output StreamTransformation

CSV Unmarshalling
and validation

XML Marshalling
and validation

Unmarshalling transforms data in some binary or textual format (such as received over the
network) into a Java object; or some other representation according to the data format being used.

Marshalling transforms the message body (such as Java object) into a binary or textual format,
ready to be wired over the network

CSV Canonical
Data Model XML

Message Processing

Exchange and translate data

20

Message processing

▸ Data Formats and Structures - XML, JSON, Zipfile, Avro, Protobuf, SOAP

▸ Data Transformation - XSLT, JSLT, XJ

▸ Expression Languages - JQ, JSONPath, XPath, XQuery

▸ Data Mapping - Bindy, Mapstruct, JAXB, Gson, Xstream

▸ Healthcare Data - HL7, FHIR

▸ Data Encryption - PGP, JCE, SSL/TLS

Data Validation Data Model
Translation

Data Enrichment Data Privacy

Data Integrity

Data Filtering

Combine data from multiple sources into a unified format

21

Data aggregation

▸ Aggregator is a stateful filter that collects and

stores source messages until it can fully combine

all source data for the aggregated message

▸ Message correlation determines which

messages belong together

▸ Aggregator strategies - wait for all, time out, delta

processing, number of messages, completion value, ..

▸ Examples - insert data to DB in batches

Data Source A

Data Source B

Aggregator

Message Processing

Bridge different API architectural styles

22

REST-SOAP mediator

Service consumer REST-SOAP
Integration

OpenAPI contract WSDL contract

Legacy system

Data format
transformation

JSON XML-SOAP

Message Processing

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://example.com/weatherservice"
 xmlns:tns="http://example.com/weatherservice">

 <wsdl:types>
 <xsd:schema targetNamespace="http://example.com/weatherservice">
 <xsd:element name="GetWeatherRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="City" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="GetWeatherResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Temperature" type="xsd:float"/>
 <xsd:element name="Description" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
 </wsdl:types>

 <wsdl:message name="GetWeatherInput">
 <wsdl:part name="parameters" element="tns:GetWeatherRequest"/>
 </wsdl:message>

 <wsdl:message name="GetWeatherOutput">
 <wsdl:part name="parameters" element="tns:GetWeatherResponse"/>
 </wsdl:message>

 <wsdl:portType name="WeatherServicePortType">
 <wsdl:operation name="GetWeather">
 <wsdl:input message="tns:GetWeatherInput"/>
 <wsdl:output message="tns:GetWeatherOutput"/>
 </wsdl:operation>
 </wsdl:portType>

 <wsdl:binding name="WeatherServiceBinding" type="tns:WeatherServicePortType">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="GetWeather">
 <soap:operation soapAction="http://example.com/GetWeather"/>
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>

 <wsdl:service name="WeatherService">
 <wsdl:port name="WeatherServicePort" binding="tns:WeatherServiceBinding">
 <soap:address location="http://example.com/weatherservice"/>
 </wsdl:port>
 </wsdl:service>

</wsdl:definitions>

openapi: 3.0.0
info:
 title: WeatherService
 description: Provides weather information
 version: "1.0.0"
servers:
 - url: 'http://example.com/weatherservice'
paths:
 /weather:
 get:
 summary: Get weather information
 description: Returns weather information for a
given city
 parameters:
 - in: query
 name: city
 required: true
 schema:
 type: string
 description: The name of the city
 responses:
 '200':
 description: Successful response
 content:
 application/json:
 schema:
 type: object
 properties:
 temperature:
 type: number
 description: The current temperature
 description:
 type: string
 description: A brief description of
the weather conditions

