
Essential Skills in Web
Development

PV219, spring 2024

Interface and User Experience

• Browsers implement standards inconsistently,
make sure your site works reasonably well across
all major browsers.

• At a minimum test against a recent Gecko engine
(Firefox), a WebKit engine (Safari and some
mobile browsers), Chrome (= Opera / Edge), and
your IE browsers (discontinued in Feb 2023).

• Also consider how browsers render your site in
different operating systems.

http://en.wikipedia.org/wiki/Gecko_(layout_engine)
http://firefox.com/
http://www.apple.com/safari/
http://www.google.com/chrome
http://www.opera.com/
https://www.microsoft.com/en-us/edge
http://en.wikipedia.org/wiki/Internet_Explorer
http://www.browsershots.org/

Interface and User Experience

• Consider how people might use the site other
than from the major browsers: cell phones,
screen readers and search engines, for
example.

• Some accessibility info: WAI and Section508.

• It should be a legal requirement. Utilize: WAI-
ARIA and WCAG 2 .

http://www.w3.org/WAI/
http://www.section508.gov/
http://www.section508.gov/
http://www.w3.org/WAI/intro/aria
http://www.w3.org/WAI/intro/aria
http://www.w3.org/TR/WCAG20/

Interface and User Experience

• Don't display unfriendly errors directly to the
user.

• Add the attribute rel="nofollow" to user-
generated links to avoid spam.

• Build well-considered limits into your site

 (this also belongs under Security)

http://en.wikipedia.org/wiki/Nofollow
http://www.codinghorror.com/blog/archives/001228.html

Interface and User Experience

• Learn how to do progressive enhancement or
graceful degradation.

• Redirect after a POST if that POST was
successful, to prevent a refresh from
submitting again.

• Don't make me think (by Steve Krug)

http://en.wikipedia.org/wiki/Progressive_enhancement
https://en.wikipedia.org/wiki/Graceful_degradation
http://en.wikipedia.org/wiki/Post/Redirect/Get
http://www.sensible.com/dmmt.html

Performance

• Implement caching if necessary, understand
and use HTTP caching properly as well as Web
HTML5 Cache Manifest (deprecated in 2021!).

• Optimize images – i.e. don't use a 2000 Kb
image for a repeating background.

• Learn how to gzip/deflate content (deflate is
better).

http://www.mnot.net/cache_docs/
https://www.w3.org/TR/appmanifest/
http://developer.yahoo.com/performance/rules.html#gzip
http://stackoverflow.com/questions/1574168/gzip-vs-deflate-zlib-revisited
http://stackoverflow.com/questions/1574168/gzip-vs-deflate-zlib-revisited

Performance

• Combine / concatenate multiple stylesheets or
multiple script files to reduce number of
browser connections and improve gzip ability
to compress duplications between files.

• Use CSS Image Sprites for small related images
like toolbars (…because of next point)

• Minimize the total number of HTTP requests
required for a browser to render the page.

http://alistapart.com/articles/sprites

Performance

• Yahoo Exceptional Performance – lots of great
guidelines, including improving front-end
performance and their YSlow tool (requires
Firefox, Safari, Chrome or Opera).

• Google page speed (use with browser
extension, or via browser's Developer tool) – a
tool for performance profiling, and it
optimizes your images too.

http://developer.yahoo.com/performance/
http://developer.yahoo.com/yslow/
https://developers.google.com/speed/docs/best-practices/rules_intro
https://developers.google.com/speed/pagespeed/insights_extensions
https://developers.google.com/speed/pagespeed/insights_extensions

Performance

• Utilize Google Closure Compiler for JavaScript
and other minification tools.

• Make sure there’s a favicon.ico file in the root
of the site, i.e. /favicon.ico. Browsers will
automatically request it, even if the icon isn’t
mentioned in the HTML at all.

• If you don’t have a /favicon.ico, this will result
in a lot of 404s, draining your server’s
bandwidth.

http://developers.google.com/closure/compiler/
http://developer.yahoo.com/yui/compressor/
http://mathiasbynens.be/notes/rel-shortcut-icon
http://mathiasbynens.be/notes/rel-shortcut-icon

Technology

• Understand HTTP and things like GET, POST,
sessions, cookies, and what it means to be
"stateless".

• Write your HTML and CSS according to
the W3C specifications and make sure
they validate.

• Understand how JavaScript is processed in the
browser (e.g. event loop).

http://www.ietf.org/rfc/rfc2616.txt
http://www.w3.org/TR/REC-html40/
http://www.w3.org/TR/CSS2/
http://www.w3.org/TR/
http://validator.w3.org/

Technology

• Understand how the JavaScript sandbox
works, especially if you intend to use iframes.

• JavaScript can and will be disabled, and that
AJAX is therefore an extension, not a baseline.

• NoScript is becoming more popular, mobile
devices may not work as expected, and
Google won't run most of your JavaScript
when indexing the site.

http://noscript.net/

Technology

• Learn the difference between 301 and 302
redirects (this is also an SEO issue).

• Consider using a Reset Style Sheet or
normalize.css.

• Consider using a service such as the Google
Libraries API to load frameworks (or any
another suitable CDN).

http://www.bigoakinc.com/blog/when-to-use-a-301-vs-302-redirect/
http://www.bigoakinc.com/blog/when-to-use-a-301-vs-302-redirect/
http://stackoverflow.com/questions/167531/is-it-ok-to-use-a-css-reset-stylesheet
http://necolas.github.com/normalize.css/
http://developers.google.com/speed/libraries/devguide
http://developers.google.com/speed/libraries/devguide

Bug fixing

• Understand you'll spend 20 % of your time
coding and 80 % of it maintaining, so code
accordingly.

• Set up a good error reporting solution.

• Have a system for people to contact you with
suggestions and criticisms (always accept
feedback).

Bug fixing

• Document how the application works for
future support staff and people performing
maintenance.

• Make frequent backups! (And make sure those
backups are functional).

• Have a restore strategy, not just a backup
strategy.

https://www.computerweekly.com/feature/Six-disaster-recovery-pitfalls-and-how-to-avoid-them

Bug fixing

• Use a version control system to store your
files, such as Subversion, Mercurial or Git.

• Don't forget to do your Acceptance Testing.

• Frameworks like Selenium can help. There are
also many alternatives: Robot Framework,
PhantomJS, Cypress.io or BrowserSync.

http://subversion.apache.org/
http://mercurial.selenic.com/
http://git-scm.org/
http://seleniumhq.org/
https://robotframework.org/
https://phantomjs.org/
https://www.cypress.io/
https://browsersync.io/

Bug fixing

• Make sure you have sufficient logging in place
using frameworks such as log4j, log4net or log4r.

• If something goes wrong on your live site, you'll
need a way of finding out what.

• When logging make sure you capture both
handled exceptions, and unhandled exceptions.
Report / analyze the log output, as it'll show you
where the key issues are in your site.

http://logging.apache.org/log4j/
http://logging.apache.org/log4net/
http://log4r.rubyforge.org/

	Slide 1: Essential Skills in Web Development
	Slide 2: Interface and User Experience
	Slide 3: Interface and User Experience
	Slide 4: Interface and User Experience
	Slide 5: Interface and User Experience
	Slide 11: Performance
	Slide 12: Performance
	Slide 13: Performance
	Slide 14: Performance
	Slide 15: Technology
	Slide 16: Technology
	Slide 17: Technology
	Slide 18: Bug fixing
	Slide 19: Bug fixing
	Slide 20: Bug fixing
	Slide 21: Bug fixing

