Feature Construction

PV211 Seminar on ML, IR, and SV

Zuzana Pitsmausová 25 April, 2024

Zuzana Pitsmausová

Outline

- 1. Introduction; Motivation
- 2. Feature Construction & SOTA
- 3. Background
- 4. Problem Setting
- 5. Evolutionary Forest

Outline

- 1. Introduction; Motivation
- 2. Feature Construction & SOTA
- 3. Background
- 4. Problem Setting
- 5. Evolutionary Forest

Feature

	laptop_ID	Company	Product	TypeName	Inches	ScreenResolution	Cpu	Ram	Memory	Gpu	OpSys	Weight	Price_euros
0	1	Apple	MacBook Pro	Ultrabook	13.3	IPS Panel Retina Display 2560×1600	Intel Core i5 2.3GHz	8GB	128GB SSD	Intel Iris Plus Graphics 640	macOS	1.37kg	1339.69
1	2	Apple	Macbook Air	Ultrabook	13.3	1440×900	Intel Core i5 1.8GHz	8GB	128GB Flash Storage	Intel HD Graphics 6000	macOS	1.34kg	898.94
2	3	HP	250 G6	Notebook	15.6	Full HD 1920×1080	Intel Core i5 7200U 2.5GHz	8GB	256GB SSD	Intel HD Graphics 620	No OS	1.86kg	575.00

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

"A feature is an individual measurable property within a recorded dataset. In machine learning and statistics, features are often called "variables" or "attributes."

In a **patient medical dataset**, features could be **age**, **gender**, **blood pressure**, **cholesterol level**, and other observed characteristics relevant to the patient.

Introduction; Motivation

- crucial step in the ML pipeline
- quality of features **affects model's performance**
- creating new features / transforming existing ones
- growing interest in developing new methods
- increasing complexity and diversity of data sources

Zuzana Pitsmausová

Outline

- 1. Introduction; Motivation
- 2. Feature Construction & SOTA
- 3. Background
- 4. Problem Setting
- 5. Evolutionary Forest

Zuzana Pitsmausová

Feature Construction (FC)

- new features are constructed from raw data or previously constructed features
- in order to:
 - improve robustness
 - interpretability
 - and/or generalization
- **result:** features, that may better describe target concept
- in SOTA three groups:
 - standalone (operator-based)
 - embedded into automated ML
 - feature interactions

Standalone FC Methods

- following steps:
 - (1) generating a set of candidates
 - (2) ranking candidate features
 - (3) evaluating and selecting high-ranked features
 - (4) adding promising features to dataset
- mostly human-guided, less efficient
- problem- or domain-specific

Embedded FC Methods

- **automated** construction of features
- reduces exploration time,
- two approaches
 - **expand-reduce** (ExploreKit, Deep Feature Synthesis, Auto-Sklearn)
 - wrapper approach
- usually not fully automated

Feature Interactions

- certain features are **not individually** related to target concept
- need to be combined with other features
- to avoid construction of meaning-less features
- before FC process

Outline

- 1. Introduction; Motivation
- 2. Feature Construction & SOTA
- 3. Background
- 4. Problem Setting
- 5. Evolutionary Forest

Zuzana Pitsmausová

Genetic Programming

- one of the evolutionary computation (EC) algorithms
 - **other:** ant colony opt. (ACO), swarm opt. (SO)
- evolution of computer programs
- **representation:** tree-like structures
- **individuals:** treated as trees
- operators: mutation, crossover

Fig. 1. GP trees – parent individuals and off-spring individuals. Figure is showing one of the genetic operators – crossover. [7]

25 April, 2024

12/42

Genetic Programming

Evolutionary algorithm generate(P_0); (generate initial population) t = 0;while not termination-criterion(P(t)) do $evaluate(P_t);$ $P'_t = \text{selection}(P_t);$ (selection strategy) $P'_t = \operatorname{reproducion}(P'_t);$ (reproduction strategy) evaluate(P'_t); $P_{t+1} = \operatorname{replace}(P_t, P'_t);$ (replacement strategy) t = t + 1;end while; **output:** best individual or best population found

Fig. 2. Evolutionary algorithms: base template

Outline

- 1. Introduction; Motivation
- 2. Feature Construction & SOTA
- 3. Background
- 4. Problem Setting
- 5. Evolutionary Forest

