
Deep Metric Learning to Rank

Fatih Cakir∗1, Kun He∗2, Xide Xia2, Brian Kulis2, and Stan Sclaroff2

1FirstFuel, fcakirs@gmail.com
2Boston University, {hekun,xidexia,bkulis,sclaroff}@bu.edu

Abstract

We propose a novel deep metric learning method by re-
visiting the learning to rank approach. Our method, named
FastAP, optimizes the rank-based Average Precision mea-
sure, using an approximation derived from distance quan-
tization. FastAP has a low complexity compared to exist-
ing methods, and is tailored for stochastic gradient descent.
To fully exploit the benefits of the ranking formulation, we
also propose a new minibatch sampling scheme, as well as
a simple heuristic to enable large-batch training. On three
few-shot image retrieval datasets, FastAP consistently out-
performs competing methods, which often involve complex
optimization heuristics or costly model ensembles.

1. Introduction
Metric learning [3, 18] is concerned with learning dis-

tance functions that conform to a certain definition of simi-
larity. Often, in pattern recognition problems, the definition
of similarity is task-specific, and the success of metric learn-
ing hinges on aligning its learning objectives with the task.
In this paper, we focus on what is arguably the most im-
portant application area of metric learning: nearest neigh-
bor retrieval. For nearest neighbor retrieval applications,
the similarity definition typically involves neighborhood re-
lationships, and nearly all metric learning methods follow
the same guiding principle: the true “neighbors” of a refer-
ence object should be closer than its “non-neighbors” in the
learned metric space.

Taking inspirations from the information retrieval liter-
ature, we treat metric learning as a learning to rank prob-
lem [22], where the goal is to optimize the total ordering of
objects as induced by the learned metric. The learning to
rank perspective has been adopted by classical metric learn-
ing methods [20,24], but has received less attention recently
in deep metric learning. Working directly with ranked lists

∗Equal contribution. Kun He is now with Facebook Reality Labs.

FastAP

2() pairsn

3() tripletsn

Figure 1: We propose FastAP, a novel deep metric learning
method that optimizes Average Precision over ranked lists
of examples. This solution avoids a high-order explosion
of the training set, which is a common problem in existing
losses defined on pairs or triplets. FastAP is optimized using
SGD, and achieves state-of-the-art results.

has two primary advantages over many other approaches:
we avoid the high-order explosion of the training set, and
focus on orderings that are invariant to distance distortions.
This second property is noteworthy in particular, as it al-
lows circumventing the use of highly sensitive parameters
such as distance thresholds and margins.

Our main contribution is a novel solution to optimizing
Average Precision [4], a performance measure that has seen
wide usage within and beyond information retrieval, such
as in image retrieval [29], feature matching [14], and few-
shot learning [38]. To tackle the highly challenging prob-
lem of optimizing this rank-based and non-decomposable
objective, we employ an efficient quantization-based ap-
proximation, and tailor our algorithmic design for stochastic
gradient descent. The result is a new deep metric learning
method that we call FastAP.

We evaluate FastAP on three few-shot image datasets,
and observe state-of-the-art retrieval results. Notably, with

a single neural network, FastAP often significantly outper-
forms recent ensemble metric learning methods, which are
costly to train and evaluate.

2. Related Work
Metric learning [3, 18] is a general umbrella term for

learning distance functions in supervised settings. The dis-
tance functions can be parameterized in various ways, for
example, a large body of the metric learning literature fo-
cuses on Mahalanobis distances [20, 24, 31, 41], which es-
sentially learn a linear transformation of the input data. For
nonlinear metric learning, solutions that employ deep neu-
ral networks have received much attention recently.

Aside from relatively few exceptions, e.g. [33, 39], deep
metric learning approaches commonly optimize loss func-
tions defined on pairs or triplets of training examples. Pair-
based approaches, such as contrastive embedding [11], min-
imize the distance between a reference object and its neigh-
bors, while ensuring a margin of separation between the ref-
erence and its non-neighbors. Alternatively, local ranking
approaches based on triplet supervision [30, 31] optimize
the relative ranking of two objects given a reference. These
losses are also used to train individual learners in ensemble
methods [16, 27, 42, 43].

Given a large training set, it is infeasible to enumerate
all the possible pairs or triplets. This has motivated vari-
ous mining or sampling heuristics aimed at identifying the
“hard” pairs or triplets. A partial list includes lifted em-
bedding [34], semi-hard negative mining [30], distance-
weighted sampling [40], group-based sampling [2], and hi-
erarchical sampling [8]. There are also other remedies such
as adding auxiliary losses [15, 27] and generating novel
training examples [26, 45]. Still, these approaches typically
include nontrivial threshold or margin parameters that apply
equally to all pairs or triplets, rendering them inflexible to
distortions in the metric space.

Pair-based and triplet-based metric learning approaches
can be viewed as instantiations of learning to rank [22],
where the ranking function is induced by the learned dis-
tance metric. The learning to rank view has been adopted
by classical metric learning methods with success [20, 24].
We revisit learning to rank for deep metric learning, and
propose to learn a distance metric by optimizing Average
Precision (AP) [4] over entire ranked lists. This is a listwise
approach [5], and allows us to focus on the true quantity of
interest: orderings in the metric space. AP naturally empha-
sizes performance at the top, predicts other metrics well [1],
and has found wide usage in various metric learning appli-
cations [13, 14, 21, 29, 38].

Average Precision has also been studied considerably as
an objective function for learning to rank. However, its op-
timization is highly challenging, as it is non-decomposable
over ranked items, and differentiating through the discrete

sorting operation is difficult. One notable optimization ap-
proach is based on smoothed rankings [7, 37], which con-
siders the orderings to be random variables, allowing for
probabilistic and differentiable formulations. However, the
probabilistic orderings are expensive to estimate. Alterna-
tively, the well-known SVM-MAP [44] optimizes the struc-
tured hinge loss surrogate using a cutting plane algorithm,
and the direct loss minimization framework [25,35] approx-
imates the gradients of AP in an asymptotic manner. These
methods critically depend on the loss-augmented inference
to generate cutting planes or approximate gradients, which
can scale quadratically in the list size.

We propose a novel approximation of Average Precision
that only scales linearly in the list size, using distance quan-
tization and a differentiable relaxation of histogram bin-
ning [39]. For the special case of binary embeddings, [13]
uses a histogram-based technique to optimize a closed-form
expression of AP for Hamming distances. [14] subsequently
extends it to the real-valued case for learning local im-
age descriptors, by simply dropping the binary constraints.
However, doing so implies a different underlying distance
metric than Euclidean, thus creating a mismatch. In con-
trast, our solution directly targets the Euclidean metric in a
general metric learning setup, derives from a different prob-
abilistic interpretation of AP, and is capable of large-batch
training beyond GPU memory limits.

3. Learning to Rank with Average Precision
We assume a standard information retrieval setup, where

given a feature space X , there is a query q ∈ X and a re-
trieval set R ⊂ X . Our goal is to learn a deep neural net-
work Ψ : X → Rm that embeds inputs to anm-dimensional
Euclidean space, and is optimized for Average Precision un-
der the Euclidean metric.

