Dictionaries and Tolerant Retrieval (Chapter 3)

Algorithm 1 (Soundex Code)

Transformation of a string to a 4-character soundex code

1. Keep the first character
2. Rewrite $\{A, E, I, O, U, H, W, Y\}$ to 0
3. Rewrite characters
(a) $\{B, F, P, V\}$ to 1
(b) $\{C, G, J, K, Q, S, X, Z\}$ to 2
(c) $\{D, T\}$ to 3
(d) $\{L\}$ to 4
(e) $\{M, N\}$ to 5
(f) $\{R\}$ to 6
4. Remove duplicities
5. Remove zeros
6. Change to length 4 (truncate or add trailing zeros)

Algorithm 2 (Querying in Permuterm Index)
For query q, find keys according to the following scheme:

- for $q=X$, find keys in the form $X \$$
- for $q=X^{*}$, find keys in the form $\$ X^{*}$
- for $q={ }^{*} X$, find keys in the form $X \*
- for $q={ }^{*} X^{*}$, find keys in the form X^{*}
- for $q=X^{*} Y$, find keys in the form $Y \$ X^{*}$

Algorithm 3 (Levenshtein Distance - declarative approach)
Distance between two strings a and b is given by leva,b$(|a|,|b|)$ where

$$
\operatorname{lev}_{a, b}(i, j)= \begin{cases}\max (i, j) & \text { if } \min (i, j)=0 \\ \min \begin{cases}\operatorname{lev}_{a, b}(i-1, j)+1 \\ \operatorname{lev}_{a, b}(i, j-1)+1 \\ \operatorname{lev} v_{a, b}(i-1, j-1)+1_{\left(a_{i} \neq b_{j}\right)}\end{cases} & \text { otherwise }\end{cases}
$$

where $1_{\left(a_{i} \neq b_{j}\right)}$ is the indicator function equal to 1 when $a_{i} \neq b_{j}$, and 0 otherwise. leva,b (i, j) is the distance between the first i characters of string a and the first j characters of string b.

```
Algorithm 4 (Levenshtein distance - imperative approach)
    function LevenshteinDistance \(\left(s_{1}, s_{2}\right)\)
        for \(i=0\) to \(\left|s_{1}\right|\) do
            \(m[i, 0]=i\)
        end for
        for \(j=0\) to \(\left|s_{2}\right|\) do
            \(m[0, j]=j\)
```

```
    end for
    for \(i=1\) to \(\left|s_{1}\right|\) do
        for \(j=1\) to \(\left|s_{2}\right|\) do
            if \(s_{1}[i]==s_{2}[j]\) then
                \(m[i, j]=\min \{m[i-1, j]+1, m[i, j-1]+1, m[i-1, j-1]\}\)
            else
                \(m[i, j]=\min \{m[i-1, j]+1, m[i, j-1]+1, m[i-1, j-1]+1\}\)
            end if
        end for
    end for
    return \(m\left[\left|s_{1}\right|,\left|s_{2}\right|\right]\).
end function
```


Exercise 3/1

a) Find two different words of the same soundex code.
b) Find two phonetically similar words of different soundex codes.

Exercise 3/2

Write elements in a dictionary of the permuterm index generated by the term mama.

Exercise 3/3

Which keys are usable for finding the term $s^{*} n g$ in a permuterm wildcard index?

Exercise 3/4

What is the complexity of intersection of two un-ordered posting lists of lengths m and n ?

Exercise 3/5

What is the complexity (in \mathcal{O}-notation) of intersecting of two ordered posting lists of lengths m and n ?

Exercise 3/6

What is the worst-case complexity of searching in hash tables?

Exercise 3/7

Compute the Levenshtein distance between paris and alice. Write down the matrix of distances between all prefixes as computed by Algorithm 4