https://swagger.io/specification/
https://www.w3.org/TR/wsdl.html
https://pastebin.com/1YxX82HC
https://pastebin.com/1YxX82HC
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
https://pastebin.com/1YxX82HC
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
https://pastebin.com/1YxX82HC
https://pastebin.com/1YxX82HC
http://example.com/weatherservice'
http://example.com/weatherservice'
http://example.com/weatherservice'
http://example.com/weatherservice'
http://example.com/weatherservice'
http://example.com/weatherservice'
http://example.com/weatherservice'
http://example.com/weatherservice'
http://example.com/weatherservice'
http://example.com/weatherservice'
http://example.com/weatherservice'
http://example.com/weatherservice'
http://example.com/weatherservice'
https://pastebin.com/b21FL3DG
http://example.com/weatherservice'
http://example.com/weatherservice'
http://example.com/weatherservice'
http://example.com/weatherservice'
http://example.com/weatherservice'
http://example.com/weatherservice'
http://example.com/weatherservice'
http://example.com/weatherservice'
http://example.com/weatherservice'
http://example.com/weatherservice'
http://example.com/weatherservice'
http://example.com/weatherservice'
http://example.com/weatherservice'
http://example.com/weatherservice'
http://example.com/weatherservice'
http://example.com/weatherservice'
http://example.com/weatherservice'
http://example.com/weatherservice'
http://example.com/weatherservice'
http://example.com/weatherservice'
http://example.com/weatherservice'

Typical structure of a data processing flow

23

VETRO pattern

Validate Enrich Transform Route Operate

Check incoming data for

correctness and

completeness to prevent

errors and inconsistencies

downstream.

▸ Data format

▸ Data type

▸ Value ranges

Incorporate related

data from other

sources to make

incoming data more

complete and useful

▸ Enricher

▸ Aggregation

Convert data from one

format or structure to

another to align data with

the target system interface

▸ Format transformation -

JSON <=> XML

▸ Data transformation -

1:1, N:1, merging,

complex manipulations

Direct processed data to

the appropriate

destination(s) based on

predefined criteria

▸ Dynamic path selection

▸ Content based routing

Execute tangible actions

supporting business

operations based on the

processed data

▸ Trigger workflow

▸ Update database

▸ Generate alert

Message Processing

Move data - collect, transform, and store

24

Data pipeline

▸ Data pipeline is a workflow consisting of one or more tasks that

ingest, move, and transform raw data from one or more data

sources to a data storage

▸ Common in data science / machine-learning projects and

business intelligence dashboards (e.g. monthly accounting)

▸ Change data capture pipeline - Database changes (create, update,

delete) externalized as events

▸ Extract-transform-load (ETL) pipeline extracts data from the

source system, transform it into the desired format, and load it into

the target system.
･ Extract-load-transform (ELT) pipelines are popular in the cloud-native

solutions - transformations can scale horizontally, handling varying

volumes of data more efficiently than traditional ETL pipelines

Data Ingestion

Data
Transformation

Data Storage

Facilitate flow of data between systems

25

Point-to-point integration

Add more endpoints without direct data format dependency

26

Canonical Data Model pattern

System A
(Mainframe
Customer)

System B
(Legacy CRM

Customer)

A ⇔ CDM

B ⇔ CDM

CDM ⇔ C

CDM ⇔ D

System C
(CRM Customer)

System D
(BPMS Customer)

CDM ⇔ E
System E
(Analytics
Customer)

Introducing new System E

Without CDM

Facilitate flow of data between systems

Efficiently connect disparate systems

27

using integration patterns

Message Bridge Data Pipeline Service Mediator

Routing

Composition

Orchestration

Interface translation

Data migration

Data enrichment

Data synchronization / Strangler

Routing

Publish-subscribe

Message transformation

Exactly once delivery

Event sequencing

Aggregation

Claim check

Parallel pipeline

Batch processing

Dead letter queue

Error handling

CorrelationCorrelation

Correlation

Idempotence resolution

RetryRetry

Throttling

Event sourcing Health check

Load leveling

Normalizer

SagaEnterprise Integration Patterns
Solution
implementation

https://www.enterpriseintegrationpatterns.com/
https://www.enterpriseintegrationpatterns.com/

28

Link to Red Hat architecture

https://www.redhat.com/architect/portfolio/detail/36-supply-chain-optimization

29

Labs today ▸ BPMS Hands-on implementing
the first business process

30

Next lesson ▸ Business and domain analysis

Resources

31

▸ Interface characteristics by Kim Clark and Brian Petrini

▸ Enteprise integration patterns by Gregor Hohpe and Bobby Woolf

▸ Red Hat Developer

https://www.slideshare.net/kimjclark/interface-characteristics-kim-clark-and-brian-petrini
https://www.enterpriseintegrationpatterns.com/
https://developers.redhat.com/