To perform nearest neighbor retrieval, we first rank items
in R according to their distances to q in the embedding
space, producing a ranked list {x1, x2, . . . , xN} with N =
|R|. Then, we derive the precision-recall curve as:

PR(q) = {(Prec(i),Rec(i)), i = 0, . . . , N}, (1)

where Prec(i) and Rec(i) are the precision and recall eval-
uated at the i-th position in the ranking, respectively. The
Average Precision (AP) of the ranking, can then be evalu-
ated as:

AP =

N∑
i=1

Prec(i)4Rec(i) (2)

=

N∑
i=1

Prec(i)(Rec(i)− Rec(i− 1)). (3)

Note that we assume Prec(0) = Rec(0) = 0 for conve-
nience.

C
O
N
V

C
O
N
V

C
O
N
V

C
O
N
V

FastAP

Deep
Embedding

+ -

Embedding Matrix

Distances to Query

Distance Quantization

FastAP
Deep

Embedding

Precision

Recall

Embedding Matrix

Distances to Queries

0 1 2 3 4 5 6

Histograms

FastAP

Precision(z)

Recall(z)

FastAP

Precision(z)

Recall(z)

Figure 2: The discrete sorting operation prevents learning to rank methods from directly applying gradient optimization
on standard rank-based metrics. FastAP approximates Average Precision by exploiting distance quantization, which refor-
mulates precision and recall as parametric functions of distance, and permits differentiable relaxations. Our approximation
derives from the interpretation of AP as the area under the precision-recall curve.

A problem with the above definition of AP is that to ob-
tain the precision-recall curve, the ranked list first needs to
be generated, which involves the discrete sorting operation.
Sorting is a major hurdle for gradient-based optimization:
although it is differentiable almost everywhere, the deriva-
tives are either zero or undefined. Instead, our main insight
is that there exists an alternative interpretation for AP, and
it is based on representing precision and recall as functions
of distance, rather than ranked items.

3.1. FastAP: Efficient AP Approximation

In the information retrieval literature, AP is often also
interpreted as the area under the precision-recall curve
(AUPR) [4]. Such a relation exists since (3) asymptotically
approaches AUPR when the neighbor set cardinality goes
to infinity:

AUPR =

∫ 1

0

Prec(Rec) dRec (4)

= lim
|R+|→∞

N∑
i=1

Prec(i)4Rec(i). (5)

where R+, (R−) ⊂ R denotes the (non) neighbor set
of query q. The AUPR interpretation of AP is particu-
larly interesting as it allows viewing precision and recall as
parametric functions of distance, rather than ranked items.
As we will show, this will help us circumvent the non-
differentiable sorting operation, and develop an efficient ap-
proximation of AP.

Formally, a continuous precision-recall curve (as op-
posed to the finite set in (1)) can be defined as

PRz(q) = {(Prec(z),Rec(z)), z ∈ Ω}, (6)

where z denotes distance values between the query and
items in R, with domain Ω. With this change of variables,
AP becomes:

AP =

∫
Ω

Prec(z) dRec(z). (7)

We next define some probabilistic quantities so as to
evaluate (7). Let Z be the random variable corresponding
to distances z. Then, the distance distributions for R+ and
R− are denoted as p(z|R+) and p(z|R−). Let P (R+) and
P (R−) = 1−P (R+) denote prior probabilities, which in-
dicate the skewness of the retrieval setR with respect to the
query. Finally, let F (z) = P (Z < z) denote the cumulative
distribution function (CDF) for Z .

Given these definitions, we redefine precision and recall
as follows:

Prec(z) = P (R+|Z < z) =
P (Z < z|R+)P (R+)

P (Z < z)
(8)

=
F (z|R+)P (R+)

F (z)
, (9)

Rec(z) = P (Z < z |R+) = F (z|R+). (10)

Substituting these terms in (7), we get:

AP =

∫
Ω

P (R+|Z < z) dP (Z < z|R+) (11)

=

∫
Ω

F (z|R+)P (R+)

F (z)
p(z|R+) dz. (12)

Note that we have used the fact that dP (Z < z|R+) =
p(z|R+) dz, i.e., the derivative of the CDF is its corre-
sponding PDF.

It should be clear now that (12) can also be approxi-
mately evaluated using finite sums. We first assume that
the output of the embedding function Ψ is L2-normalized,
so that Ω, or the support of the distributions in (12), is a
bounded range [0, 2]. Then, we quantize the interval [0, 2]
using a finite set Z = {z1, z2, . . . , zL}, and denote the re-
sulting discrete PDF as P . Finally, we name our new ap-
proximation FastAP:

FastAP =
∑
z∈Z

F (z|R+)P (R+)

F (z)
P (z|R+). (13)

We next re-express FastAP using histogram notation.
Specifically, we create a distance histogram with bins cen-
tered on each element of Z. Let hj be the number of items

that fall into the j-th bin, and let Hj =
∑

k≤j hk be the
cumulative sum of the histogram. Also, let h+

j count the
number of neighbors of q in the j-th bin, and H+

j be its
cumulative sum. With these definitions, we can rewrite the
probabilistic quantities in (13), and get a simple expression
for FastAP:

FastAP =

L∑
j=1

H+
j

N+
q
· N

+
q

N

Hj

N

·
h+
j

N+
q

=
1

N+
q

L∑
j=1

H+
j h

+
j

Hj
. (14)

It takes O(NL) time to perform histogram binning and
compute the FastAP approximation. A small L suffices in
practice, as we will show in the experiments section.

4. Stochastic Optimization
In this section, we describe how to optimize FastAP (14)

using SGD. AP is defined with respect to the retrieval prob-
lem between a query and a retrieval set. With minibatches,
the natural choice is to define in-batch retrieval problems
where retrieval set R is restricted to examples in the mini-
batch. Specifically, we use each example as the query q to
retrieve its neighbors from the rest of the batch. Each of
these in-batch retrieval problems emits one AP value, and
the overall objective of the minibatch is the average of them,
or the mean AP (mAP).

To perform gradient descent, we must ensure the his-
tograms in (14) are constructed as to permit gradient back-
propagation. To this end, we adopt the simple linear in-
terpolation technique proposed by [39] which replaces the
regular binning operation for histogram construction with
a differentiable soft binning technique. Essentially, this in-
terpolation relaxes the integer-valued histogram bin counts
h to continuous values, which we denote using ĥ. The cu-
mulative sums are also relaxed as Ĥ . With a differentiable
binning operation, we can now obtain partial derivatives for
FastAP. Specifically, using subscript i to indicate that the
current query is xi, we have:†

∂FastAPi

∂ĥ+
i,k

=
1

N+
i

L∑
j=1

∂

∂ĥ+
i,k

(
Ĥ+

i,j ĥ
+
i,j

Ĥi,j

)
(15)

=
1

N+
i

∑
j≥k

Ĥi,j ĥ
+
i,j + Ĥ−i,j ĥ

+
i,j

Ĥ2
i,j

. (16)

The relaxation of histogram binning is also used by
[6,13] to tackle the “leaning to hash” problem, with similar
in-batch retrieval formulations. FastAP differs in two main
aspects: the objective function, and the underlying distance
metric. In particular, [13] optimizes a complex closed form
of AP for the Hamming distance. In this case, the number of

†The complete derivations are provided in the supplementary material.

histogram bins naturally corresponds to the number of dis-
crete levels in the Hamming distance. However, such a con-
venience does not exist for real-valued distances. Instead,
histogram binning is used for approximation purposes in
FastAP. The number of histogram bins now becomes a vari-
able parameter, which involves an interesting trade-off, as
we will discuss later.

