
CSS: Flexible box
layout (flexbox, grid)

Bc. Samuel Tuka

Outline of today’s lecture
History of CSS layout techniques

Flexbox - what is it, its history, all the available properties with examples

Grid - what is it, its history, all the available properties with examples

Comparison between these two layout models

History of layout techniques
Before flexbox and grid there was not tool created specifically for layout

Table

Floats

Positioning - static, relative, fixed, absolute, sticky

Block and inline-block elements

Web layout history: How we got to grid and flex

https://cran.r-project.org/web/packages/imola/vignettes/imola-why-flex-and-grid.html

Flexbox and its history
One-dimensional layout model

Idea to create flexbox - 2008 - CSS working group

First working draft published - 2009 - several problems - layout algorithm was slow and

there were divergent details in implementation - Webkit and Firefox

Original specification was based on XUL - technology used by Firefox to produce UI designs

Revision by Tab Atkins, significant revision of the syntax - 2011

Tweener syntax published - late 2011

W3C candidate recommendation - 2012

W3C working draft published - 2013

New syntax - 2015

Browser support flexbox
CSS Flexible Box Layout Module | Can I use... Support tables for HTML5, CSS3, etc

https://caniuse.com/flexbox

Basic flex terms
Flex container

Flex item

Main axis

Cross axis

display property
flex

inline-flex

flex-direction property
row (default)

column

row-reverse

column-reverse

flex-wrap property
no-wrap (default)

wrap

wrap-reverse

flex-flow property
Shorthand property for flex-direction and flex-wrap properties

Default value is row nowrap

justify-content property
Alignment along the main axis

Default value is flex-start

Another options are: start, end, left, right

align-items property
Default value is stretch

Other options are baseline, first baseline, last baseline,

start, end, self-start, self-end

align-content property
Used to align flex container lines when there is extra

space in the cross axis.

This will take effect only with flex-wrap property set to

wrap or wrap-reverse.

Other options are space evenly, start, end, baseline,

first baseline, last baseline

Default value is normal as if no value was set

align-content example

gap, row-gap, column-gap properties
Control of the space between flex items

Space is applied only between items

not on the edges

order property
By default items are laid out in the source order

We can change it manually

Items with the same order revert to source order

Default value is 0

There can be problem with accessibility

flex-grow property
Ability for a flex item to grow

Accepts a unitless value - value servers as a proportion

Amount of the available space the item should take up

All items have same value -> free space is distributed equally

One item - flex-grow: 1, second item flex-grow: 2 -> second item will (or will try) take
up twice as much of the free space then the first item

Negative numbers are invalid

Default value is 0

flex-grow example

flex-shrink property
Ability for a flex item to shrink if necessary

Default value is 1

One item - flex-shrink: 1, second item - flex-shrink: 3, the second item will shrink 3
times faster than the first one

Negative numbers are invalid

flex-basis property
Defines default size of an element before the remaining space is distributed

We can use almost every length like %, rem, em etc. or a keyword.

flex property
Shorthand property for flex-grow, flex-shrink and flex-basis

Flex-shrink and flex-basis are optional

Default value is 0 1 auto

It is recommended to use this property instead of setting individual properties

align-self property
Allows to override the default alignment

When should we use flexbox?
Align items

Small layout design to implement with a few rows or a few columns

Content-first design

Grid and its history
Two-dimensional grid-based layout

First comprehensive draft of a grid layout for CSS was created by Phil Cupp at
MIcrosoft in 2011

Several interactions in the CSS Working Group let to restructured syntax - led
primarily by Elika Etemad and Tab Atkins.

2017 - Chrome, Firefox, Safari and Edge all started to support CSS grid without
vendor prefixes

Browser support grid
https://caniuse.com/css-grid

https://caniuse.com/css-grid

Basic grid terms
Grid container

Grid item

Row

Column

Grid line

Grid cell

Grid track

Grid area

display property
Defines the element as a grid container and establishes a new grid formatting
context for its contents

grid - block level grid

grid-template-columns && grid-template-rows
Defines the columns and rows of the grid with a space-separated list of values

These values represents the track size (size of row/column)

Values can be of any length - %, em, rem etc.

fr unit is very often used when using grid - it is fraction of the free space in the grid

Line names can be specified when declaring columns and row sizes

Different functions can be used like minmax(), repeat(),

Keywords can be used as well - auto, min-content, max-content

grid-template-columns/rows example

grid-template-columns && grid-template-rows
When we declare columns and rows, the lines are automatically created and assigned
numbers (there are also negative numbers so we can reference the line from the last row
to the beginning).