Zuzana Pitsmausová

Pipeline

1. Pick two frameworks for FC based on GP

a. Evolutionary Forest

- b.**M3GP**
- 2. Pick four datasets
 - a.toy ds: diabetes
 - b. kaggle ds: laptop/house prices, medical insurance
- 3. Datasets preprocessing

Pipeline

4. Use picked frameworks for creating new features

5. Compare several regressors trained on both old and newly created features (R2)

a. AdaBoostReg

b. ExtraTreeReg

c. RandomForestReg

6. Plot the results; Compare picked frameworks

Datasets

- toy dataset: <u>diabetes</u>
- three kaggle datasets: <u>Laptop Prices</u>, <u>House Prices</u>, <u>Medical Insurance</u>
- basic preprocessing:
 - check for NaN values
 - check distribution of particular cols
 - if necessary encoding features to numerical form
 - additional small adjustments

• train, test split (80:20)

0														
0	Company int64	TypeName int64	Inches int64	ScreenResolution i	Ram int64	OpSys int64	Weight int64	Pri	ce_euros float64	Memory_Type int64	Memory_gb int64	Gpu_type int64	Cpu_type int64	
0	1	4	7	10		3	8	37	1339.69	5	4	9		12
1	1	4	7	1		3	8	34	898.94	0	4	6		12
2	7	3	14	3		3	4	72	575.0	5	7	6		15
3	1	4	13	12		5	8	69	2537.45	5	10	3		12
4	1	4	7	10		3	8	37	1803.6	5	7	9		12
					•				1000.0	0	,	Ŭ		12
\odot									0					
	price float64	crime_rate float64	resid_area float64	air_qual float64	room_num float64	age float64	dist1 float64		age int64	sex object	bmi float64	children int64	smoker object	regi
0	24.0	0.00632	32.31	0.538	6.575	65.2	4.35		0	19 female	270	0	VAS	SOU

0	24.0	0.00632	32.31	0.538	6.575	65.2	4.3
1	21.6	0.02731	37.07	0.469	6.421	78.9	4.9
2	34.7	0.02729	37.07	0.469	7.185	61.1	5.0
3	33.4	0.03237	32.18	0.458	6.998	45.8	6.2
4	36.2	0.06905	32.18	0.458	7.147	54.2	6.1

0						
0	age int64	sex object	bmi float64	children int64	smoker object	region object
0	19	female	27.9	0	yes	southwest
1	18	male	33.77	1	no	southeast
2	28	male	33.0	3	no	southeast
3	33	male	22.705	0	no	northwest
4	32	male	28.88	0	no	northwest

Zuzana Pitsmausová

Feature Construction

Frameworks

Evolutionary Forest

An open source python library for automated feature engineering based on Genetic Programming

Jespb / Python-M3GP Public

An easy-to-use scikit-learn inspired implementation of the Multidimensional Multiclass Genetic Programming with Multidimensional Populations (M3GP) algorithm

Technology Used

- Python 3.9
- deepnote
- frameworks: M3GP, EF

- 1 # Necessary imports
- 2 import numpy as np
- 3 import pandas as pd
- 4 import matplotlib.pyplot as plt
- 5 import seaborn as sns

necessary imports
from sklearn.model_selection import train_test_split
import numpy as np
import pandas as pd
from sklearn.datasets import load_diabetes
from sklearn.ensemble import ExtraTreesRegressor, AdaBoostRegressor, GradientBoostingRegressor, RandomForestRegressor
from sklearn.metrics import r2_score

Zuzana Pitsmausová

Feature Construction

Outline

- 1. Introduction; Motivation
- 2. Feature Construction & SOTA
- 3. Background
- 4. Problem Setting
- **5.** Evolutionary Forest

Zuzana Pitsmausová

Evolutionary Forest Framework

- automated feature engineering library based on GP
- provides ensemble EvolutionaryTreeRegressor model
- new candidate GP individuals generated through
 - mutation
 - crossover
- **each individual:** group of GP trees, one tree represents one feature

• option to:

- see important features (based on fitness fc) and plot them • use them for creating new train/test data
- vast number of hyperparameters (tried adjusting fundamental ones)