4.1. Large-Batch Training

Large batch sizes can be beneficial for training deep neu-
ral networks with SGD [32]; this is also observed in our ex-
periments (Section 5.3). However, batch sizes are limited
by GPU memory. In the case of classification, the effective
batch size can be increased through data parallelism [10].
However, data parallelism for FastAP is less trivial, as it is
a non-decomposable objective: the objective value for each
example in a minibatch depends on other examples in the
same batch.

Inspired by a similar solution for the triplet loss [9],
we propose a heuristic to enable large-batch training for
FastAP. The main insight is that the loss layer takes the
embedding matrix of the minibatch as input (see supple-
mentary material). Thus, a large batch can be first broken
into smaller chunks to incrementally compute the embed-
ding matrix. Then, we compute the gradients with respect
to the embedding matrix, which is a relatively lightweight
operation involving only the loss layer. Finally, gradients
are back-propagated through the network, again in chunks.
This solution works even with a single GPU.

4.2. Minibatch Sampling

Typically, metric learning methods derive neighborhood
relationships from class labels – instances sharing the same
class label are considered neighbors. In this scheme, sam-
pling strategies for pairs and triplets have been well-studied.
However, the listwise formulation of FastAP leads to differ-
ent considerations for minibatch sampling. The first consid-
eration is that sampling should be done on the class level;
instance-level sampling cannot guarantee that each example
has at least one neighbor in the same minibatch, thus might
lead to ill-defined in-batch retrieval problems.

The second consideration is that the sampled mini-
batches need to represent “sufficiently hard” in-batch re-
trieval problems to train the network. One option, as we
mentioned above, is to use large batches. However, when
training with large batches is not feasible, a sampling strat-
egy for classes becomes crucial. Our reasoning, illustrated
in Figure 3, is that sampling classes purely at random may
not create hard retrieval problems: for example, it is easy to
retrieve images of a bicycle from a pool of toasters, chairs,
etc. However, if the pool also includes images of other bi-
cycles, the retrieval problem becomes more challenging.

Rather than treating all classes as equally different from

HardRandom

Figure 3: Minibatch sampling: examples of the random
strategy and our hard strategy. Our strategy constructs more
challenging in-batch retrieval problems by sampling classes
from a small number of categories in each minibatch.

each other, we would like to utilize any available side infor-
mation on the similarities between classes. One example of
such information is WordNet similarity [28] for ImageNet
class labels. Alternatively, for the datasets considered in our
experiments, category labels are available: classes belong-
ing to the same category are more similar. For example,
a category can be “bicycle” while class labels correspond
to individual bicycle instances. Following this intuition,
we develop a category-based sampling strategy as follows:
each minibatch first samples a small number of categories,
e.g. bicycle and chair, and then samples individual classes
from them. Experimentally, this “hard” sampling strategy
consistently outperforms sampling classes at random, and
therefore is used in all experiments reported in Section 5.
Please refer to the supplementary material for more details.

5. Experiments
We evaluate our metric learning method, FastAP, on

three standard image retrieval datasets that are commonly
used in the deep metric learning literature. These datasets
are: Stanford Online Products, In-Shop Clothes Retrieval,
and PKU VehicleID.

• Stanford Online Products is proposed in [34] for
evaluating deep metric learning algorithms. It con-
tains 120,053 images of 22,634 online products from
eBay.com, where each product is annotated with a dis-
tinct class label. Each class has 5.3 images on average.
Following [34], we use 59,551 images from 11,318
classes for training, and the remaining 60,502 images
from 11,316 classes for testing.

• In-Shop Clothes Retrieval [23] is another popular
dataset in image retrieval. Following the setup in [23],
7,982 classes of clothing items with 52,712 images are

used in experiments. Among them, 3,997 classes are
for training (25,882 images) and 3,985 classes are for
testing (28,760 images). The test set is partitioned into
a query set and a gallery set, where the query set con-
tains 14,218 images of 3,985 classes, and the gallery
set contains 12,612 images of 3,985 classes. At test
time, given an image in the query set, we retrieve its
neighbors from the gallery set.

• PKU VehicleID [21] is a dataset of 221,763 images
from 26,267 vehicles captured by surveillance cam-
eras. The training set has 110,178 images of 13,134
vehicles and the test set has 111,585 images of 13,133
vehicles. This dataset is particularly challenging as
different vehicle identities are considered as different
classes even if they share the same model. We fol-
low the standard experimental protocol [21] to test on
the small, medium and large test sets, which contain
7,332 images of 800 vehicles, 12,995 images of 1,600
vehicles, and 20,038 images of 2,400 vehicles, respec-
tively.

These datasets all have a limited number of images
per class, which results in challenging few-shot retrieval
problems. Also, as we mentioned, all three datasets pro-
vide high-level category labels: Stanford Online Products
contains 12 product categories such as “bicycle”, “chair”,
etc. For In-Shop Clothes Retrieval, each clothing item be-
longs to one of 23 categories such as “MEN/Denim” and
“WOMEN/Dresses”. For PKU VehicleID, each category
corresponds to a unique vehicle model.

5.1. Experimental Setup

We consider the binary relevance setup where images
with the same class label are neighbors, and non-neighbors
otherwise. We report a standard retrieval metric, Recall at k
(R@k), defined as the percentage of queries having at least
one neighbor retrieved in the first k results.

We fine-tune ResNet [12] models pretrained on Ima-
geNet, and replace the final softmax classification layer
with a fully-connected embedding layer, with random ini-
tialization. We experiment with both ResNet-18 and
ResNet-50, and set the embedding dimensionality to 512
by default. The embeddings are normalized to have unit L2

norm. In all experiments, we use the Adam optimizer [17]
with base learning rate 10−5 and no weight decay, and am-
plify the embedding layer’s learning rate by 10 times. Fol-
lowing standard practice, images in all datasets are resized
to 256×256, and the embedding network takes crops of size
224×224 as input. Random crops and random flipping are
used during training for data augmentation, and a single
center crop is used at test time.

Our experiments are run on an NVIDIA Titan X Pas-
cal GPU with 12GB memory, which permits a batch size

Method Dim. Stanford Online Products
R@1 R@10 R@100 R@1000

LiftStruct [34] 512 62.1 79.8 91.3 97.4
Histogram [39] 512 63.9 81.7 92.2 97.7
Clustering [33] 64 67.0 83.7 93.2 –
Spectral [19] 512 67.6 83.7 93.3 –
Hard-aware Cascade [43]† 384 70.1 84.9 93.2 97.8
Margin [40] 128 72.7 86.2 93.8 98.0
BIER [27]† 512 72.7 86.5 94.0 98.0
Proxy NCA [26] 64 73.7 – – –
A-BIER [27] † 512 74.2 86.9 94.8 98.2
Hierarchical Triplets [8] 512 74.8 88.3 94.8 98.4
ABE-8 [16]† 512 76.3 88.4 94.8 98.2
FastAP, ResNet-18, M = 256 512 73.2 86.8 94.1 97.8
FastAP, ResNet-50, M = 96 128 73.8 88.0 94.9 98.3
FastAP, ResNet-50, M = 96 512 75.8 89.1 95.4 98.5
FastAP, ResNet-50, M = 256 ‡ 512 76.4 89.0 95.1 98.2
† Ensemble method
‡ Large-batch training heuristic to overcome GPU memory limit

Table 1: Retrieval performance comparison on Stanford Online Products [34]. FastAP achieves state-of-the-art results,
outperforming competing methods with either a simpler architecture or fewer embedding dimensions. M : batch size.

of M = 256 for ResNet-18, and M = 96 for ResNet-50.
Our large-batch heuristic further enables training with arbi-
trary batch sizes. An ablation study on the batch size is also
included in Section 5.3.

