PV211: Introduction to Information Retrieval https://www.fi.muni.cz/~sojka/PV211

IIR 9: Relevance feedback & Query expansion Handout version

Petr Sojka, Hinrich Schütze et al.

Faculty of Informatics, Masaryk University, Brno Center for Information and Language Processing, University of Munich

2024-04-24

(compiled on 2024-04-24 10:06:17)

Overview

- 2 Relevance feedback: Basics
- 3 Relevance feedback: Details

Take-away today

- Interactive relevance feedback: improve initial retrieval results by telling the IR system which docs are relevant / non-relevant
- Best known relevance feedback method: Rocchio feedback
- Query expansion: improve retrieval results by adding synonyms / related terms to the query
 - Sources for related terms: Manual thesauri, automatic thesauri, query logs

How can we improve recall in search?

- Main topic today: two ways of improving recall: relevance feedback and query expansion
- As an example consider query q: [aircraft] ...
- ... and document d containing "plane", but not containing "aircraft"
- A simple IR system will not return *d* for *q*.
- Even if *d* is the most relevant document for *q*!
- We want to change this:
 - Return relevant documents even if there is no term match with the (original) query

Recall

- Loose definition of recall in this lecture: "increasing the number of relevant documents returned to user"
- This may actually decrease recall on some measures, e.g., when expanding "jaguar" with "panthera"
 - ... which eliminates some relevant documents, but increases relevant documents returned on top pages

Options for improving recall

- Local: Do a "local", on-demand analysis for a user query
 - Main local method: relevance feedback
 - Part 1
- Global: Do a global analysis once (e.g., of collection) to produce thesaurus
 - Use thesaurus for query expansion
 - Part 2

Google examples for query expansion

- One that works well
 - ~flights -flight
- One that doesn't work so well
 - ~dogs -dog

Relevance feedback: Basic idea

- The user issues a (short, simple) query.
- The search engine returns a set of documents.
- User marks some docs as relevant, some as non-relevant.
- Search engine computes a new representation of the information need. Hope: better than the initial query.
- Search engine runs new query and returns new results.
- New results have (hopefully) better recall.
- We can iterate this: several rounds of relevance feedback.
- We will use the term ad hoc retrieval to refer to regular retrieval without relevance feedback.

Relevance feedback: Examples

• We will now look at three different examples of relevance feedback that highlight different aspects of the process.

Relevance Feedback: Example 1

🔊 New Page 1 - Netscape	
👞 Elle Edit View Go Bookmarks Iools Window Help	
L Co Co Co Ltp://nayana.ece.ucsb.edu/i	
🔺 🏦 Home 🔗 Browsing and	
Shopping related 607,000 images are indexed and classified in the database Only One keyword is allowed!!! bike	13
Designed by <u>Baris Sumengen</u> and <u>Shawn Newsam</u>	
Powered by JLAMP2000 (Java, Linux, Apache, Mysql, Perl, Windows200	10)

Results for initial query

	<u>N</u> _		Browse	Search	Next Random
	,	5-5			
(144473, 16458) 0.0 0.0 0.0	(144457, 252140) 0.0 0.0 0.0 0.0	(144456,262857) 0.0 0.0 0.0	(144456, 262363) 0.0 0.0 0.0	(144457, 252134) 0.0 0.0 0.0	(144483,265154) 0.0 0.0 0.0
đ					3
(144483, 264644) 0.0	(144483, 265153) 0.0	(144518,257752) 0.0	(144538, 525937) 0.0	(144456, 249611) 0.0	(144456,250064) 0.0
0.0 0.0	00 00 00	0.0 0.0	0.0 0.0	0.0 0.0 0.0	9.0 9.0 9.0

User feedback: Select what is relevant

Results after relevance feedback

			Browse	Search Prev	Next Random
6			o of the		
(144538,523493) 0.54182 0.231944 0.309876	(144.538, 523835) 0.56319296 0.267304 0.295889	(144538, 523529) 0.584279 0.280881 0.303398	(144456,253569) 0.64501 0.351395 0.293615	(144456, 253568) 0.650275 0.411745 0.23853	(144538, 523799) 0.66709197 0.358033 0.309059
Sæ		Ī	d'at		
(144473,16249) 0.6721 0.393922 0.278178	(144456, 249634) 0.675018 0.4639 0.211118	(144436, 253693) 0.676901 0.47645 0.200451	(144473,16328) 0.700339 0.309002 0.391337	(144483, 265264) 0.70170796 0.36176 0.339948	(144478, 512410) 0.70297 0.469111 0.23509

