PV211: Introduction to Information Retrieval

https://www.fi.muni.cz/~sojka/PV211

[IR 20: Crawling
Handout version

Petr Sojka, Hinrich Schiitze et al.

Faculty of Informatics, Masaryk University, Brno
Center for Information and Language Processing, University of Munich

2023-05-10

(compiled on 2023-04-13 20:00:37)

Sojka, IR Group: PV211: Crawling 1/32

https://www.fi.muni.cz/~sojka/PV211

Recap

How hard can crawling be?

Web search engines must crawl their documents.

Getting the content of the documents is easier for many other
IR systems.

o E.g., indexing all files on your hard disk: just do a recursive
descent on your file system
o Ok: for web IR, getting the content of the documents takes
longer ...

... because of latency.

But is that really a design/systems challenge?

Sojka, IR Group: PV211: Crawling

Recap

Basic crawler operation

o Initialize queue with URLs of known seed pages
o Repeat

Take URL from queue
Fetch and parse page
Extract URLs from page
Add URLs to queue

o Fundamental assumption: The web is well linked.

Sojka, IR Group: PV211: Crawling

Recap

Exercise: What's wrong with this crawler?

urlqueue := (some carefully selected set of seed urls)
while urlqueue is not empty:

myurl := urlqueue.getlastanddelete()

mypage := myurl.fetch()

fetchedurls.add (myurl)

newurls := mypage.extracturls()

for myurl in newurls:

if myurl not in fetchedurls and not in urlqueue:
urlqueue.add (myurl)
addtoinvertedindex (mypage)

Sojka, IR Group: PV211: Crawling

Recap

What's wrong with the simple crawler

@ Scale: we need to distribute.

@ We can't index everything: we need to subselect. How?

o Duplicates: need to integrate duplicate detection

@ Spam and spider traps: need to integrate spam detection

@ Politeness: we need to be “nice” and space out all requests
for a site over a longer period (hours, days)

o Freshness: we need to recrawl periodically.

o Because of the size of the web, we can do frequent recrawls
only for a small subset.
o Again, subselection problem or prioritization

Sojka, IR Group: PV211: Crawling

Recap

Magnitude of the crawling problem

o To fetch 20,000,000,000 pages in one month ...
@ ...we need to fetch almost 8,000 pages per second!

o Actually: many more since many of the pages we attempt to
craw! will be duplicates, unfetchable, spam, etc.

Sojka, IR Group: PV211: Crawling

Recap

What a crawler must do

@ Don't hit a site too often

@ Only crawl pages you are allowed to crawl: robots.txt

@ Be immune to spider traps, duplicates, very large pages, very
large websites, dynamic pages, etc.

Sojka, IR Group: PV211: Crawling

Recap

robots.txt

@ Protocol for giving crawlers (“robots”) limited access to a
website, originally from 1994
o Examples:

o User-agent: *
Disallow: /yoursite/temp/
o User-agent: searchengine
Disallow: /

o Important: cache the robots.txt file of each site we are
crawling

Sojka, IR Group: PV211: Crawling

Recap

Example of a robots.txt (nih.gov)

User-agent: PicoSearch/1.0

Disallow:
Disallow:
Disallow:
Disallow:

/news/information/knight/
/nidcd/

/news/research_matters/secure/
/od/ocpl/wag/

User-agent: *

Disallow:
Disallow:

Disallow:
Disallow:
Disallow:
Disallow:

/news/information/knight/
/nidcd/

/news/research_matters/secure/
/od/ocpl/wag/

/ddir/

/sdminutes/

Sojka, IR Group: PV211: Crawling

Recap

What any crawler should do

Be capable of distributed operation

Be scalable: need to be able to increase crawl rate by adding
more machines

Fetch pages of higher quality first

Continuous operation: get fresh version of already crawled
pages

Sojka, IR Group: PV211: Crawling

A simple crawler

URL frontier

URL frontier:
found, but
not yet crawled

URLs crawled
and parsed

Sojka, IR Group: PV211: Crawling

A simple crawler

URL frontier

@ The URL frontier is the data structure that holds and manages
URLs we've seen, but that have not been crawled yet.

o Can include multiple pages from the same host
@ Must avoid trying to fetch them all at the same time

o Must keep all crawling threads busy

Sojka, IR Group: PV211: Crawling

A simple crawler

Basic crawl architecture

doc robots URL
FPs templates set
<«—> DNS
A
Y
WWW | > > > dup
content URL
parse seen? filter URL
> fetch > elim
Y
URL frontier <

Sojka, IR Group: PV211: Crawling

A simple crawler

URL normalization

@ Some URLs extracted from a document are relative URLs.

o Eg., at http://www.fi.muni.cz/"sojka/PV211/, we may
have p20crawl.pdf
o This is the same as URL:
http://www.fi.muni.cz/"sojka/PV211/p20crawl.pdf

o During parsing, we must normalize (expand) all relative URLs.