5.2. Comparison with State-of-the-art

We compare FastAP to a series of state-of-the-art deep
metric learning methods. Most of these work either exclu-
sively use pair-based or triplet-based local ranking losses
[2, 8, 34, 40, 43, 45], or use them in ensembles [16, 27, 42].
The exceptions include [19, 33] where clustering objectives
are optimized, as well as Histogram [39] that proposes a
quadruplet-based loss. In addition, some methods also pro-
pose novelties other than the loss function: Proxy NCA [26]
and HTG [45] generate novel training examples to improve
triplet-based training, and ABE [16] employs an attention
mechanism.

Stanford Online Products

We present R@k results for k ∈ {1, 10, 100, 1000} on Stan-
ford Online Products in Table 1. With a single ResNet-50
and 512 embedding dimensions, FastAP obtains state-of-
the-art results, both with and without large-batch training.
FastAP is also very competitive with 128 embedding di-
mensions, for example, it significantly outperforms Mar-
gin [40], a leading triplet-based method equipped with a
principled sampling strategy. In fact, only HTL [8] and
ABE-8 [16], both of which learn 512-d embeddings, are
able to achieve better overall performance than the 128-d
embeddings learned by FastAP.

We also compare FastAP to the ensemble methods,
namely, HDC [43], BIER/A-BIER [27], and ABE-8 [16].
These methods combine embedding vectors obtained either
from different layers in the same network, or from differ-
ent networks. Ensemble models can be very demanding to
train: for example, BIER ensembles 3 learners with a differ-
ent loss in each, and A-BIER extends it with the addition of
adversarial loss. Next, ABE-8 is an ensemble of 8 different
learners, trained on a GPU with 24GB memory. In contrast,
FastAP trains a single embedding network with a single loss
function, and outperforms these methods when using 12GB
of GPU memory. Therefore, the complexity-performance
trade-off for FastAP is much more desirable.

It is also noteworthy to contrast FastAP with Histogram
[39], which first proposed the differentiable relaxation of
histogram binning for deep metric learning. The histogram
loss is a quadruplet-based loss that encourages the distance
distributions of neighbors and non-neighbors to be sepa-
rated. However, this loss is only loosely correlated with
retrieval performance metrics, and we suspect that design-
ing appropriate sampling strategies for quadruplets is even
more challenging than for triplets. FastAP strongly outper-
forms the histogram loss.

In-Shop Clothes Retrieval

On the In-Shop Clothes Retrieval dataset, we add two meth-
ods into our comparisons: the original FashionNet [23] that
learns clothing features by predicting landmark locations
and multiple attributes, and a recently proposed ensemble
model named DREML [42].

Method Dim. In-Shop Clothes Retrieval
R@1 R@10 R@20 R@30 R@40 R@50

FashionNet [23] 4096 53.0 73.0 76.0 77.0 79.0 80.0
Hard-aware Cascade [43]† 384 62.1 84.9 89.0 91.2 92.3 93.1
BIER [27]† 512 76.9 92.8 95.2 96.2 96.7 97.1
DREML [42]† 9216 78.4 93.7 95.8 96.7 – –
Hard Triplet Generation [45] – 80.3 93.9 95.8 96.6 97.1 –
Hierarchical Triplets [8] 128 80.9 94.3 95.8 97.2 97.4 97.8
A-BIER [27]† 512 83.1 95.1 96.9 97.5 97.8 98.0
ABE-8 [16]† 512 87.3 96.7 97.9 98.2 98.5 98.7
FastAP, ResNet-18, M = 256 512 89.0 97.2 98.1 98.5 98.7 98.9
FastAP, ResNet-50, M = 96 512 90.0 97.5 98.3 98.7 98.9 99.1
FastAP, ResNet-50, M = 256‡ 512 90.9 97.7 98.5 98.8 98.9 99.1
† Ensemble method
‡ Large-batch training heuristic to overcome GPU memory limit

Table 2: Retrieval performance comparison on the In-Shop Clothes Retrieval dataset [23]. Both the ResNet-18 and ResNet-50
versions of FastAP outperform all competing methods.

Method Dim.
PKU VehicleID

Small Medium Large
R@1 R@5 R@1 R@5 R@1 R@5

Mixed Diff+CCL [21] 1024 49.0 73.5 42.8 66.8 38.2 61.6
GS-TRS [2] 1024 75.0 83.0 74.1 82.6 73.2 81.9
BIER [27]† 512 82.6 90.6 79.3 88.3 76.0 86.4
A-BIER [27]† 512 86.3 92.7 83.3 88.7 81.9 88.7
DREML [42]† 2304 88.5 94.8 87.2 94.2 83.1 92.4
FastAP, ResNet-18, M = 256 512 90.9 96.0 88.9 95.2 85.3 93.9
FastAP, ResNet-50, M = 96 512 90.4 96.5 88.0 95.4 84.5 93.9
FastAP, ResNet-50, M = 256‡ 512 91.9 96.8 90.6 95.9 87.5 95.1
† Ensemble method
‡ Large-batch training heuristic to overcome GPU memory limit

Table 3: Retrieval performance comparison on PKU VehicleID [21]. FastAP performs significantly better than recent ensem-
ble models which are costly to train and evaluate.

The R@k results for In-Shop Clothes Retrieval are
presented in Table 2, with k ∈ {1, 10, 20, 30, 40, 50}.
FastAP outperforms all competing methods with a clear
margin. Notably, we point out that for this dataset, DREML
uses a large ensemble of 48 ResNet-18 models, each pro-
ducing a 198-d embedding vector, resulting in a 9216-d em-
bedding when concatenated. With a single ResNet-18 and
512-d embeddings, FastAP obtains a 15% relative increase
in R@1 compared to DREML, and also outperforms two
strong ensemble models, A-BIER and ABE-8.

PKU VehicleID

We report R@k for k ∈ {1, 5} on the small, medium, and
large test sets of PKU VehicleID. We include the original
baseline, Mixed Diff+CCL from [21], as well as GS-TRS
[2] which proposes a group-based triplet method to reduce
intra-class variance. Other included methods that report re-
sults on this dataset are ensemble methods: BIER, A-BIER,

and DREML. For this dataset, DREML employs an ensem-
ble of 12 ResNet-18 models with a 192-d embedding from
each model, resulting in 2304-d embeddings.

Table 3 presents retrieval performance comparisons.
FastAP again is able to outperform the state-of-the-art with
both ResNet-18 and ResNet-50. An interesting observa-
tion is that unlike on other datasets, when using the same
amount of GPU memory, ResNet-18 consistently outper-
forms ResNet-50 in R@1. We hypothesize that since the
ResNet-18 model is able to use larger batches, the increased
hardness of the in-batch retrieval problems partially out-
weighs its lower model capability on this dataset.

