PV211: Introduction to Information Retrieval https://www.fi.muni.cz/~sojka/PV211

IIR 5: Index compression Handout version

Petr Sojka, Hinrich Schütze et al.

Faculty of Informatics, Masaryk University, Brno Center for Information and Language Processing, University of Munich

2023-03-08

(compiled on 2023-02-15 09:09:20)

Overview

Oictionary compression

Roadmap

- Today: index compression, and vector space model
- Next week: the whole picture of complete search system, scoring and ranking

Take-away today

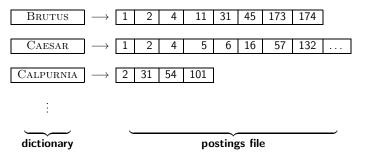
For each term t, we store a list of all documents that contain t.

BRUTUS	\longrightarrow	1	2	4	11	31	45	173	174]
CAESAR	\longrightarrow	1	2	4	5	6	16	57	132	
CALPURNIA		2	31	54	101					
-										
dictionary	postings file						_			

- Motivation for compression in information retrieval systems
- How can we compress the dictionary component of the inverted index?
- How can we compress the postings component of the inverted index?
- Term statistics: how are terms distributed in document collections?

Inverted index

For each term t, we store a list of all documents that contain t.



Today:

- How much space do we need for the dictionary?
- How much space do we need for the postings file?
- How can we compress them?

Why compression? (in general)

- Use less disk space (saves money).
- Keep more stuff in memory (increases speed).
- Increase speed of transferring data from disk to memory (again, increases speed).

[read compressed data and decompress in memory] is faster than

[read uncompressed data]

- Premise: Decompression algorithms are fast.
- This is true of the decompression algorithms we will use.

Why compression in information retrieval?

- First, we will consider space for dictionary:
 - Main motivation for dictionary compression: make it small enough to keep in main memory.
- Then for the postings file
 - Motivation: reduce disk space needed, decrease time needed to read from disk.
 - Note: Large search engines keep significant part of postings in memory.
- We will devise various compression schemes for dictionary and postings.

Lossy vs. lossless compression

- Lossy compression: Discard some information
- Several of the preprocessing steps we frequently use can be viewed as lossy compression:
 - downcasing, stop words, porter, number elimination
- Lossless compression: All information is preserved.
 - What we mostly do in index compression

Compression

Model collection: The Reuters collection

symbol	statistic	value
Ν	documents	800,000
L	avg. $\#$ word tokens per document	200
М	word types	400,000
	avg. $\#$ bytes per word token (incl. spaces/punct.)	6
	avg. # bytes per word token (without spaces/punct.)	4.5
	avg. $\#$ bytes per word type	7.5
Т	non-positional postings	100,000,000

Effect of preprocessing for Reuters

	word types		non-positional			positional postings		
	(terms)		postings			(word tokens)		
size of	dictiona	iry	non-position	al in	dex	positional ind	dex	
	size 4	Δcml	size	Δ	cml	size	Δ cml	
unfiltered	484,494		109,971,179			197,879,290		
no numbers	473,723 -	-2 -2	100,680,242	-8	-8	179,158,204	-9 -9	
case folding	391,523-1	7 -19	96,969,056	-3	-12	179,158,204	-0 -9	
30 stopw's	391,493 -	0 -19	83,390,443	-14	-24	121,857,825	-31 -38	
150 stopw's	391,373 -	0 -19	67,001,847	-30	-39	94,516,599	-47 -52	
stemming	322,383-1	.7 -33	63,812,300	-4	-42	94,516,599	-0 -52	

Explain differences between numbers non-positional vs positional: -3 vs 0, -14 vs -31, -30 vs -47, -4 vs 0

Compression

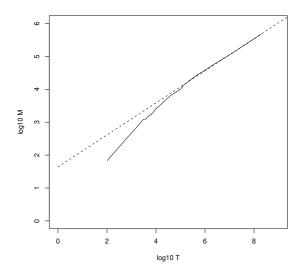
Term statistics

Dictionary compress

How big is the term vocabulary?

