
Multiprocessing in Python
Making Embarassingly Parallel Tasks Embarassingly Fast

Vítek Novotný
witiko@mail.muni.cz

Faculty of Informatics, Masaryk University

May 12, 2021

Introduction

Introduction
In Python, you can achieve several kinds of parallelism:
Single Instruction, Single Data (SISD) Plain Python. Ok for logic, slow for computation.
Single Instruction, Multiple Data (SIMD) Vector instructions for CPUs. Use numpy.
Single Program, Multiple Data (SPMD) Many processes of one program work in parallel.

Shared Memory One machine. Use multiprocessing.
Distributed Memory Many machines. Use GNU Parallel.

In this tutorial, I will show you how you can transform SISD code into SIMD and SPMD in
your second term project with examples. This will significantly speed up your code. ;-)

Examples SISD to SIMD

SISD to SIMD I
Say you have the following code for computing the cosine similarity of vectors X and Y :

n∑
i=1
Xi · Yi√

n∑
i=1
X2i ·

√
n∑
i=1
Y2i

>>> from math import sqrt
>>> X = [1.0, 0.0, 0.0, 1.0, 0.0, 1.0] * 100
>>> Y = [0.0, 1.0, 1.0, 1.0, 0.0, 1.0] * 100
>>> similarity, norm_X, norm_Y = 0.0, 0.0, 0.0
>>> for x, y in zip(X, Y):
... similarity += x * y
... norm_X += x**2
... norm_Y += y**2
>>> norm = sqrt(norm_X) * sqrt(norm_Y)
>>> similarity /= norm if norm > 0.0 else 1.0
>>> print(similarity)
0.5773502691896258
$ python -m timeit -s 'from ex1 import similarity' 'similarity()'
10000 loops, best of 3: 69.7 usec per loop
V. Novotný · Multiprocessing in Python · May 12, 2021 3 / 8

Examples SISD to SIMD

SISD to SIMD II
Modern processors support vector instructions, which can process many elements at once.
By using the numpy library, we can perform the same operation much more efficiently:
>>> import numpy as np
>>> X = np.array([1.0, 0.0, 0.0, 1.0, 0.0, 1.0] * 100)
>>> Y = np.array([0.0, 1.0, 1.0, 1.0, 0.0, 1.0] * 100)
>>> similarity = np.dot(X, Y)
>>> norm = np.sqrt(np.sum(X)) * np.sqrt(np.sum(Y))
>>> similarity /= norm if norm > 0.0 else 1.0
>>> print(similarity)
0.5773502691896258
$ python -m timeit -s 'from ex2 import similarity' 'similarity()'
100000 loops, best of 3: 11.8 usec per loop
We have received a 7× speed-up. If we compute similarity between many vectors, the
speed-up is even bigger, since numpy uses optimized BLAS matrix operations.

V. Novotný · Multiprocessing in Python · May 12, 2021 4 / 8

Examples SIMD to SPMD

SIMD to SPMD I
Say you have the following code for preprocessing the TREC collection documents:

>>> from pv211_utils.trec.loader import load_documents
>>> from gensim.utils import simple_preprocess
>>> from tqdm import tqdm
>>>
>>> documents = load_documents(Document)
>>> tokenized_documents = []
>>> for document in tqdm(documents.values()):
... tokenized_document = simple_preprocess(document.body)
... tokenized_documents.append(tokenized_document)

2%|| | 8689/527890 [00:12<11:24, 758.54it/s]

This is pretty to read, but also pretty inefficient, since we are using only a single CPU! :(

V. Novotný · Multiprocessing in Python · May 12, 2021 5 / 8

Examples SIMD to SPMD

SIMD to SPMD II
On your notebook, you have up to 8 CPUs. On the aura.fi.muni.cz server, you have
64 CPUs. You can split documents into chunks and have CPUs process them in parallel:
>>> from pv211_utils.trec.loader import load_documents
>>> from gensim.utils import simple_preprocess
>>> from tqdm import tqdm
>>> from multiprocessing import Pool
>>>
>>> documents = load_documents(Document)
>>> with Pool(None) as pool: # None means we use all CPUs!
... document_bodies = (document.body for document in documents.values())
... document_bodies = tqdm(document_bodies, total=len(documents))
... tokenized_documents = pool.map(simple_preprocess, document_bodies)
18%||||||| | 96961/527890 [00:06<01:22, 5205.96it/s]

On 64 CPUs, we have received a 7× speed-up. You can see that the scaling is not linear
and there is overhead, since Python has to pickle and send Document objects to the
individual CPUs and then pickle and retrieve the results. This is the price of Python’s GIL.
We get 50× speed-up by exchanging bigger chunks: pool.map(..., chunksize=10000).
V. Novotný · Multiprocessing in Python · May 12, 2021 6 / 8

https://en.wikipedia.org/wiki/Global_interpreter_lock#Drawbacks

Examples SIMD to SPMD

SIMD to SPMD III
The previous design pattern is not unique to Python. You can parallelize any any program
that processes one file one at a time. Suppose you have a script called tokenize.py,
which takes an input text file and produces a tokenized output text file:
$ for INPUT in input/*.txt
> do
> OUTPUT=output/"${INPUT#input/}"
> python tokenize.py "$INPUT" "$OUTPUT"
> done
You can use the GNU Parallel tool to run the script on all your CPUs in parallel:
$ parallel python tokenize.py {} output/{/} ::: input/*.txt
If your disk can catch up, we will receive a full 64× speed-up on 64 CPUs! ^_^
We can go even further and run our script on many different machines:
$ parallel --sshlogin user@machine1 --sshlogin user@machine2 ...
Unix admins beware!
V. Novotný · Multiprocessing in Python · May 12, 2021 7 / 8

https://www.gnu.org/software/parallel/

Conclusion

Conclusion
Python is a nice language for writing logic, but slow for computation.
In order not to wither while waiting for results, you should obey the following rules:

For vector and matrix computation, replace for loops with numpy.
For processing many independent elements with single-CPU transformations,
replace for loops with multiprocessing (or GNU Parallel).

I wish you the best of luck with your projects!

	Introduction
	Examples
	SISD to SIMD
	SIMD to SPMD

	Conclusion