201 🗸	<pre>definit(self,</pre>	261
202	# Basic GP Parameters (Core)	262
203	n_pop=50, # Population size	263
204	n_gen=20, # Number of generations	264
205	<pre>cross_pb=0.5, # Probability of crossover</pre>	265
206	<pre>mutation_pb=0.1, # Probability of mutation</pre>	266
207	<pre>max_height=8, # Maximum height of a GP tree</pre>	267
208	<pre>min_height=0, # Minimum height of a GP tree</pre>	268
209	<pre>gene_num=5, # Number of genes in each GP individual</pre>	269
210	<pre>mutation_scheme='uniform', # Mutation scheme used in GP</pre>	270
211	<pre>verbose=False, # Whether to print verbose information</pre>	271
212	<pre>basic_primitives=True, # Primitive set used in GP</pre>	272
213	<pre>normalize=True, # Whether to normalize before fitting a model</pre>	272
214	<pre>select='AutomaticLexicaseFast', # Name of the selection operator</pre>	275
215	elitism=0, # Number of the best individuals to be directly passed to next generation	274
216		275
217	# Basic GP Parameters (Not Recommend to Change)	270
218	external_archive=None, # External archive to store historical best results	2//
219	original_features=False, # Whether to use original features in the model or not	278
220	<pre>second_layer=None, # Strategy to induce a second layer for assigning different weights in ensemble</pre>	279
221	allow_revisit=False, # Whether to allow repetitive individuals	280
222	<pre>n_process=1, # Number of processes for parallel execution</pre>	281
223	<pre>constant_type='Int', # Type of constants used in GP</pre>	282
224	<pre>early_stop=-1, # Early stopping criteria (number of generations)</pre>	283
225	random_fix=True, # Whether to use random fix when height limit is not satisfied in GP	284
226		285
227	# Ensemble Learning Parameters	286
228	<pre>base_learner='Random-DT', # Base learner used in the ensemble</pre>	287
229	<pre>min_samples_leaf=1, # Minimum samples required to form a leaf node in a tree</pre>	288
230	<pre>max_tree_depth=None, # Maximum depth of a decision tree</pre>	290
231	<pre>cv=5, # Number of cross-validation folds</pre>	291
232	<pre>score_func='R2', # Scoring function for evaluation</pre>	292
233	<pre>ensemble_prediction='Mean', # Method of ensemble prediction</pre>	294
234	<pre>ensemble_selection=None, # Ensemble selection method</pre>	295
235	<pre>ensemble_size=100, # Size of the ensemble model</pre>	296
236		298
237	# Soft PS-Tree Parameters	299
238	partition_number=4, # Number of partitions in PS-Tree	300
239	<pre>ps_tree_local_model='RidgeCV', # Type of local model used in PS-Tree</pre>	301
240	dynamic_partition='Self-Adaptive', # Strategy to dynamically change partition scheme	303
241	<pre>ps_tree_cv_label=True, # Whether to use label information in CV in PS-Tree</pre>	304
242	<pre>ps_tree_partition_model='DecisionTree', # Type of model used for partitioning</pre>	305
243	only_original_features=True, # Whether to only use original features in PS-Tree	307
244	<pre>shared_partition_scheme=False, # Whether to use shared partition scheme for all individuals</pre>	308
245	<pre>max_leaf_nodes=None, # Maximum height of each decision tree</pre>	309
246		310
247	# SR-Forest Parameters (TEVC 2023)	312
248	<pre>ps_tree_ratio=0.1, # Ratio of PS-Tree in multi-fidelity evaluation</pre>	313
249	<pre>decision_tree_count=0, # Number of piecewise trees in a SR-Tree</pre>	314
250		315
251	# More Parameters	317
252	<pre>initial_tree_size=None, # Initial size of GP tree</pre>	318
253	<pre>basic_gene_num=0, # Number of basic genes in a MGP</pre>	319
254	<pre>clearing_cluster_size=0, # Cluster size in clearing</pre>	320
255	reduction_ratio=0, # Ratio of samples removed in pre-selection based on filters	322
256	random state=None, # Random state used for reproducibility	323
257	validation size=0, # Size of the validation set for using in HOF	324
258	mab parameter=None. # Parameters for the MAB	325
259	interleaving period=0. # Period of interleaving (Multi-fidelity Evaluation)	327
260		328