- That is, how many distinct words are there?
- Can we assume there is an upper bound?
- Not really: At least $70^{20}\approx 10^{37}$ different words of length 20.
- The vocabulary will keep growing with collection size.
- Heaps' law: $M = kT^b$
- *M* is the size of the vocabulary, *T* is the number of tokens in the collection.
- Typical values for the parameters k and b are: 30 ≤ k ≤ 100 and b ≈ 0.5.
- Heaps' law is linear in log-log space.
 - It is the simplest possible relationship between collection size and vocabulary size in log-log space.
 - Empirical law

Heaps' law for Reuters



Vocabulary size *M* as a function of collection size *T* (number of tokens) for Reuters-RCV1. For these data, the dashed line $\log_{10} M = 0.49 * \log_{10} T + 1.64$ is the best least squares fit. Thus, $M = 10^{1.64} T^{0.49}$ and $k = 10^{1.64} \approx 44$ and b = 0.49.

Sojka, IIR Group: PV211: Index compression

Empirical fit for Reuters

- Good, as we just saw in the graph.
- Example: for the first 1,000,020 tokens Heaps' law predicts 38,323 terms:

 $44 \times 1{,}000{,}020^{0.49} \approx 38{,}323$

- The actual number is 38,365 terms, very close to the prediction.
- Empirical observation: fit is good in general.

Exercise

- What is the effect of including spelling errors vs. automatically correcting spelling errors on Heaps' law?
- Compute vocabulary size M
 - Looking at a collection of web pages, you find that there are 3,000 different terms in the first 10,000 tokens and 30,000 different terms in the first 1,000,000 tokens.
 - Assume a search engine indexes a total of 20,000,000,000 (2×10^{10}) pages, containing 200 tokens on average
 - What is the size of the vocabulary of the indexed collection as predicted by Heaps' law?

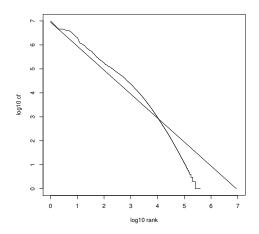
Zipf's law

- Now we have characterized the growth of the vocabulary in collections.
- We also want to know how many frequent vs. infrequent terms we should expect in a collection.
- In natural language, there are a few very frequent terms and very many very rare terms.
- Zipf's law: The *i*th most frequent term has frequency cf_{*i*} proportional to 1/i.
- $cf_i \propto \frac{1}{i}$
- cf_i is collection frequency: the number of occurrences of the term t_i in the collection.

Zipf's law

- Zipf's law: The *i*th most frequent term has frequency proportional to 1/i.
- $\operatorname{cf}_i \propto \frac{1}{i}$
- $\bullet\ {\rm cf}$ is collection frequency: the number of occurrences of the term in the collection.
- So if the most frequent term (*the*) occurs cf₁ times, then the second most frequent term (*of*) has half as many occurrences cf₂ = ¹/₂cf₁...
- ... and the third most frequent term (and) has a third as many occurrences $cf_3 = \frac{1}{3}cf_1$, etc.
- Equivalent: $cf_i = ci^k$ and $\log cf_i = \log c + k \log i$ (for k = -1)
- Example of a power law

Zipf's law for Reuters



Fit is not great. What is important is the key insight: Few frequent terms, many rare terms.

Dictionary compression

- The dictionary is small compared to the postings file.
- But we want to keep it in memory.
- Also: competition with other applications, cell phones, onboard computers, fast startup time
- So compressing the dictionary is important.

Recall: Dictionary as array of fixed-width entries

	term	document	pointer to
		frequency	postings list
	а	656,265	\longrightarrow
	aachen	65	\longrightarrow
	zulu	221	\longrightarrow
needed:	20 bytes	4 bytes	4 bytes

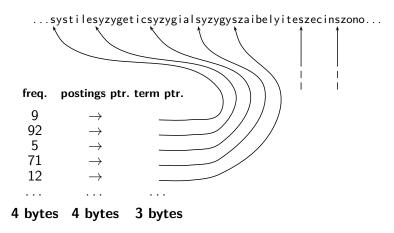
Space for Reuters: (20+4+4)*400,000 = 11.2 MB

space

Fixed-width entries are bad.

- Most of the bytes in the term column are wasted.
 - We allot 20 bytes for terms of length 1.
- We cannot handle HYDROCHLOROFLUOROCARBONS and SUPERCALIFRAGILISTICEXPIALIDOCIOUS
- Average length of a term in English: 8 characters (or a little bit less)
- How can we use on average 8 characters per term?