Vector space example: query "canine" (1)

Similarity of docs to query "canine"

User feedback: Select relevant documents

source: Fernando Díaz

Results after relevance feedback

Motivation

Example 3: A real (non-image) example

Initial query: [new space satellite applications]

Results for initial query: (r = rank)

- r
- + 1 0.539 NASA Hasn't Scrapped Imaging Spectrometer
- + 2 0.533 NASA Scratches Environment Gear From Satellite Plan
 - 3 0.528 Science Panel Backs NASA Satellite Plan, But Urges Launches of Smaller Probes
 - 4 0.526 A NASA Satellite Project Accomplishes Incredible Feat: Staying Within Budget
 - 5 0.525 Scientist Who Exposed Global Warming Proposes Satellites for Climate Research
 - 6 0.524 Report Provides Support for the Critics Of Using Big Satellites to Study Climate
 - 7 0.516 Arianespace Receives Satellite Launch Pact From Telesat Canada
- + 8 0.509 Telecommunications Tale of Two Companies

User then marks relevant documents with "+".

Sojka, IIR Group: PV211: Relevance feedback & Query expansion

Expanded query after relevance feedback

2.074	new	15.106	space
30.816	satellite	5.660	application
5.991	nasa	5.196	eos
4.196	launch	3.972	aster
3.516	instrument	3.446	arianespace
3.004	bundespost	2.806	SS
2.790	rocket	2.053	scientist
2.003	broadcast	1.172	earth
0.836	oil	0.646	measure

Compare to original query: [new space satellite applications]

Results for expanded query (old ranks in parens)

	r		
*	1 (2)	0.513	NASA Scratches Environment Gear From Satellite Plan
*	2 (1)	0.500	NASA Hasn't Scrapped Imaging Spectrometer
	3	0.493	When the Pentagon Launches a Secret Satellite,
			Space Sleuths Do Some Spy Work of Their Own
	4	0.493	NASA Uses 'Warm' Superconductors For Fast Cir-
			cuit
*	5 (8)	0.492	Telecommunications Tale of Two Companies
	6	0.491	Soviets May Adapt Parts of SS-20 Missile For Com- mercial Use
	7	0.490	Gaping Gap: Pentagon Lags in Race To Match the
			Soviets In Rocket Launchers
	8	0.490	Rescue of Satellite By Space Agency To Cost \$90 Million

Key concept for relevance feedback: Centroid

- The centroid is the center of mass of a set of points.
- Recall that we represent documents as points in a high-dimensional space.
- Thus: we can compute centroids of documents.
- Definition:

$$\vec{\mu}(D) = \frac{1}{|D|} \sum_{d \in D} \vec{v}(d)$$

where D is a set of documents and $\vec{v}(d) = \vec{d}$ is the vector we use to represent document d.

Centroid: Examples

Rocchio algorithm

- The Rocchio algorithm implements relevance feedback in the vector space model.
- Rocchio chooses the query \vec{q}_{opt} that maximizes

$$\vec{q}_{opt} = \arg \max_{\vec{q}} [sim(\vec{q}, \mu(D_r)) - sim(\vec{q}, \mu(D_{nr}))]$$

 D_r : set of relevant docs; D_{nr} : set of nonrelevant docs

- Intent: *q*_{opt} is the vector that separates relevant and non-relevant docs maximally.
- Making some additional assumptions, we can rewrite \vec{q}_{opt} as:

$$ec{q}_{opt}$$
 = $\mu(D_r) + [\mu(D_r) - \mu(D_{nr})]$

Rocchio algorithm

• The optimal query vector is:

$$\begin{split} \vec{q}_{opt} &= \mu(D_r) + [\mu(D_r) - \mu(D_{nr})] \\ &= \frac{1}{|D_r|} \sum_{\vec{d}_j \in D_r} \vec{d}_j + [\frac{1}{|D_r|} \sum_{\vec{d}_j \in D_r} \vec{d}_j - \frac{1}{|D_{nr}|} \sum_{\vec{d}_j \in D_{nr}} \vec{d}_j] \end{split}$$

• We move the centroid of the relevant documents by the difference between the two centroids.