5.3. Ablation Studies

Batch Size

During SGD training, the list size in the in-batch retrieval
problems is determined by the minibatch size. Here, we

(a) (b)

+
+

-
-

- -

++ - - -

Gradient = 0

Gradient ≠ 0

(c)

Figure 4: Ablation studies. We monitor R@1 as a function of hyper-parameters on all datasets. (a) FastAP benefits from
using large batch sizes. (b) Distance quantization induces a trade-off between close approximation of AP vs. “hardness” of
the resulting objective, and peak performance is observed around 10 bins. (c) Illustration of the trade-off.

present an ablation study where we vary the training batch
size for FastAP, with the ResNet-18 backbone. We measure
the R@1 on all three datasets (for VehicleID we use the
large subset).

As provided in Figure 4a, R@1 monotonically improves
with larger batch size on all three datasets. This observa-
tion resonates with the fact that large batches reduce the
variance of the stochastic gradients, which has been shown
to be beneficial [32]. On the other hand, from the learn-
ing to rank perspective, we argue that larger batches result
in harder in-batch retrieval problems during training, since
the network is required to rank the neighbors in front of a
larger set of non-neighbors, and this in turn leads to better
generalization.

Distance Quantization

A hyper-parameter of FastAP is the number of histogram
bins used in distance quantization, which controls the qual-
ity of approximation. To study its effects, we also run an ab-
lation study with varying numbers of histogram bins during
training, keeping other parameters fixed (ResNet-18, batch
size 256). Figure 4b shows the impact on test set perfor-
mance in terms of R@1.

Intuitively, using more histogram bins during training
would result in a closer approximation of Average Preci-
sion. However, we observe that retrieval performance does
not necessarily improve with more bins, and in fact consis-
tently peaks around 10 bins. To understand this trade-off,
we give a simple example in Figure 4c, where a ranked list
achieves perfect AP, with a small margin of separation ε be-
tween positive and negative examples. A fine-grained quan-
tization of this ranked list produces all-positive histogram
bins, followed by all-negative ones, which means that the
FastAP approximation also evaluates to 1. In this case, the
gradients are zero, i.e., there are no learning signals for the

network. In contrast, we argue that a coarser quantization
would produce histogram bins where positives and nega-
tives are mixed, thus generating nonzero gradients to further
push them apart, which helps generalization.

The width of histogram bins has a similar effect as the
margin parameter in triplet losses, and it is desirable to keep
it reasonably large, or equivalently, the number of bins rel-
atively small. On the other hand, if there are too few bins in
the histogram, approximation quality also deteriorates; in
the extreme case of there being only one bin, no learning
is possible. In our experiments, 10-bin histograms usually
provide the best trade-off, and performance is not overly
sensitive to this parameter.

6. Conclusion

We revisit the “learning to rank” principle to propose
a deep metric learning method, FastAP. Our main contri-
bution is a novel solution to optimizing Average Precision
under the Euclidean metric, based on the probabilistic in-
terpretation of AP as the area under precision-recall curve,
as well as distance quantization. Compared to many exist-
ing solutions to this much-studied problem, FastAP is more
efficient, and works in a stochastic setting by design. We
further propose a category-based minibatch sampling strat-
egy and a large-batch training heuristic. On three standard
datasets, FastAP consistently outperforms the current state-
of-the-art in few-shot image retrieval, and demonstrates an
excellent performance-complexity trade-off.

Acknowledgements

This work is conducted at Boston University, supported
in part by a BU IGNITION award, and equipment donated
by NVIDIA.

References
[1] Javed A. Aslam, Emine Yilmaz, and Virgiliu Pavlu. The

maximum entropy method for analyzing retrieval measures.
In Proc. ACM SIGIR Conference on Research & Develop-
ment in Information Retrieval, 2005.

[2] Yan Bai, Feng Gao, Yihang Lou, Shiqi Wang, Tiejun Huang,
and Ling-Yu Duan. Incorporating intra-class variance to fine-
grained visual recognition. In Proc. IEEE International Con-
ference on Multimedia and Expo (ICME), 2017.

[3] Aurélien Bellet, Amaury Habrard, and Marc Sebban. A
survey on metric learning for feature vectors and structured
data. arXiv preprint arXiv:1306.6709, 2013.

[4] Kendrick Boyd, Kevin H. Eng, and C. David Page. Area
under the precision-recall curve: Point estimates and confi-
dence intervals. In Machine Learning and Knowledge Dis-
covery in Databases, 2013.

[5] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang
Li. Learning to rank: from pairwise approach to listwise
approach. In Proc. International Conference on Machine
Learning (ICML), 2007.

[6] Fatih Çakir, Kun He, Sarah Adel Bargal, and Stan
Sclaroff. Hashing with mutual information. arXiv preprint
arXiv:1803.00974, 2018.

[7] Olivier Chapelle and Mingrui Wu. Gradient descent opti-
mization of smoothed information retrieval metrics. Infor-
mation retrieval, 13(3):216–235, 2010.

[8] Weifeng Ge, Weilin Huang, Dengke Dong, and Matthew R.
Scott. Deep metric learning with hierarchical triplet loss.
In Proc. European Conference on Computer Vision (ECCV),
2018.

[9] Albert Gordo, Jon Almazan, Jerome Revaud, and Diane Lar-
lus. End-to-end learning of deep visual representations for
image retrieval. International Journal of Computer Vision
(IJCV), 124(2):237–254, 2017.

[10] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large mini-
batch sgd: Training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017.

[11] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimension-
ality reduction by learning an invariant mapping. In Proc.
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2006.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proc. IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[13] Kun He, Fatih Çakir, Sarah Adel Bargal, and Stan Sclaroff.
Hashing as tie-aware learning to rank. In Proc. IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2018.

[14] Kun He, Yan Lu, and Stan Sclaroff. Local descriptors opti-
mized for average precision. In Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

[15] Xinwei He, Yang Zhou, Zhichao Zhou, Song Bai, and Xiang
Bai. Triplet-center loss for multi-view 3d object retrieval.
In Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

[16] Wonsik Kim, Bhavya Goyal, Kunal Chawla, Jungmin Lee,
and Keunjoo Kwon. Attention-based ensemble for deep met-
ric learning. In Proc. European Conference on Computer
Vision (ECCV), 2018.

[17] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[18] Brian Kulis. Metric learning: A survey. Foundations and
Trends R© in Machine Learning, 5(4):287–364, 2013.

[19] Marc T. Law, Raquel Urtasun, and Richard S. Zemel. Deep
spectral clustering learning. In Proc. International Confer-
ence on Machine Learning (ICML), 2017.

[20] Daryl Lim and Gert R. Lanckriet. Efficient learning of Ma-
halanobis metrics for ranking. In Proc. International Con-
ference on Machine Learning (ICML), 2014.

[21] Hongye Liu, Yonghong Tian, Yaowei Yang, Lu Pang, and
Tiejun Huang. Deep relative distance learning: Tell the dif-
ference between similar vehicles. In Proc. IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

[22] Tie-Yan Liu. Learning to rank for information re-
trieval. Foundations and Trends R© in Information Retrieval,
3(3):225–331, 2009.