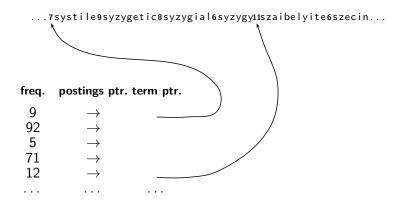
Dictionary as a string



Space for dictionary as a string

- 4 bytes per term for frequency
- 4 bytes per term for pointer to postings list
- 8 bytes (on average) for term in string
- 3 bytes per pointer into string (need $\log_2 8 \cdot 400,000 < 24$ bits to resolve $8 \cdot 400,000$ positions)
- Space: $400,000 \times (4 + 4 + 3 + 8) = 7.6$ MB (compared to 11.2 MB for fixed-width array)

Dictionary as a string with blocking



Space for dictionary as a string with blocking

- Example block size k = 4
- Where we used 4 \times 3 bytes for term pointers without blocking \ldots
- ... we now use 3 bytes for one pointer plus 4 bytes for indicating the length of each term.
- We save 12 (3 + 4) = 5 bytes per block.
- Total savings: 400,000/4 * 5 = 0.5 MB
- This reduces the size of the dictionary from 7.6 MB to 7.1 MB.

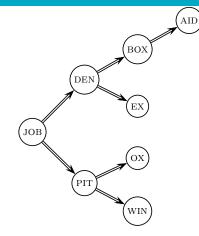
Compression

statistics

Dictionary compression

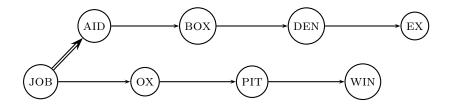
Postings compression

Lookup of a term without blocking



Compression

Lookup of a term with blocking: (slightly) slower



One block in blocked compression $(k = 4) \dots \mathbf{8}$ a u t o m a t a $\mathbf{8}$ a u t o m a t e $\mathbf{9}$ a u t o m a t i c $\mathbf{10}$ a u t o m a t i o n

₽

 $\dots \mbox{ further compressed with front coding.} 8 \mbox{ a u t o m a t * a } 1 \mbox{ } e \mbox{ 2 } \diamond \mbox{ i c } 3 \mbox{ o i o n }$

Dictionary compression for Reuters: Summary

data structure	size in MB
dictionary, fixed-width	11.2
dictionary, term pointers into string	7.6
\sim , with blocking, $k=4$	7.1
\sim , with blocking & front coding	5.9

Exercise

- Which prefixes should be used for front coding? What are the tradeoffs?
- Input: list of terms (= the term vocabulary)
- Output: list of prefixes that will be used in front coding

Postings compression

- The postings file is much larger than the dictionary, factor of at least 10.
- Key desideratum: store each posting compactly
- A posting for our purposes is a docID.
- For Reuters (800,000 documents), we would use 32 bits per docID when using 4-byte integers.
- Alternatively, we can use $\log_2 800,000 \approx 19.6 < 20$ bits per docID.
- Our goal: use a lot less than 20 bits per docID.

Key idea: Store gaps instead of docIDs

- Each postings list is ordered in increasing order of docID.
- Example postings list: COMPUTER: 283154, 283159, 283202, ...
- It suffices to store gaps: 283159 283154 = 5, 283202 - 283159 = 43
- Example postings list using gaps: COMPUTER: 283154, 5, 43, ...
- Gaps for frequent terms are small.
- Thus: We can encode small gaps with fewer than 20 bits.

Gap encoding

	encoding	postings	list								
THE	docIDs			283042		283043		283044		283045	
	gaps				1		1		1		
COMPUTER	docIDs			283047		283154		283159		283202	
	gaps				107		5		43		
ARACHNOCENTRIC	docIDs	252000		500100							
	gaps	252000	248100								

Variable length encoding

• Aim:

- For ARACHNOCENTRIC and other rare terms, we will use about 20 bits per gap (= posting).
- For THE and other very frequent terms, we will use only a few bits per gap (= posting).
- In order to implement this, we need to devise some form of variable length encoding.
- Variable length encoding uses few bits for small gaps and many bits for large gaps.

Variable byte (VB) code

- Used by many commercial/research systems
- Good low-tech blend of variable-length coding and sensitivity to alignment matches (bit-level codes, see later).
- Dedicate 1 bit (high bit) to be a continuation bit c.
- If the gap G fits within 7 bits, binary-encode it in the 7 available bits and set c = 1.
- Else: encode lower-order 7 bits and then use one or more additional bytes to encode the higher order bits using the same algorithm.
- At the end set the continuation bit of the last byte to 1 (c = 1) and of the other bytes to 0 (c = 0).