<pre># MEGP Parameters (EuroGP 2023)</pre>
<pre>map_elite_parameter=None, # Hyper-param</pre>
EvoFeat Parameters
class weight=None. # Weight for each cl
cruss_wergine-none, whereare non-each er
Demonstration
Deprecated parameters
<pre>boost_size=None, # Alias of "ensemble_s</pre>
<pre>semantic_diversity=None, # Alias of "en</pre>
MGP hyperparameters
<pre>mgp_mode=False, # Whether to use MGP</pre>
mgp scope=None, # Scope of MGP
number of register=10, # Number of regi
intron probability=0. # Probability of
negistan mutation probability=0.1 # Pr
delete inclosert Feles # Whether to d
delete_irrelevant=Faise, # Whether to d
delete_redundant=False, # Whether to de
Semantic Variation (Trail-and-error to
<pre>semantic_variation=False, # Whether to</pre>
<pre>correlation_threshold=None, # Correlati</pre>
<pre>correlation_mode=None, # Correlation mo</pre>
MGP hyperparameters
irrelevant feature ratio=0 01 # Ratio
strict laver mon-True # Whether to use
surfice_rayer_mgp=rrue, # Winether to use
humber_ot_parents=0, # Number of parent
Strategies
SHM-GP hyperparameters
<pre>intron_gp=False, # Whether to use intron GP</pre>
User Deservices
custom primitives=None. # Custom primitives for GP
Debug Parameters
<pre>test_fun=None, # Test function for evaluation</pre>
Evappimental Dapameters (Mauke depresated at any version)
diversity_search='None', # Strategy to assign diversity objectiv
<pre>bootstrap_training=False, # Whether to use bootstrap samples for</pre>
<pre>mean_model=False, # Whether to use mean model for predictions</pre>
environmental_selection=None, # Environmental selection method
<pre>pre_selection=None, # Pre-selection method eager training=False. # Whether to train models eagerly</pre>
<pre>useless_feature_ratio=None, # Ratio of useless features to be re</pre>
weighted_coef=False, # Whether to use weighted coefficients
<pre>feature_selection=False, # Whether to perform feature selection</pre>
outlier_detection=False, # Whether to perform outlier detection
dynamic reduction=0. # Dynamic reduction strategy
active_gene_num=0, # Number of active genes in MGP
<pre>intron_threshold=0, # Threshold for identifying introns in MGP</pre>
<pre>force_sr_tree=False, # Whether to force use SR-Tree</pre>
<pre>gradient_boosting=False, # Whether to use gradient boosting nost pruge threshold=0 # Threshold for past pruging of fortune.</pre>
redundant_hof_size=0, # Size of redundant Hall of Fame
<pre>delete_low_similarity=False, # Whether to delete low similarity</pre>
<pre>importance_propagation=False, # Whether to use importance propag</pre>
ridge_alphas=None, # Alpha values for Ridge regression
parsimonious_probability=1, # Probability of GP with parsimonious shared eda=False, # Whether to use shared estimation of distribu-

rmp_ratio=0.5, # Multi-task Optimization **params):

rameters for MAP-Elite

class in multi-class classification

le_size" "ensemble_selection"

registers in MGP of intron gene in MGP Probability of register mutation in MGP to delete irrelevant genes in MGP delete redundant genes in MGP

to generate new trees) to use semantic variation in GP ation threshold for pre-selection mode for pre-selection

tio of irrelevant features in MGP use strict layering in MGP rents in crossover

ective for training

be removed

tion tion

tures in GP

rity genes ropagation in GP

onious terminal usage tribution in GP

EF: Diabates

0.267491

0.281557

0.276974

original score new score improvement

0.302103

0.280195

0.304149

Results Diabetes:

algorithm

AdaBoostReg

ExtraTreeReg

RandomForestReg

Effect of Feature Construction: Diabetes bmi Original Features 0.30 Constructed Features bmi $\sqrt{s_4^2 + 1}$ bmi + bp 0.25 $-s_3 + s_5$ $bmi + \frac{s_5}{\sqrt{s_6^2 + 1}}$ 0.20 $bmi + s_5$ Feature Name (R^2) $bmi + s_4$ ore 0.15 **S**5 $\sqrt{bp^2+1}$ 1 $s_4 + s_6 - sex - sex$ $\sqrt{s_6^2 + 1}$ 0.10 $\frac{bmi \cdot s_1}{2} + S_5$ $\sqrt{bmi^2+1}$ Ss $\overline{\sqrt{s_1^2+1}\cdot\sqrt{s_1^2\cdot s_4^2+1}}$ 0.05 bmi $\sqrt{s_2^2 + 1}$ 0.00 -bmi + sex $-bmi - bp + s_1 \cdot s_4 + s_3 - 1$