Exercise: Compute Rocchio vector

circles: relevant documents, Xs: nonrelevant documents compute: $\vec{q}_{opt} = \mu(D_r) + [\mu(D_r) - \mu(D_{nr})]$

Rocchio illustrated

circles: relevant documents, Xs: non-relevant documents $\vec{\mu}_R$: centroid of relevant documents $\vec{\mu}_R$ does not separate relevant/non-relevant. $\vec{\mu}_{NR}$: centroid of non-relevant documents $\vec{\mu}_R - \vec{\mu}_{NR}$: difference vector Add difference vector to $\vec{\mu}_R \dots \dots$ to get \vec{q}_{opt} \vec{q}_{opt} separates relevant/non-relevant perfectly. Sojka, IIR Group: PV211: Relevance feedback & Query expansion

Terminology

- So far, we have used the name Rocchio for the theoretically better motivated original version of Rocchio.
- The implementation that is actually used in most cases is the SMART implementation this SMART version of Rocchio is what we will refer to from now on.

Rocchio 1971 algorithm (SMART)

• Used in practice:

$$\vec{q}_m = \alpha \vec{q}_0 + \beta \mu(D_r) - \gamma \mu(D_{nr})$$

$$= \alpha \vec{q}_0 + \beta \frac{1}{|D_r|} \sum_{\vec{d}_j \in D_r} \vec{d}_j - \gamma \frac{1}{|D_{nr}|} \sum_{\vec{d}_j \in D_{nr}} \vec{d}_j$$

 q_m : modified query vector; q_0 : original query vector; D_r and D_{nr} : sets of known relevant and non-relevant documents respectively; α , β , and γ : weights

- New query moves towards relevant documents and away from non-relevant documents.
- Tradeoff α vs. β/γ : If we have a lot of judged documents, we want a higher β/γ .
- Set negative term weights to 0.
- "Negative weight" for a term doesn't make sense in the vector space model.

Positive vs. negative relevance feedback

- Positive feedback is more valuable than negative feedback.
- For example, set $\beta = 0.75$, $\gamma = 0.25$ to give higher weight to positive feedback.
- Many systems only allow positive feedback.

Relevance feedback: Assumptions

- When can relevance feedback enhance recall?
- Assumption A1: The user knows the terms in the collection well enough for an initial query.
- Assumption A2: Relevant documents contain similar terms (so I can "hop" from one relevant document to a different one when giving relevance feedback).

Violation of A1

- Assumption A1: The user knows the terms in the collection well enough for an initial query.
- Violation: Mismatch of searcher's vocabulary and collection vocabulary
- Example: cosmonaut / astronaut

Violation of A2

- Assumption A2: Relevant documents are similar.
- Example for violation: [contradictory government policies]
- Several unrelated "prototypes"
 - Subsidies for tobacco farmers vs. anti-smoking campaigns
 - Aid for developing countries vs. high tariffs on imports from developing countries
- Relevance feedback on tobacco docs will not help with finding docs on developing countries.

Relevance feedback: Assumptions

- When can relevance feedback enhance recall?
- Assumption A1: The user knows the terms in the collection well enough for an initial query.
- Assumption A2: Relevant documents contain similar terms (so I can "hop" from one relevant document to a different one when giving relevance feedback).

Relevance feedback: Evaluation

- Pick an evaluation measure, e.g., precision in top 10: P@10
- Compute P@10 for original query q_0
- Compute P@10 for modified relevance feedback query q_1
- In most cases: q_1 is spectacularly better than $q_0!$
- Is this a fair evaluation?

Relevance feedback: Evaluation

- Fair evaluation must be on "residual" collection: docs not yet judged by user.
- Studies have shown that relevance feedback is successful when evaluated this way.
- Empirically, one round of relevance feedback is often very useful. Two rounds are marginally useful.

Evaluation: Caveat

- True evaluation of usefulness must compare to other methods taking the same amount of time.
- Alternative to relevance feedback: User revises and resubmits query.
- Users may prefer revision/resubmission to having to judge relevance of documents.
- There is no clear evidence that relevance feedback is the "best use" of the user's time.
Exercise

- Do search engines use relevance feedback?
- Why?