Lines can be explicitly named

Bracket syntax is used for naming lines

Line can have more than one name

If multiple lines share the same name, they

can be referenced by their line name and count

fr - fraction unit
Fraction of the free space of the grid container

The free space is calculated after any non-flexible items

grid-template-areas property
Defines a grid template by referencing the names of the grid areas which are
specified with the grid-area property

Repeating the name causes the content to span those cells

Period signifies empty cell

none - no grid areas are defined

grid-template-areas example

grid-template
Shorthand for setting grid-template-rows, grid-template-columns and
grid-template-areas

none - sets all properties to their initial values

It is not recommended to use this property, because it does not reset implicit grid
properties - grid-auto-columns, grid-auto-rows, grid-auto-flow

grid property should be used instead of grid-template

gap, column-gap, row-gap properties
Specifies the size of the grid lines

Can be any length value

Space is only created between columns/rows, not on the outer edges

gap - shorthand property for row-gap and column-gap

If no row-gap is specified, it is set to the same value as column-gap

justify-items property
Aligns grid items along the row axis

Value applies to all grid items inside the container

Different values - start, end, center, stretch (default value)

align-items property
Aligns grid items along column axis

Value applies to all grid items inside the container

Different values - stretch (default), start, end, center, baseline (depends on the text,
first baseline and last baseline modifiers in the case of multi line text)

place-items property
Sets both the align-items and justify-items properties in a single declaration

First value sets align-items, second value justify-items

If the second value is missing, the first value is assigned to both properties

justify-content property
Set the alignment of the grid within the grid container

Aligns grid along row axis

In case when the grid is smaller than the grid container

Different values - start, end, center, stretch, space-around, space-between,
space-evenly

align-content property
Aligns the grid along the column axis

In case of smaller grid then grid container

Different options - start, end, center, stretch,

space-around, space-between, space-evenly

place-content property
Sets both the align-content and justify-content properties

First value sets align-content, second value justify-content

If the second value is omitted, the first value is assigned to both properties

grid-auto-columns && grid-auto-rows
Specifies the size of any auto-generated grid tracks - implicit tracks

Implicit tracks are created when there are more grid items then cells in the grid or
when grid item is placed outside of the explicit grid

Value can be any length - %, rem em etc. Also fr unit can be used

grid-auto-flow property
If we do not place grid item explicitly on the grid, then auto-placement will be used

grid-auto-flow is used to control, how the auto-placement will work

Different options - row, column, dense

Dense - will attempt to fill in holes in the grid if smaller items come up later

There can be problem with accessibility when using dense

grid auto-flow dense example

grid-column-start/end, grid-row-start/end
Determines a grid item`s location within the grid by referring to specific grid lines

grid-column-start, grid-row-start is the line where the item begins

grid-column-end/grid-row-end is the line where the item ends

value of these properties can be number to refer to numbered grid line or a name
to refer to a named grid line

span keyword can be used as well - span <number> or span <name>

keyword auto indicates auto-placement - automatic span or a default span of one

When end is not specified, the item will span 1 track by default

grid-column-start… example

Example of previous slide

grid-column, grid-row properties
Shorthand for grid-column-start + grid-column-end

Shorthand for grid-row-start + grid-row-end

Values are the same as for longhand version, including span

<start-line> / <end-line>

grid-area property
GIves an item a name so that we can reference the item in grid template created
with grid-template-areas property

Can be used as a shorthand as well for grid-row-start + grid-column-start +
grid-row-end + grid-column-end

<name>

<row-start> / <column-start> / <row-end> / <column-end>

Values for shorthand version can be numbers or named lines

justify-self property
Aligns a grid item inside a cell along the row asix

Value applies to a grid item inside a single cell

Possible values: start, end, center, stretch (default value)

align-self property
Aligns a grid item inside a cell along the column axis

Value applies to the content inside a single grid item

Possible values: start, end, center, stretch (default value)

place-self property
Can be used to set both align-self and justify-self properties in a single declaration

<align-self>/<justify-self>

If the second value is not declared, the first value is assigned to both properties

sizing keywords and sizing functions
fr unit - portion of the remaining space

All lengths values can be used - px, rem, %, em etc.

min-content - minimum size of the content - E pluribus unum - width of pluribus

max-content - maximum size of the content - length of the whole sentence

auto - similar to fr unit but “loose” against fr unit when used together

fit-content() - never less than min-content and never more than max-content

minmax() - sets a minimum and maximum value of the length for the item

repeat() - reduces typing, repeats the column by specification

sizing keywords example

auto-fill, auto-fit properties
auto-fill - fit as many possible columns as possible on a row even when they are
empty

auto-fit - fit whatever columns there are into the space, when there is less items
than the width of container, these items will fill space, no empty columns

auto-fit should be used with minmax

subgrid
Allows grid items to have a grid of their own that inherits lines from the parent grid

grid-template-columns: subgrid

When we should use grid layout?
Two-dimensional layout

Complex layout

Need to overlap elements

Layout-first design

Should I use flexbox or grid?
There is no right answer

Flexbox and Grid serve different purposes and are both useful

The best results are when they are used together

Important thing is to decide, which one should be use - by practising things will get
better

Rule of thumb - use grid for full page layouts and flex for everything else - but
again, it depends, sometimes the grid option will be better even for non page
layout

Questions?

Resources
Web layout history: How we got to grid and flex

Auto-fit Vs Auto-fill

A Complete Guide to CSS Grid

A Complete Guide to Flexbox | CSS-Tricks

Flexbox History

https://cran.r-project.org/web/packages/imola/vignettes/imola-why-flex-and-grid.html
https://defensivecss.dev/tip/auto-fit-fill/
https://css-tricks.com/snippets/css/complete-guide-grid/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://annairish.github.io/historicizing/history