[23] Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou
Tang. Deepfashion: Powering robust clothes recognition and
retrieval with rich annotations. In Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

[24] Brian McFee and Gert R. Lanckriet. Metric learning to
rank. In Proc. International Conference on Machine Learn-
ing (ICML), 2010.

[25] Pritish Mohapatra, Michal Rolı́nek, C.V. Jawahar, Vladimir
Kolmogorov, and M. Pawan Kumar. Efficient optimization
for rank-based loss functions. In Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

[26] Yair Movshovitz-Attias, Alexander Toshev, Thomas K. Le-
ung, Sergey Ioffe, and Saurabh Singh. No fuss distance met-
ric learning using proxies. In Proc. IEEE International Con-
ference on Computer Vision (ICCV), 2017.

[27] Michael Opitz, Georg Waltner, Horst Possegger, and Horst
Bischof. Deep metric learning with BIER: Boosting indepen-
dent embeddings robustly. arXiv preprint arXiv:1801.04815,
2018.

[28] Ted Pedersen, Siddharth Patwardhan, and Jason Michelizzi.
WordNet::Similarity: measuring the relatedness of concepts.
In Proceedings of Fifth Annual Meeting of the North Amer-
ican Chapter of the Association for Computational Linguis-
tics (NAACL), 2004.

[29] James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and
Andrew Zisserman. Object retrieval with large vocabular-
ies and fast spatial matching. In Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2007.

[30] Florian Schroff, Dmitry Kalenichenko, and James Philbin.
FaceNet: A unified embedding for face recognition and clus-
tering. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2015.

[31] Matthew Schultz and Thorsten Joachims. Learning a dis-
tance metric from relative comparisons. In Advances in Neu-
ral Information Processing Systems (NIPS), 2003.

[32] Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying, and
Quoc V. Le. Don’t decay the learning rate, increase the batch
size. In ICLR, 2018.

[33] Hyun Oh Song, Stefanie Jegelka, Vivek Rathod, and Kevin
Murphy. Deep metric learning via facility location. In Proc.
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2017.

[34] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio
Savarese. Deep metric learning via lifted structured feature
embedding. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

[35] Yang Song, Alexander Schwing, Richard S. Zemel, and
Raquel Urtasun. Training deep neural networks via direct
loss minimization. In Proc. International Conference on Ma-
chine Learning (ICML), 2016.

[36] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In Proc. IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2015.

[37] Michael Taylor, John Guiver, Stephen Robertson, and Tom
Minka. Softrank: optimizing non-smooth rank metrics. In
Proc. ACM International Conference on Web Search and
Data Mining, 2008.

[38] Eleni Triantafillou, Richard S. Zemel, and Raquel Urtasun.
Few-shot learning through an information retrieval lens. In
Advances in Neural Information Processing Systems (NIPS),
2017.

[39] Evgeniya Ustinova and Victor Lempitsky. Learning deep
embeddings with histogram loss. In Advances in Neural In-
formation Processing Systems (NIPS), 2016.

[40] Chao-Yuan Wu, R. Manmatha, Alexander J. Smola, and
Philipp Krähenbühl. Sampling matters in deep embedding
learning. In Proc. IEEE International Conference on Com-
puter Vision (ICCV), 2017.

[41] Eric P. Xing, Michael I. Jordan, Stuart J. Russell, and An-
drew Y. Ng. Distance metric learning with application to
clustering with side-information. In Advances in Neural In-
formation Processing Systems (NIPS), 2002.

[42] Hong Xuan, Richard Souvenir, and Robert Pless. Deep ran-
domized ensembles for metric learning. In Proc. European
Conference on Computer Vision (ECCV), 2018.

[43] Yuhui Yuan, Kuiyuan Yang, and Chao Zhang. Hard-aware
deeply cascaded embedding. In Proc. IEEE International
Conference on Computer Vision (ICCV), 2017.

[44] Yisong Yue, Thomas Finley, Filip Radlinski, and Thorsten
Joachims. A support vector method for optimizing average
precision. In Proc. ACM SIGIR Conference on Research &
Development in Information Retrieval, 2007.

[45] Yiru Zhao, Zhongming Jin, Guo-Jun Qi, Hongtao Lu, and
Xian-Sheng Hua. An adversarial approach to hard triplet
generation. In Proc. European Conference on Computer Vi-
sion (ECCV), 2018.

Supplementary Material

A. Minibatch Sampling

(a) Stanford Online Products (b) In-Shop Clothes Retrieval (c) PKU VehicleID

Figure 5: Examples from the three datasets used in the paper. Each row corresponds to a distinct class.

As mentioned in the paper, FastAP uses class-based sampling. Moreover, under the few-shot setup where the number of
examples per class is small, a minibatch will include all images from a class once that class gets sampled. Example classes
from the three datasets are shown in Figure 5. For minibatch sampling, we compare two strategies. Below, let the minibatch
size be M .

• Random: Randomly sample classes from the entire training set, until M images are obtained.

• Hard: First sample two categories. From each category, randomly sample classes until M/2 images are obtained.

Suppose we have sampled a class with n images in some minibatch. Now consider the in-batch retrieval problem where
the query is an image x from this class. As shown in Figure 6, under the hard sampling strategy, there exist (n−1) neighbors
of x in the database, and another (M/2 − n) images from different classes in the same category, which we call the hard
negatives, in the sense that it is generally harder to distinguish between classes in the same category. The remaining M/2
images are from a different category, and are referred to as the easy negatives. Due to the balanced batch construction, every
in-batch retrieval problem shares the same structure, and only n may vary depending on the class. In contrast, under the
random strategy, the chances of seeing hard negatives are much lower, especially when the number of categories is large.

Below we describe implementation details for each dataset. Information regarding the category labels is given in Table 4.

• Stanford Online Products: Each class belongs to one of 12 categories. In each training epoch, we iterate over all
the pairs of different categories, and sample 5 minibatches for each pair. The number of minibatches per epoch is(

12
2

)
× 5 = 330.

• In-Shop Clothes Retrieval: Each class belongs to one of 23 categories. We take the same approach as above, except
with 2 minibatches per category pair. The number of minibatches per epoch is

(
23
2

)
× 2 = 506.

• PKU VehicleID: This dataset is slightly different in that not every class has a category label. A total of 250 categories
(vehicle models) are labeled, covering roughly half of the training set. We take a different approach for this dataset: in
each minibatch, we first sample M/2 images from a labeled category. Then, to get the other M/2 images, we randomly
sample classes that do not have category labels. This way, each epoch generates

∑
c∈C 2Nc/M minibatches, where C

denotes the set of labeled categories, and Nc is the total number of images in category c.

Although the hard strategy can be generalized to sample from more than two categories at a time, doing so reduces the
number of hard negatives in the minibatches, and does not lead to performance gains in our experiments. Also, we observe
that performance degrades when we only sample from one category in each minibatch. An explanation for this is that, the
network only observes hard negatives in the in-batch retrieval problems, and thus would overfit to the small differences
between similar classes, e.g. different bicycle models.

Neighbor Hard Negatives

Easy Negatives

Query

Figure 6: An example in-batch retrieval problem with batch size M = 10, under the hard sampling strategy. The query is
from a bicycle class with n = 2 images. The database contains one neighbor of the query, 3 hard negatives (another bicycle),
and 5 easy negatives (chairs).