Sojka, IR Group: PV211: Crawling

A simple crawler

Content seen

o For each page fetched: check if the content is already in the
index

@ Check this using document fingerprints or shingles

o Skip documents whose content has already been indexed

Sojka, IR Group: PV211: Crawling

A simple crawler

Distributing the crawler

@ Run multiple crawl threads, potentially at different nodes
o Usually geographically distributed nodes

o Partition hosts being crawled into nodes

Sojka, IR Group: PV211: Crawling

A simple crawler

Google data centers (wayfaring.com)

Danmark
anmarl [Map [satelite Map Detalls Trackers

Denmant

5 Kaunas. OVilnius.
5
oroazain 5 Myhomestay

hhHE Szczecin s created by Pingdom

Harmbu o
Croningent Bmmen ® 2 Bydgoszcz s
erd e
NowaleBEMTEN Hannover. .
i o i o | 0 Polska Berlin, Germany zoom
& Sty Sy POZNA “oyang a8 e e
° kfurt,

{ Leipzig Wroolaw LodZ e EZ] Munich, Germany zoom
e
many - Dresden’
nkfurt
‘am Main
» 8, Mons, Belgium zoo
e “Busheln ONimberg T ar
e B L Gbeitom S 9 0 [Eemshaven, Netherlands 2

" Kesiee
> L Fa 4 "
et ¥ / + Parls zcom
g e N A : £ y x

e bl Bolgsan
Qdimpe, angers [Tours o 00

Sl) X Bustae Swcema
et e éa!«rapssg,m

Yohokt Poters
)

2 & [l Google datacenter 25
o SeecedR G
24 ag; r\eb—- Véinmm..m

g Oradea
France e Hurigry
Sl
S | s

OReta Edit Map

jka, IR Group: PV211: Crawl

A simple crawler

Distributed crawler

doc URL
FPs set
<«—>DNS to
I other
nodes
! Pt
T parse > content > URL > host > dup
seen? filter splitter U_RL
> fetch > ’_r elim
from
other
4 nodes
URL frontier <

Sojka, IR Group: PV211: Crawling

A simple crawler

URL frontier: Two main considerations

o Politeness: Don't hit a web server too frequently

o E.g., insert a time gap between successive requests to the
same server

o Freshness: Crawl some pages (e.g., news sites) more often
than others

o Not an easy problem: simple priority queue fails.

Sojka, IR Group: PV211: Crawling

A simple crawler

Mercator URL frontier

prioritizer

. . F front queues
@ URLs flow in from the top into
the frontier.

@ Front queues manage

‘f. queue selector & b. queue router‘ R
prioritization.

B back queues: @ Back queues enforce politeness.

single host on each

@ Each queue is FIFO.

B
]
]
]
]
]
]
]
L]

Sojka, IR Group: PV211: Crawling

A simple crawler

Mercator URL frontier: Front queues

!

prioritizer

1/

i o

f. queue selector & b. queue router

F

Prioritizer assigns
to URL an integer
priority between 1
and F.

Then appends URL
to corresponding
queue

Heuristics for
assigning priority:
refresh rate,
PageRank, etc.

Selection from front
queues is initiated
by back queues

Sojka, IR Group: PV211: Crawling

A simple crawler

Mercator URL frontier: Back queues

f. queue selector & b. queue router

1//\8

B back queues
. .Single h9$t on ezich

\\/

b. queue selector ~

!

—| heap

Invariant 1. Each
back queue is kept
non-empty while the
crawl is in progress.
Invariant 2. Each
back queue only
contains URLs from a
single host.

Maintain a table from
hosts to back queues.
In the heap:

One entry for each
back queue

The entry is the
earliest time t, at

Sojka, IR Group: PV211: Crawling

A simple crawler

Mercator URL frontier

prioritizer

. . F front queues
@ URLs flow in from the top into
the frontier.

@ Front queues manage

‘f. queue selector & b. queue router‘ R
prioritization.

B back queues: @ Back queues enforce politeness.

single host on each

@ Each queue is FIFO.

B
]
]
]
]
]
]
]
L]

Sojka, IR Group: PV211: Crawling

A simple crawler

Spider trap

o Malicious server that generates an infinite sequence of linked
pages.

@ Sophisticated spider traps generate pages that are not easily
identified as dynamic.

Sojka, IR Group: PV211: Crawling

A simple crawler

Resources

o Chapter 20 of IIR

o Resources at https://www.fi.muni.cz/~sojka/PV211/
and http://cislmu.org, materials in MU IS and FI MU
library

o Papers by NLP centre people crawling data for Sketch Engine
o Paper on Mercator by Heydon et al.
o Robot exclusion standard

Sojka, IR Group: PV211: Crawling

https://www.fi.muni.cz/~sojka/PV211/
http://cislmu.org

	Recap
	A simple crawler
	A real crawler