Compression	Term statistics	Dictionary comp	ression Posti	tings compression	
VB code	e example	es			
docIDs	824		829	215406	
gaps			5	214577	
VB code	00000110	10111000	10000101	1 00001101 00001100 10110001	

6

VB code encoding algorithm

VBEncodeNumber(n)

- 1 bytes $\leftarrow \langle \rangle$
- 2 while true
- **3 do PREPEND**(*bytes*, *n* mod 128)
- 4 if *n* < 128
- 5 then Break
 - $n \leftarrow n$ div 128
- 7 bytes[LENGTH(bytes)] += 128
- 8 return bytes

VBENCODE(numbers)

- 1 bytestream $\leftarrow \langle \rangle$
- 2 for each $n \in numbers$
- 3 **do** bytes \leftarrow VBENCODENUMBER(n)
- 4 *bytestream* ← EXTEND(*bytestream*, *bytes*)
- 5 return bytestream

VB code decoding algorithm

VBDECODE(*bytestream*)

numbers $\leftarrow \langle \rangle$ 1

2 $n \leftarrow 0$

- 3 for $i \leftarrow 1$ to LENGTH(bytestream)
- 4 **do if** bytestream[i] < 128

```
5
then n \leftarrow 128 \times n + bytestream[i]
```

- else $n \leftarrow 128 \times n + (bytestream[i] 128)$ 6 7
 - APPEND(*numbers*, *n*)
- 8 $n \leftarrow 0$
- 9 return numbers

Other variable codes

- Instead of bytes, we can also use a different "unit of alignment": 32 bits (words), 16 bits, 4 bits (nibbles), etc.
- Variable byte alignment wastes space if you have many small gaps nibbles do better on those.
- There is work on word-aligned codes that efficiently "pack" a variable number of gaps into one word – see resources at the end

Codes for gap encoding

- You can get even more compression with another type of variable length encoding: bitlevel code.
- Gamma code is the best known of these.
- First, we need unary code to be able to introduce gamma code.
- Unary code
 - Represent *n* as *n* 1s with a final 0.
 - Unary code for 3 is 1110

Gamma code

- Represent a gap G as a pair of length and offset.
- Offset is the gap in binary, with the leading bit chopped off.
- For example $13 \rightarrow 1101 \rightarrow 101 = \text{offset}$
- Length is the length of offset.
- For 13 (offset 101), this is 3.
- Encode length in unary code: 1110.
- Gamma code of 13 is the concatenation of length and offset: 1110101.

Another Gamma code (γ) examples

number	unary code	length	offset	$\gamma \operatorname{code}$
0	0			
1	10	0		0
2	110	10	0	10,0
3	1110	10	1	10,1
4	11110	110	00	110,00
9	1111111110	1110	001	1110,001
13		1110	101	1110,101
24		11110	1000	11110,1000
511		111111110	11111111	111111110,11111111
1025		11111111110	000000001	11111111110,000000001

The universal coding of the integers: Elias codes

unary code
$$\alpha(N) = \underbrace{11...1}_{N} 0. \ \alpha(4) = 11110$$

- is binary code $\beta(1) = 1, \beta(2N+j) = \beta(N)j, j = 0, 1.$ $\beta(4) = 100$
- $\bowtie \beta$ is not uniquely decodable (it is not a prefix code).
- use ternary au(N) = eta(N) #. au(4) = 100 #

■
$$\beta'(1) = \epsilon, \ \beta'(2N) = \beta'(N)0, \ \beta'(2N+1) = \beta'(N)1, \ \tau'(N) = \beta'(N)#. \ \beta'(4) = 00.$$

is
$$\gamma(N) = \alpha |\beta'(N)| \beta'(N)$$
. $\gamma(4) = 11000$

- alternatively, γ' : every bit $\beta'(N)$ is inserted between a pair from $\alpha(|\beta'(N)|)$. the same length as γ (bit permutation $\gamma(N)$), but less readable
- see example: $\gamma'(4) = 1\overline{0}1\overline{0}0$
- Solution $C_{\gamma} = \{\gamma(N) : N > 0\} = (1\{0,1\})^*0$ is regular and therefore it is decodable by finite automaton.