Relevance feedback: Problems

- Relevance feedback is expensive.
 - Relevance feedback creates long modified queries.
 - Long queries are expensive to process.
- Users are reluctant to provide explicit feedback.
- It's often hard to understand why a particular document was retrieved after applying relevance feedback.
- The search engine Excite had full relevance feedback at one point, but abandoned it later.

Pseudo-relevance feedback

- Pseudo-relevance feedback automates the "manual" part of true relevance feedback.
- Pseudo-relevance feedback algorithm:
 - Retrieve a ranked list of hits for the user's query
 - Assume that the top k documents are relevant.
 - Do relevance feedback (e.g., Rocchio)
- Works very well on average
- But can go horribly wrong for some queries.
 - Because of query drift
 - If you do several iterations of pseudo-relevance feedback, then you will get query drift for a large proportion of queries.

Pseudo-relevance feedback at TREC4

- Cornell SMART system
- Results show number of relevant documents out of top 100 for 50 queries (so total number of documents is 5000):

method	number of relevant documents
Inc.Itc	3210
Inc.Itc-PsRF	3634
Lnu.ltu	3709
Lnu.ltu-PsRF	4350

- Results contrast two length normalization schemes (L vs. I) and pseudo-relevance feedback (PsRF).
- The pseudo-relevance feedback method used added only 20 terms to the query. (Rocchio will add many more.)
- This demonstrates that pseudo-relevance feedback is effective on average.

Query expansion: Example

Web <u>Images</u> <u>Video</u> <u>Audio</u> <u>Dire</u> palm		arch
Search Results		<u>Services</u> <u>Advanced Search</u> <u>Preferen</u> 60,000,000 for palm - 0.07 sec. (About this pa
	pilot, palm trees, palm reading More	SPONSOR RESULTS
Official Palm Store store.palm.com Free shipp official Palm store.	SPONSOR RESULTS	Memory Giant is fast and easy. Guaranteed compatible memory. Great www.memorygiant.com
Palms Hotel - Best Rate www.vegas.com Book the guarantee at VEGAS.com, the	Palms Hotel Casino with our best rate	The Palms , Turks and Caicos Islands
Y Palm Pilots - Palm Dow Yahoo! Shortcut - About	<u>inloads</u>	Resort/Condo photos, rates, availability and reservations www.worldwidereservationsystems.
		The Palms Casino Resort, Las Vegas Low price guarantee at the Palms Casino resort in Las Vegas. Book Iasvegas.hotelscorp.com

Types of user feedback

- User gives feedback on documents.
 - More common in relevance feedback
- User gives feedback on words or phrases.
 - More common in query expansion

Query expansion

- Query expansion is another method for increasing recall.
- We use "global query expansion" to refer to "global methods for query reformulation".
- In global query expansion, the query is modified based on some global resource, i.e. a resource that is not query-dependent.
- Main information we use: (near-)synonymy

"Global" resources used for query expansion

- A publication or database that collects (near-)synonyms is called a thesaurus.
- Manual thesaurus (maintained by editors, e.g., PubMed)
- Automatically derived thesaurus (e.g., based on co-occurrence statistics)
- Query-equivalence based on query log mining (common on the web as in the "palm" example)

Thesaurus-based query expansion

- For each term *t* in the query, expand the query with words the thesaurus lists as semantically related with *t*.
- Example from earlier: $HOSPITAL \rightarrow MEDICAL$
- Generally increases recall
- May significantly decrease precision, particularly with ambiguous terms
 - INTEREST RATE \rightarrow INTEREST RATE FASCINATE
- Widely used in specialized search engines for science and engineering
- It's very expensive to create a manual thesaurus and to maintain it over time.

Example for manual thesaurus: PubMed

Automatic thesaurus generation

- Attempt to generate a thesaurus automatically by analyzing the distribution of words in documents
- Fundamental notion: similarity between two words
- Definition 1: Two words are similar if they co-occur with similar words.
 - "car" \approx "motorcycle" because both occur with "road", "gas" and "license", so they must be similar.
- Definition 2: Two words are similar if they occur in a given grammatical relation with the same words.
 - You can harvest, peel, eat, prepare, etc., apples and pears, so apples and pears must be similar.
- Co-occurrence is more robust, grammatical relations are more accurate.