Dataset #Category Category Names
Stanford Online 12 bicycle, cabinet, chair, coffee maker, fan, kettle, lamp,

Products mug, sofa, stapler, table, toaster

23

MEN/Denim, MEN/Jackets Vests, MEN/Pants, MEN/Shirts Polos, MEN/Shorts,
MEN/Suiting, MEN/Sweaters, MEN/Sweatshirts Hoodies, MEN/Tees Tanks,

In-Shop Clothes WOMEN/Blouses Shirts, WOMEN/Cardigans, WOMEN/Denim, WOMEN/Dresses,
Retrieval WOMEN/Graphic Tees, WOMEN/Jackets Coats, WOMEN/Leggings,

WOMEN/Pants, WOMEN/Rompers Jumpsuits, WOMEN/Shorts, WOMEN/Skirts,
WOMEN/Sweaters, WOMEN/Sweatshirts Hoodies, WOMEN/Tees Tanks

PKU VehicleID 250 vehicle models+unlabeled

Table 4: Category labels in all three datasets.

B. Additional Experiments

B.1. Ablation Study: Minibatch Sampling

We compare our category-based hard sampling strategy to the random strategy. Quantitatively, we can see from Table 5
that the hard strategy consistently outperforms random, across the three datasets and two architectures that we use. All
FastAP results reported in earlier sections are from the hard strategy, while the random strategy is also competitive with the
state-of-the-art.

FastAP ResNet-18 ResNet-50
R@1 Random Hard Random Hard

Products 72.3 73.2 74.2 75.8
Clothes 81.7 89.0 84.1 90.0

VehicleID 79.5 85.3 82.8 84.5

Table 5: Quantitative comparison between minibatch sampling strategies for FastAP.

B.2. Convergence of Training

We also study the effect of batch size on the convergence speed of FastAP. Since our minibatch formulation is a stochastic
approximation to the retrieval problem defined over the entire dataset, we expect larger batches to give better approximation
and faster convergence, as is common in stochastic optimization. In Figure 7, we present learning curves on the Stanford
Online Products dataset with varying batch sizes and the ResNet-18 backbone. As can be seen, there is indeed a positive

correlation between batch size and convergence speed. The same observation is made on the other datasets as well. For all
datasets, convergence happens within 50 epochs.

0 10 20 30 40 50

Epoch

55

60

65

70

75
Products: R@1 (ResNet-18)

M=32

M=64

M=128

M=256

Figure 7: Learning curves of FastAP on the Products dataset, with different batch sizes. We observe that larger batches lead
to faster convergence.

B.3. Results Using the GoogLeNet Architecture

In addition to the ResNet results reported in the paper, we also conduct another set of experiments with the GoogLeNet
architecture [36], which is commonly used in the deep metric learning literature. Specifically, we use Inception-v1 without
BatchNorm, which is known to perform similarly to ResNet-18 on ImageNet.

Results are reported in Table 6, where GoogLeNet uses the maximum allowable batch size on a 12GB GPU. As ex-
pected, GoogLeNet results are close to ResNet-18. More importantly, they are state-of-the-art on the Clothes and VehicleID
benchmarks, and on-par with more complex models (e.g. BIER) on the Products dataset. Interestingly, GoogLeNet clearly
outperforms both ResNet-18 and ResNet-50 on VehicleID, which supports our earlier hypothesis regarding the importance
of batch size for this dataset. For the other datasets, it would be reasonable to expect the more complex Inception-v2 and
Inception-v3 to obtain improved results that approach those of ResNet-50.

Products Clothes VehicleID
R@k 1 10 100 1000 1 10 20 30 40 50 S1 S5 M1 M5 L1 L5

GoogLeNet 72.7 86.3 93.5 97.5 88.9 97.1 97.9 98.3 98.6 98.7 91.0 96.7 89.1 95.5 85.7 94.2
ResNet-18 73.2 86.8 94.1 97.8 89.0 97.2 98.1 98.5 98.7 98.9 90.9 96.0 88.9 95.2 85.3 93.9
ResNet-50 75.8 89.1 95.4 98.5 90.0 97.5 98.3 98.5 98.7 98.9 90.4 96.5 88.0 95.4 84.5 93.9

Table 6: We additionally report GoogLeNet [36] results for experiments conducted in the paper. Batch sizes are 320, 256,
and 96 for GoogLeNet, ResNet-18, and ResNet-50, respectively.

C. SGD for FastAP
We denote the neural network parameterization of our embedding as Ψ : X → Rm. Let the induced Euclidean metric be

dΨ. As mentioned in the paper, we L2-normalize all embedding vectors. For ∀x, y ∈ X , their squared Euclidean distance in
the embedding space then becomes

dΨ(x, y)2 = ‖Ψ(x)−Ψ(y)‖2 = ‖Ψ(x)‖2 + ‖Ψ(y)‖2 − 2Ψ(x)>Ψ(y) (17)

= 2− 2Ψ(x)>Ψ(y). (18)

Since Ψ(x)>Ψ(y) ∈ [−1, 1], the squared distance has closed range [0, 4]. Our derivations will work with the squared distance
for convenience (to avoid a square root operation). The partial derivative of the squared distance is given by

∂dΨ(x, y)2

∂Ψ(x)
= −2Ψ(y). (19)

We consider a minibatch setting, with a minibatch B = {x1, . . . , xM} ⊂ X . For ∀xi ∈ B, the rest of the minibatch
is partitioned into two sets according to neighborhood information: the set of xi’s neighbors, denoted B+

i , and the set of
non-neighbors B−i .

We define a set of M in-batch retrieval problems, where for each i ∈ {1, . . . ,M}, xi is used to query the database that
is B+

i ∪ B
−
i . Let FastAPi be the resulting FastAP value for the i-th in-batch retrieval problem. Without loss of generality,

we assume B+
i and B−i are both non-empty, otherwise FastAP gets trivial values of 0 or 1. The overall objective for the

minibatch, denoted FastAPB , is the average of these M values.

C.1. Soft Histogram Binning

Given a query xi, database items are sorted according to their squared distance to xi in the embedding space. We then
quantize the range [0, 4] using L equally-spaced bin centers {c1, c2, . . . , cL}, and produce a histogram (hi,1, . . . , hi,L) to
count the number of items in each bin. This is done through defining a quantizer Qi where

Qi(x) = arg min
l
|dΨ(x, xi)

2 − cl|,∀x ∈ B \ {xi}. (20)

The regular histogram binning operation performs hard assignment:

hi,j =
∑

x∈B\{xi}

1[Qi(x) = j]. (21)

Instead, we adopt the soft binning technique of [39] that relaxes the hard assignment with a piecewise-linear interpolation δ,
with a width parameter ∆:

ĥi,j =
∑

x∈B\{xi}

δ(dΨ(x, xi)
2, cj), (22)

∀z ∈ R, δ(z, cj) =

{
1− |z − cj |

∆
, |z − cj | ≤ ∆

0 , otherwise
(23)

The derivative of δ is piecewise-constant and easy to compute. To obtain the positive and negative histograms (ĥ+
i , ĥ

−
i), we

restrict the sum to be over B+
i or B−i . We also choose ∆ to be exactly the width of a histogram bin, i.e., ∆ = ci− ci−1. This

means that the relaxation has bounded support: for ∀x ∈ B \ {xi}, x generally has nonzero contributions to two adjacent
bins, and the contributions sum to 1. The only exception is when dΨ(x, xi)

2 exactly coincides with the center of some bin, in
which case the contribution of x to that bin is 1. Given this choice, the only variable parameter in our soft histogram binning
formulation is L, or the number of histogram bins.

