Dictionaries and Tolerant Retrieval (Chapter 3)

Algorithm 1 (Soundex Code)
Transformation of a string to a 4-character soundex code

1. Keep the first character
2. Rewrite {A,E,I,O,U, H W, Y} to 0
3. Reuwrite characters

(a) {B,F,P,V} to 1
(b) {C,G,J,K,Q,S,X,Z} to 2
(c) {D,T} to 3

(d) {L} to 4
(e) {M,N} to 5

(f) {R} to 6

4. Remove duplicities
5. Remowve zeros
6. Change to length 4 (truncate or add trailing zeros)

Algorithm 2 (Querying in Permuterm Index)
For query q, find keys according to the following scheme:

o for q= X, find keys in the form X$

e for q=X*, find keys in the form $X*

e for q=*X, find keys in the form X$*

e forq="X", find keys in the form X*

o for q=X*Y, find keys in the form Y$X*

Algorithm 3 (Levenshtein Distance — declarative approach)
Distance between two strings a and b is given by levy p(|al, |b]) where

max(i,) if min(i,7) =0
S leve (i —1,7) +1
leva (i, j) = min { levyp(i,5 — 1) + 1 otherwise

leva,b(z' — l,j — 1) + 1(ai7$bj)

where 1(q,2p,) is the indicator function equal to 1 when a; # bj, and 0 otherwise.
levy (1, 7) is the distance between the first i characters of string a and the first j characters
of string b.

Algorithm 4 (Levenshtein distance — imperative approach)
1: function LEVENSHTEINDISTANCE(S1, S2)

2: for i = 0to|s1| do
3 mli, 0] = i

4: end for

5: for j = 0to|ss| do
6 m[0,] = j

7 end for
fori=1to|s1| do

9: for j = 1to|s2| do

10: ’Lf Sl[i] == Sg[j] then

11: m[i, j] = min{m[i — 1,j] + 1,m[i,j — 1]+ 1,m[i — 1,5 — 1]}

12: else

13: mli,j] = min{m[i — 1, 5]+ Lm[i,j — 1]+ Lm[i — 1,5 — 1] + 1}
14: end if

15: end for

16: end for

17: return m[|sy|, |sa|]

18: end function

Exercise 3/1

a) Find two different words of the same soundex code.

b) Find two phonetically similar words of different soundex codes.

Exercise 3/2

Write elements in a dictionary of the permuterm index generated by the term mama.

Exercise 3/3

Which keys are usable for finding the term s*ng in a permuterm wildcard index?

Exercise 3/4

What is the complexity of intersection of two un-ordered posting lists of lengths m and
n?

Exercise 3/5

What is the complexity (in O-notation) of intersecting of two ordered posting lists of
lengths m and n?

Exercise 3/6

What is the worst-case complexity of searching in hash tables?

Exercise 3/7

Compute the Levenshtein distance between paris and alice. Write down the matrix of
distances between all prefixes as computed by Algorithm [4]

	Exercise 3/1
	Exercise 3/2
	Exercise 3/3
	Exercise 3/4
	Exercise 3/5
	Exercise 3/6
	Exercise 3/7