Co-occurrence-based thesaurus: Examples

Word	Nearest neighbors
absolutely	absurd whatsoever totally exactly nothing
bottomed	dip copper drops topped slide trimmed
captivating	shimmer stunningly superbly plucky witty
doghouse	dog porch crawling beside downstairs
makeup	repellent lotion glossy sunscreen skin gel
mediating	reconciliation negotiate case conciliation
keeping	hoping bring wiping could some would
lithographs	drawings Picasso Dali sculptures Gauguin
pathogens	toxins bacteria organisms bacterial parasite
senses	grasp psyche truly clumsy naive innate

WordSpace demo on web

Soft cosine measure

- Use a matrix **S** that specifies the cosine similarity of basis vectors (i.e. of words) in Salton's vector space model.
- Definition 3: The similarity of two words is proportional to their cosine similarity.
 - "car" pprox "motorcycle" iff cos("car", "motorcycle") pprox 1.
- When the search engine supports non-orthogonal vector space model, then we can directly compute the soft cosine measure (SCM) between document vectors *u* and *v* by computing the matrix product *u*^TS*v*.
- Otherwise, we can expand the text query as follows:
 - **1** Translate the text query to a query vector \vec{u} .
 - **2** Compute $\vec{u'} = \vec{u}$ **S**.
 - Solution Translate $\vec{u'}$ back to a (now expanded) text query.
- Unlike a thesaurus based on word co-occurrences, the matrix
 S can be derived from word embeddings, the Levenshtein distance, and other measures of word similarity / relatedness.

SCM query expansion: Example

Query expansion using a Gramm matrix ${\bf S}$ that was built from the Google News word embeddings distributed with Word2Vec:

Original query : "I did enact Julius Caesar: I was killed i' the Capitol" Expanded query : "Give_unto_Caesar Brutus_Cassius choreographers_Bosco Julius_Caesar therefore_unto_Caesar Marcus_Antonius Caesarion Gallic_Wars Marcus_Crassus Antoninus Catiline Seleucus Gaius_Julius_Caesar Theodoric Marcus_Tullius_Cicero

> Kenneth Philip Marcus Arthur Carl Fred Edward Jonathan Eric Frank Anthony William Richard Robert **enact Capitol killed** Ididn't honestly myself **I I** my we **the** 'd 'm **did was**"

We can include only highly similar words in the expanded query. Search engines such as Apache Lucene make it possible to assign weights to words in text queries.

Query expansion at search engines

- Main source of query expansion at search engines: query logs
- Example 1: After issuing the query [herbs], users frequently search for [herbal remedies].
 - $\bullet\,\rightarrow\,$ "herbal remedies" is potential expansion of "herb".
- Example 2: Users searching for [flower pix] frequently click on the URL photobucket.com/flower. Users searching for [flower clipart] frequently click on the same URL.
 - $\bullet \to$ "flower clipart" and "flower pix" are potential expansions of each other.

Take-away today

- Interactive relevance feedback: improve initial retrieval results by telling the IR system which docs are relevant / non-relevant
- Best known relevance feedback method: Rocchio feedback
- Query expansion: improve retrieval results by adding synonyms / related terms to the query
 - Sources for related terms: Manual thesauri, automatic thesauri, query logs

Resources

- Chapter 9 of IIR
- Resources at https://www.fi.muni.cz/~sojka/PV211/ and http://cislmu.org, materials in MU IS and FI MU library
 - Daniel Tunkelang's articles on query understanding, namely on query relaxation and query expansion.
 - Salton and Buckley 1990 (original relevance feedback paper)
 - Spink, Jansen, Ozmultu 2000: Relevance feedback at Excite
 - Justin Bieber: related searches fail
 - Word Space
 - Schütze 1998: Automatic word sense discrimination (describes a simple method for automatic thesaurus generation)
 - Sidorov et al. 2014: Soft similarity and soft cosine measure: Similarity of features in vector space model
 - Charlet and Damnati 2017: SimBow at SemEval-2017 Task 3: Soft-Cosine Semantic Similarity between Questions for Community Question Answering (describes two matrices S)