C.2. Minibatch Gradient Computation

Given minibatch B = {x1, . . . , xM}, the output of the embedding layer is an m×M matrix,

ΨB = [Ψ(x1) Ψ(x2) · · · Ψ(xM)] , (24)

where Ψ(xi) ∈ Rm, 1 ≤ i ≤ M . Our loss layer takes ΨB as input, and computes the minibatch objective FastAPB . The
derivative of the minibatch objective with respect to ΨB can be written as

∂FastAPB

∂ΨB
=

1

M

M∑
i=1

∂FastAPi

∂ΨB
(25)

=
1

M

M∑
i=1

L∑
l=1

(
∂FastAPi

∂ĥ+
i,l

∂ĥ+
i,l

∂ΨB
+
∂FastAPi

∂ĥ−i,l

∂ĥ−i,l
∂ΨB

)
. (26)

Evaluating (26) is challenging as the M in-batch retrieval problems are inter-dependent on each other. However, there
exists a solution to a similar problem. Specifically, [13] shows that when the metric is the Hamming distance and Ψ is the
relaxed output of a hash mapping, (26) can be evaluated as

−1

2

ΨB

M

L∑
l=1

(
A+

l B
+
l +B+

l A
+
l +A−l B

−
l +B−l A

−
l

)
, (27)

where A+
l , A

−
l , B

+
l , B

−
l are M ×M matrices:

A+
l = diag

(
∂O1

∂ĥ+
1,l

, . . . ,
∂OM

∂ĥ+
M,l

)
, (28)

A−l = diag

(
∂O1

∂ĥ−1,l
, . . . ,

∂OM

∂ĥ−M,l

)
, (29)

B+
l =

[
1[xj ∈ B+

i]
∂δ(z, cl)

∂z

∣∣∣∣
z=dΨ(xj ,xi)2

]
ij

, (30)

B−l =

[
1[xj ∈ B−i]

∂δ(z, cl)

∂z

∣∣∣∣
z=dΨ(xj ,xi)2

]
ij

. (31)

Here, O denotes the objective, which could be any differentiable function computed on the relaxed histograms. Note that the
scaling − 1

2 in (27) is due to how the b-bit Hamming distance dH is continuously relaxed [13]:

dH(x, y) =
b−Ψ(x)>Ψ(y)

2
⇒ ∂dH(x, y)

∂Ψ(x)
= −1

2
Ψ(y). (32)

For our purposes, this framework can be reused with two modifications: replaceO with FastAP, and change the underlying
metric to Euclidean. We omit detailed derivations as they share much in common with [13], and state the result directly: for
FastAP, (26) is evaluated as

−2
ΨB

M

L∑
l=1

(
F+
l B

+
l +B+

l F
+
l + F−l B

−
l +B−l F

−
l

)
. (33)

Note that the scaling is changed to −2 due to the use of Euclidean distance (19). F+
l and F−l are defined analogously as in

(28) and (29), but with FastAP as the objective O. We next detail how to compute them.

C.3. Differentiating FastAP

We focus on computing F+
l due to symmetry:

F+
l = diag

(
∂FastAP1

∂ĥ+
1,l

, . . . ,
∂FastAPM

∂ĥ+
M,l

)
. (34)

Note that each entry in F+
l is derived from a different in-batch retrieval problem. Instead of directly computing it, we shall

first compute a full L×M matrix F+:

F+ =



∂FastAP1

∂ĥ+
1,1

· · · ∂FastAPM

∂ĥ+
M,1

...
. . .

...
∂FastAP1

∂ĥ+
1,L

· · · ∂FastAPM

∂ĥ+
M,L

 ∈ RL×M , (35)

and then, F+
l can be constructed from its l-th row. We will compute F+ column-wise, which is the natural order, as each

column is generated by the same in-batch retrieval problem.
The i-th column of F+ is an L-vector:(

∂FastAPi

∂ĥ+
i,1

,
∂FastAPi

∂ĥ+
i,2

, . . . ,
∂FastAPi

∂ĥ+
i,L

)
. (36)

To compute it, the first important observation is that FastAP decomposes over the histogram bins. This is seen from the
definition of FastAP:

FastAPi =
1

N+
i

L∑
j=1

Ĥ+
i,j ĥ

+
i,j

Ĥi,j

∆
=

1

N+
i

L∑
j=1

FastAPi,j . (37)

Here, Ni = |B+
i |. It is also easy to see that FastAPi,j only depends on the j-th histogram bin and earlier bins. Therefore we

have the following property:

∂FastAPi,j

∂ĥ+
i,l

= 0, ∀j < l. (38)

Combining these observations, we can decompose the computation of (36) as(
∂
∑

j≥1 FastAPi,j

∂ĥ+
i,1

,
∂
∑

j≥2 FastAPi,j

∂ĥ+
i,2

, . . . ,
∂
∑

j≥L FastAPi,j

∂ĥ+
i,L

)
(39)

=

(
∂FastAPi,1

∂ĥ+
i,1

,
∂FastAPi,2

∂ĥ+
i,2

, . . . ,
∂FastAPi,L

∂ĥ+
i,L

)
+

∑
j>1

∂FastAPi,j

∂ĥ+
i,1

,
∑
j>2

∂FastAPi,j

∂ĥ+
i,2

, . . . , 0

 . (40)

The next important observation is that when j > l, the partial derivative ∂FastAPi,j

∂ĥ+
i,l

is independent of l. This allows us to

efficiently evaluate the partial sums in the second part of (40). We verify this property below:

∂FastAPi,j

∂ĥ+
i,l

∣∣∣∣∣
j>l

=
1

N+
i

∂

∂ĥ+
i,l

(
Ĥ+

i,j ĥ
+
i,j

Ĥi,j

)
=

1

N+
i

ĥ+
i,jĤi,j − Ĥ+

i,j ĥ
+
i,j

Ĥ2
i,j

(41)

=
1

N+
i

Ĥ−i,j ĥ
+
i,j

Ĥ2
i,j

, (42)

which is a function of j but not l. We denote this partial derivative as f̂+
i,j .

If we define two more shorthands:

ĝ+
i =

(
∂FastAPi,1

∂ĥ+
i,1

,
∂FastAPi,2

∂ĥ+
i,2

, . . . ,
∂FastAPi,L

∂ĥ+
i,L

)
∈ RL, (43)

f̂+
i =

(
f̂+
i,1, f̂

+
i,2, . . . , f̂

+
i,L

)
∈ RL, (44)

then (40) is simply computed as

ĝ+
i + Uf̂+

i (45)

where U is an L× L upper-triangular matrix of 1’s with zero diagonal, i.e., Uij = 1[i < j].
By now we have computed the i-th column of F+. To compute the whole matrix, we extend (45) to matrix form:

F+ =
[
ĝ+

1 · · · ĝ
+
M

]
+ U

[
f̂+

1 · · · f̂
+
M

]
. (46)

And finally, F+
l (34) is formed by extracting the l-th row from F+. We finally note that the time complexity for computing

(26) is O(LM2).