Elias codes: gamma, delta, omega: formal definitions II

$$\begin{split} & \mathbb{I} \otimes \delta(N) = \gamma(|\beta(N)|)\beta'(N) \\ & \mathbb{I} \otimes \text{ example: } \delta(4) = \gamma(3)00 = 01100 \\ & \mathbb{I} \otimes \text{ decoder } \delta: \ \delta(?) = 1001? \\ & \mathbb{I} \otimes \omega: \\ & K := 0; \\ & \text{while } \lfloor \log_2(N) \rfloor > 0 \text{ do } \\ & \text{ begin } K := \beta(N)K; \\ & N := \lfloor \log_2(N) \rfloor \\ & \text{ end.} \end{split}$$

Exercise

- Compute the variable byte code of 130
- Compute the gamma code of 130
- Compute $\delta(42)$

Length of gamma code

- The length of *offset* is $\lfloor \log_2 G \rfloor$ bits.
- The length of *length* is $\lfloor \log_2 G \rfloor + 1$ bits,
- So the length of the entire code is $2 \times \lfloor \log_2 G \rfloor + 1$ bits.
- γ codes are always of odd length.
- Gamma codes are within a factor of 2 of the optimal encoding length $\log_2 G$.
 - (assuming the frequency of a gap G is proportional to $\log_2 G$ only approximately true)

Gamma code: Properties

- Gamma code is prefix-free: a valid code word is not a prefix of any other valid code.
- Encoding is optimal within a factor of 3 (and within a factor of 2 making additional assumptions).
- This result is independent of the distribution of gaps!
- We can use gamma codes for any distribution. Gamma code is universal.
- Gamma code is parameter-free.

Gamma codes: Alignment

- Machines have word boundaries 8, 16, 32 bits
- Compressing and manipulating at granularity of bits can be slow.
- Variable byte encoding is aligned and thus potentially more efficient.
- Another word aligned scheme: Anh and Moffat 2005
- Regardless of efficiency, variable byte is conceptually simpler at little additional space cost.

Compression of Reuters

data structure	size in MB
dictionary, fixed-width	11.2
dictionary, term pointers into string	7.6
\sim , with blocking, $k=4$	7.1
\sim , with blocking & front coding	5.9
collection (text, xml markup, etc.)	3600.0
collection (text)	960.0
T/D incidence matrix	40,000.0
postings, uncompressed (32-bit words)	400.0
postings, uncompressed (20 bits)	250.0
postings, variable byte encoded	116.0
postings, γ encoded	101.0

Term-document incidence matrix

	Anthony and	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
	Cleopatra						
Anthony	1	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
CAESAR	1	1	0	1	1	1	
Calpurnia	0	1	0	0	0	0	
Cleopatra	1	0	0	0	0	0	
MERCY	1	0	1	1	1	1	
WORSER	1	0	1	1	1	0	

Entry is 1 if term occurs. Example: CALPURNIA occurs in *Julius Caesar*. Entry is 0 if term does not occur. Example: CALPURNIA doesn't occur in *The tempest*.

Compression of Reuters

data structure	size in MB
dictionary, fixed-width	11.2
dictionary, term pointers into string	7.6
\sim , with blocking, $k=4$	7.1
\sim , with blocking & front coding	5.9
collection (text, xml markup, etc.)	3600.0
collection (text)	960.0
T/D incidence matrix	40,000.0
postings, uncompressed (32-bit words)	400.0
postings, uncompressed (20 bits)	250.0
postings, variable byte encoded	116.0
postings, γ encoded	101.0

Summary

- We can now create an index for highly efficient Boolean retrieval that is very space efficient.
- Only 4% of the total size of the collection.
- Only 10–15% of the total size of the text in the collection.
- However, we've ignored positional and frequency information.
- For this reason, space savings are less in reality.

Take-away today

For each term t, we store a list of all documents that contain t.

BRUTUS	\longrightarrow	1	2	4	11	31	45	173	174]
CAESAR	<i></i> →	1	2	4	5	6	16	57	132	
CALPURNIA		2	31	54	101					
1										
dictionary		-			ро	sting	s file	9		_

- Motivation for compression in information retrieval systems
- How can we compress the dictionary component of the inverted index?
- How can we compress the postings component of the inverted index?
- Term statistics: how are terms distributed in document collections?

Resources

http://ske.fi.muni.cz

- Chapter 5 of IIR
- Resources at https://www.fi.muni.cz/~sojka/PV211/ and http://cislmu.org, materials in MU IS and FI MU library
 - Original publication on word-aligned binary codes by Anh and Moffat (2005); also: Anh and Moffat (2006a).
 - Original publication on variable byte codes by Scholer, Williams, Yiannis and Zobel (2002).
 - More details on compression (including compression of positions and frequencies) in Zobel and Moffat (2006).