
Dictionaries and Tolerant Retrieval (Chapter 3)
Algorithm 1 (Soundex Code)
Transformation of a string to a 4-character soundex code

1. Keep the first character

2. Rewrite {𝐴, 𝐸, 𝐼, 𝑂, 𝑈, 𝐻, 𝑊, 𝑌 } to 0

3. Rewrite characters

(a) {𝐵, 𝐹, 𝑃, 𝑉 } to 1
(b) {𝐶, 𝐺, 𝐽, 𝐾, 𝑄, 𝑆, 𝑋, 𝑍} to 2
(c) {𝐷, 𝑇} to 3
(d) {𝐿} to 4
(e) {𝑀, 𝑁} to 5
(f) {𝑅} to 6

4. Remove duplicities

5. Remove zeros

6. Change to length 4 (truncate or add trailing zeros)

Algorithm 2 (Querying in Permuterm Index)
For query 𝑞, find keys according to the following scheme:

• for 𝑞 = 𝑋, find keys in the form 𝑋$

• for 𝑞 = 𝑋*, find keys in the form $𝑋*

• for 𝑞 = *𝑋, find keys in the form 𝑋$*

• for 𝑞 = *𝑋*, find keys in the form 𝑋*

• for 𝑞 = 𝑋*𝑌 , find keys in the form 𝑌 $𝑋*

Algorithm 3 (Levenshtein Distance – declarative approach)
Distance between two strings 𝑎 and 𝑏 is given by lev𝑎,𝑏(|𝑎|, |𝑏|) where

lev𝑎,𝑏(𝑖, 𝑗) =

⎧⎪⎪⎨⎪⎪⎩
max(𝑖, 𝑗) if min(𝑖, 𝑗) = 0

min

⎧⎨⎩
lev𝑎,𝑏(𝑖 − 1, 𝑗) + 1
lev𝑎,𝑏(𝑖, 𝑗 − 1) + 1
lev𝑎,𝑏(𝑖 − 1, 𝑗 − 1) + 1(𝑎𝑖 ̸=𝑏𝑗)

otherwise

where 1(𝑎𝑖 ̸=𝑏𝑗) is the indicator function equal to 1 when 𝑎𝑖 ̸= 𝑏𝑗, and 0 otherwise.
lev𝑎,𝑏(𝑖, 𝑗) is the distance between the first 𝑖 characters of string 𝑎 and the first 𝑗 characters
of string 𝑏.

Algorithm 4 (Levenshtein distance – imperative approach)
1: function LevenshteinDistance(𝑠1, 𝑠2)
2: for i = 0 to |𝑠1| do
3: 𝑚[𝑖, 0] = 𝑖
4: end for
5: for j = 0 to |𝑠2| do
6: 𝑚[0, 𝑗] = 𝑗

1

7: end for
8: for i = 1 to |𝑠1| do
9: for j = 1 to |𝑠2| do

10: if 𝑠1[𝑖] == 𝑠2[𝑗] then
11: 𝑚[𝑖, 𝑗] = min{𝑚[𝑖 − 1, 𝑗] + 1, 𝑚[𝑖, 𝑗 − 1] + 1, 𝑚[𝑖 − 1, 𝑗 − 1]}
12: else
13: 𝑚[𝑖, 𝑗] = min{𝑚[𝑖 − 1, 𝑗] + 1, 𝑚[𝑖, 𝑗 − 1] + 1, 𝑚[𝑖 − 1, 𝑗 − 1] + 1}
14: end if
15: end for
16: end for
17: return 𝑚[|𝑠1|, |𝑠2|]
18: end function

Exercise 3/1
a) Find two different words of the same soundex code.

b) Find two phonetically similar words of different soundex codes.

Exercise 3/2
Write elements in a dictionary of the permuterm index generated by the term mama.

Exercise 3/3
Which keys are usable for finding the term s*ng in a permuterm wildcard index?

Exercise 3/4
What is the complexity of intersection of two un-ordered posting lists of lengths 𝑚 and
𝑛?

Exercise 3/5
What is the complexity (in 𝒪-notation) of intersecting of two ordered posting lists of
lengths 𝑚 and 𝑛?

Exercise 3/6
What is the worst-case complexity of searching in hash tables?

2

Exercise 3/7
Compute the Levenshtein distance between paris and alice. Write down the matrix of
distances between all prefixes as computed by Algorithm 4.

3

	Exercise 3/1
	Exercise 3/2
	Exercise 3/3
	Exercise 3/4
	Exercise 3/5
	Exercise 3/6
	Exercise 3/7