0.034612

-0.001362

0.027175

Zuzana Pitsmausová

Feature Construction

Effect of Feature Construction

25 April, 2024

23/42

EF: Laptop Prices

Zuzana Pitsmausová

nt
20
78
57

EF: House Prices

Zuzana Pitsmausová

sults House Price:									
	original_score	new_score	improvement						
lgorithm									
daBoostReg	0.822125	0.808548	-0.013577						
ktraTreeReg	0.895723	0.897025	0.001302						
andomForestReg	0.869608	0.844354	-0.025254						

EF: Medical Insurance

Zuzana Pitsmausová

esults Medical	Insurance:		
	original_score	new_score	diff
lgorithm			
daBoostReg	0.870117	0.630041	-0.240076
xtraTreeReg	0.880191	0.883264	0.003073
andomForestReg	0.878900	0.898728	0.019827

EF: Summary

- tested on four datasets
- hard to jump to certain conclusions
- diverse results
- powerful performance on a small dataset

Outline

- 1. Introduction; Motivation
- 2. Feature Construction & SOTA
- 3. Background
- 4. Problem Setting
- 5. Evolutionary Forest

M3GP

- originally designed to perform multiclass classification
- according to the authors **powerful FC tool**
- in the original articles tested within classification task

method:

- feature represented as a tree with:
 - inner nodes (operators)
 - leaves (original features)
- each individual consists of few features (trees)
- three mutation operators, two crossover operators
- support for various fitness functions (reg/class)

M3GP: Creating New Individual

crossovers:

- STXO:
 - randomly swaps two nodes of two individuals
 - returns the two individuals as offsprings
- M3XO:
 - randomly swaps two features of two individuals

• mutations:

- STMUT
 - randomly selects one node from a single individual
 - replaces the node with a newly generated node
- M3ADD
 - randomly generates a new node (feature)
 - added to the list of features
- M3REM
 - randomly removes one feature from a single individual

M3GP: Parameter Setting

- tried many combinations
- high effect of random state (mainly for Diabetes ds)
- did not really find a satisfactory combination

M3GP: Diabetes

Feature Construction

Constructed Feature

0.00

Zuzana Pitsmausová

Results Diabetes:

of fetures: 10,	new number	of features 11
original_score	new_score	diff
0.270867	0.306361	0.035494
0.276744	0.305372	0.028628
0.258466	0.362617	0.104151
	of fetures: 10, original_score 0.270867 0.276744 0.258466	of fetures: 10, new number original_score new_score 0.270867 0.306361 0.276744 0.305372 0.258466 0.362617

random state: 1

Results Diabetes	:		
orgininal number	of fetures: 10,	new number	of features 9
	original_score	new_score	diff
algorithm			
AdaBoostReg	0.267802	0.165340 -	0.102461
ExtraTreeReg	0.277900	0.137080 -	0.140820
RandomForestReg	0.267796	0.160382 -	0.107414
random s	tate: 2		

25 April, 2024

32/42

M3GP: Diabetes

Zuzana Pitsmausová

Feature Construction

ults Di	abetes:								
ininal	number	of	fetures:	10,	new	number	of	features	9
		ori	.ginal_sco	ore	new_	score		diff	
orithm									
BoostReg			0.2750	995	0.3	30138	0.0	055043	
raTreeReg			0.2800	561	0.2	286292	0.0	005631	
domForestReg			0.2655	556	0.2	281845	0.0	916289	

random state: 3

M3GP: Laptop Prices

Zuzana Pitsmausová

lts Laptop:			
ninal number	of fetures: 11,	new number	of features 11
	original_score	new_score	diff
rithm			
oostReg	0.796998	0.821019	0.024021
aTreeReg	0.875590	0.864771 ·	-0.010819
omForestReg	0.873309	0.857835 ·	0.015474

rs	
State:	42
ors:	[('abs', 1), ('pow2', 1), ('+', 2), ('-', 2), ('*', 2), ('/', 2), ('min', 2), ('max', 2)]
tion Size:	100
neration:	20
ment Size:	5
m Size:	1
itial Depth:	5
pth:	17
m Dimensions:	5
m Dimensions:	5000
d Model:	DecisionTreeRegressor
s Type:	MSE
s:	1

M3GP: House Prices

Effect of Feature Construction: House Price

Zuzana Pitsmausová

Results House Price:				
orgininal number	of fetures: 18,	new number o	of features 11	
	original_score	new_score	diff	
algorithm				
AdaBoostReg	0.830453	0.751239 -0	0.079214	
ExtraTreeReg	0.893806	0.834407 -0	0.059400	
RandomForestReg	0.859627	0.823156 -0	0.036471	