32

Extra

Enable decoupled communication in distributed systems

33

Publish / subscribe messaging

▸ Allow publishers to send messages without knowing the

subscribers, who receive messages based on their subscribed

interests

▸ Message types
･ Volatile - not stored, sent only to online consumers, best

performance with lowest possible latency

･ Durable - stored until read by all registered consumers

･ Replayable - stored and published for a specific time or until

storage capacity is reached

▸ Messaging systems
･ Multi-protocol message brokers for transactional messaging

(volatile and durable) - guaranteed message delivery, message

ordering, atomic operations, message redelivery, push-pull

･ Event streaming platforms with focus on storing and processing

streams of records efficiently

Publisher

Queue Topic

Subscriber A Subscriber B Subscriber C

Message Broker

Core principles of interoperability in software systems

Transfer and process real-time data streams

34

Event streaming

▸ Ideal for scenarios requiring high throughput and

efficient handling of large volumes of data for real-time

analytics, log aggregation, stream processing, and

building data pipelines

▸ Replayable events

▸ Performance is less affected by the size of the data it

stores, thanks to its design

▸ At-least-once delivery by default - need for idempotent

consumer

Core principles of interoperability in software systems

Publisher B

Topic 1 Topic 2

Subscriber C Subscriber D Subscriber E

Kafka cluster

Publisher A

Broker

partitions

Connect messaging systems

35

Legacy message
broker (producer)

Message Bridge
Integration

New message
broker (consumer)

JMS JMS/AMQP

Sensors on edge
devices / broker

(producer)

Message Bridge
Integration

Kafka broker
(consumer)

MQTT events Kafka events

Message bridge

▸ Protocol translation
▸ Message transformation
▸ Routing
▸ Enrichment and filtering
▸ Key considerations

･ Performance
･ Compliance

Process large data sets periodically

36

Batch processing

▸ 300 sensors at a smart farm
monitoring various conditions

▸ 1 sensor sends 1 MQTT
message / min

▸ 4 types of readings
･ Temperature
･ Humidity
･ Soil moisture
･ Nutrient levels

Sensors on edge
devices / broker

(producer)

Message Bridge
Integration

Kafka broker
(consumer)

300 MQTT events / min 5 Kafka events / min

▸ Batch processing interval
every 5 minutes

▸ Aggregate data
▸ Average readings
▸ Identify outliers / thresholds

▸ 4 events for aggregated
readings (one per type)

▸ 1 alert event

Control API interactions to maintain system integrity

37

API Management

▸ API Gateway serves as a central point of

control and entry for API calls, routing

requests to the appropriate services

▸ API traffic control
･ authentication

･ policy enforcement

▸ Application & user access control
･ access tiers

･ throttling and rate limits

▸ API contracts
･ package APIs

･ store and validate data model schemas and

API contracts in schema registry

▸ Measure the success of APIs using analytics

▸ Apply pricing rules and automatic invoicing

Core principles of interoperability in software systems

API Backend

API Request
Authorized

API Request

Optional OIDC
Integration

API Consumers
(App Developers)

Authorize &
Report Traffic

API Gateway

Admin PortalDeveloper Portal
API Manager

Developer Apps

Single Sign-On

API Providers
(Line Of Business / Product

Manager,
Developers, Writers, Ops)

Workflow Saga coordinator

Maintain data consistency and integrity when a service fails

38

Compensation

Service A

▸ Ensure a consistent outcome across multiple,
independent providers

▸ Compensation is a mechanism used to revert an
operation

▸ Saga - coordinates multiple compensations performed
in reverse order when a multi-step transaction fails at
any point during execution
･ As part of workflow orchestration
･ In event-driven Saga coordinator

Service B

Service C

Compensation of
Service B

Error

Event-driven Saga coordinator Saga Log

Compensation of
Service A

Facilitate flow of data between systems

linkedin.com/company/red-hat

youtube.com/OpenShift

facebook.com/redhatinc

twitter.com/OpenShift

39

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning support,

training, and consulting services make Red Hat a trusted

adviser to the Fortune 500.

Thank you

O
ptional section m

arker or title