>	Parameters	
	> Random State:	42
	> Operators:	[('abs', 1), ('pow2', 1), ('+', 2), ('-', 2), ('*', 2), ('/', 2), ('min', 2), ('max', 2)]
	> Population Size:	100
	> Max Generation:	20
	> Tournament Size:	5
	> Elitism Size:	1
	> Max Initial Depth:	5
	> Max Depth:	17
	> Minimum Dimensions:	9
	<pre>> Maximum Dimensions:</pre>	5000
	> Wrapped Model:	DecisionTreeRegressor
	> Fitness Type:	MSE
	> Threads:	1

M3GP: Medical Insurance

Zuzana Pitsmausová

Feature Construction

Medical Insurance:					
nal number	of fetures: 6,	new number	of features 7		
	original_score	new_score	diff		
thm					
stReg	0.864742	0.843586	-0.021156		
reeReg	0.883954	0.869317	-0.014637		
orestReg	0.881992	0.877448	-0.004544		

te:	42
	[('abs', 1), ('pow2', 1), ('+', 2), ('-', 2), ('*', 2), ('/', 2), ('min', 2), ('max', 2)]
Size:	100
tion:	20
Size:	5
ze:	1
1 Depth:	5
	17
mensions:	3
mensions:	5000
del:	DecisionTreeRegressor
pe:	MSE
	1

36/42

M3GP: Summary

- tested on four datasets
- results heavily depended on the random state
- did not find satisfactory combination of parameters
- time-consuming
- no clear improvement

Comparison: EF, M3GP

- frameworks focusing on FC using GP
- individual = set of new features, not just one feature
- use crossover and mutation
- **M3GP** operators for adding and removing features
- **EF** fixed number of features (set during init)

Comparison: EF, M3GP

- highly dependent on random_state
- obtain both reasonable and bad results
- new features enhance and decrease the final score outcome
- **EF** brought fairly better results in terms of usability (time)
- a bit overkill very complex methods, not that satisfactory results
 - maybe due to the dataset
 - it would need further investigation
 - test it on more datasets
 - hyper-parameter tuning (Optuna, Grid Search)

Sources, Articles

• FC SOTA:

• Vouk, B., Guid, M., Robnik-Sikonja, M.: Feature construction using explanations of individual predictions. Engineering Applications of Artificial Intelligence 120, 105823 (2023). https://doi.org/https://doi.org/10.1016/j.engappai.2023.105823

• GP (figure):

<u>https://www.researchgate.net/figure/Genetic-programming-Tree-based-crossover_fig4_282769665</u>

• Pipeline (figure):

<u>https://www.heavy.ai/technical-glossary/feature-engineering</u>

• Evolutionary Algorithm (figure):

<u>https://is.muni.cz/auth/el/fi/podzim2023/IV126/um/3.pdf</u>

Sources, Articles

• Evolutionary Forest:

- articles:
 - H. Zhang, A. Zhou and H. Zhang, "An Evolutionary Forest for Regression," in IEEE Transactions on Evolutionary Computation, vol. 26, no. 4, pp. 735-749, Aug. 2022, doi: 10.1109/TEVC.2021.3136667.
 - H. Zhang, A. Zhou, Q. Chen, B. Xue and M. Zhang, "SR-Forest: A Genetic Programming based Heterogeneous Ensemble Learning Method," in IEEE Transactions on Evolutionary Computation, doi: <u>10.1109/TEVC.2023.3243172</u>.
- github implementation:
 - <u>https://github.com/hengzhe-zhang/EvolutionaryForest</u>

Sources, Articles

- M3GP:
 - \circ articles:
 - J. E. Batista and S. Silva, "Comparative study of classifier performance using automatic feature construction by M3GP," 2022 IEEE Congress on Evolutionary Computation (CEC), Padua, Italy, 2022, pp. 1-8, doi: <u>10.1109/CEC55065.2022.9870343.</u>
 - Muñoz, L., Trujillo, L., & Silva, S. (2015). M3GP multiclass classification with GP. In Genetic Programming - 18th European Conference, EuroGP 2015, Proceedings (Vol. 9025, pp. 78-91). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence) and Lecture Notes in Bioinformatics); Vol. 9025). Springer-Verlag. <u>https://doi.org/10.1007/978-3-</u> 319-16501-1 7
 - github implementation:
 - <u>https://github.com/jespb/Python-M3GP</u>

