
Introduction to JavaScript
PV219, spring 2024

2

Agenda

◼ What Is JavaScript?

◼ JavaScript Basics (ECMAScript)

◼ Object Oriented Programming in JavaScript

◼ Error Handling

◼ Regular Expressions

What Is JavaScript?

4

A Brief History of JavaScript

◼ Developed by Brendan Eich of Netscape, under the name of

Mocha, then LiveScript, and finally JavaScript.

◼ 1995 - JavaScript 1.0 in Netscape Navigator 2.0 (Dec)

◼ 1996 - JavaScript 1.1 in Netscape Navigator 3.0 (Aug), JScript 1.0

in Internet Explorer 3.0 (Aug). JavaScript had no standards

governing its syntax or features.

◼ 1997 - ECMAScript 1.0 (ECMA-262, based on JavaScript 1.1)

(Jun), JavaScript 1.2 in Netscape Navigator 4.0 (Jun), JScript 3.0

in Internet Explorer 4.0 (Sep)

◼ 1998 - JavaScript 1.3 in Netscape 4.5 (ECMAScript 1.0) (Oct)

◼ 1999 - JScript 5.0 in Internet Explorer 5.0 (ECMAScript 1.0) (Mar),

ECMAScript 3.0 (Regular expressions, error handling, etc.) (Dec)

◼ 2000 - JScript 5.5 in Internet Explorer 5.5 (ECMAScript 3.0) (Jul),

JavaScript 1.5 in Netscape 6.0 (ECMAScript 3.0) (Nov)

◼ 2001 - JScript 5.6 in Internet Explorer 6.0 (Aug)

◼ 2005 - JavaScript 1.6 in Firefox 1.5 (Nov)

What is JavaScript?

5

JavaScript Implementations

◼ A complete JavaScript implementations is made up of three

distinct parts:

 The Core (ECMAScript)

 The Document Object Model (DOM)

 The Browser Object Model (BOM)

JavaScript

ECMAScript DOM BOM

What is JavaScript?

6

ECMAScript

◼ ECMAScript is simply a description, defining all the

properties, methods, and objects of a scripting language.
 Syntax

 Types

 Statements

 Keywords

 Reserved Words

 Operators

 Objects

◼ Each browser has it own implementation of the ECMAScript
interface, which is then extended to contain the DOM and
BOM.

◼ Today, all popular Web browsers comply with the 3rd edition

 of ECMA-262.

ECMAScript

JavaScript JScript ActionScript

What is JavaScript?

7

Document Object Model (DOM)

◼ The Document Object Model (DOM) describes methods and

interfaces for working with the content of a Web page.

◼ The DOM is an tree-based, language-independent API for

HTML as well as XML. (cf. The SAX provides an event-based
API to parse XML.)

◼ The W3C DOM specifications: Level1, Level2, Level3

◼ The document object is the only object that belongs to both

the DOM and the BOM.
 getElementsByTagName(), getElementsByName(),

getElementById()

◼ All attributes are included in HTML DOM elements as

properties.
 oImg.src = “mypicture.jpg”;

 oDiv.className = “footer”; // cf. class -> className

What is JavaScript?

8

Browser Object Model (BOM)

◼ The Browser Object Model (BOM) describes methods and

interfaces for interacting with the browser.

◼ Because no standards exist for the BOM, each browser has

it own implementations.

◼ The window object represents an entire browser window.

 objects

◼ document - anchors, forms, images, links, location

◼ frames, history, location, navigator, screen

 methods

◼ moveBy(), moveTo(), resizeBy(), resizeTo(),

◼ open(), close(), alert(), confirm(), input()

◼ setTimeOut(), clearTimeOut(), setInterval(), clearInterval()

 properties

◼ screenX, screenY, status, defaultStatus, etc.

What is JavaScript?

9

JavaScript is…

◼ JavaScript is one of the world‟s most popular programming

languages.
◼ JavaScript is not interpreted Java.

◼ JavaScript has more in common with functional language

like Lisp or Scheme that with C or Java.
◼ JavaScript is well suited to a large class of non-Web-related

applications.
◼ Design errors? No programming language is perfect.

◼ Lousy implementations were embedded in horribly buggy
web browsers.

◼ Nearly all of the books about JavaScript are quite awful.

◼ Many of people writing in JavaScript are not programmers.

◼ JavaScript is now a complete object-oriented language.

◼ JavaScript does not have class-oriented inheritance, but it
does have prototype-oriented inheritance.

What is JavaScript?

JavaScript Basics
(ECMAScript)

11

Syntax

◼ JavaScript borrows most of its syntax from Java,

but also inherits from Awk and Perl, with some inherits
influence from Self in its object prototype system.

◼ The basic concepts of JavaScript:
 Everything is case-sensitive.

 Variables are loosely typed.

◼ Use the var keyword.

◼ Variables don’t have to be declared before being used.

 End-of-line semicolons are optional.

◼ var test1 = “red”

var test2 = “blue”; // do this to avoid confusion

 Comments are the same as in Java, C, and Perl.

 Braces indicate code blocks.

JavaScript Basics

12

Keywords & Reserved Words

◼ The keywords and reserved words cannot be used as

variables or function names.

◼ Keywords

 break, case, catch, continue, default, delete, do, else,

finally, for, function, if, in, instanceof, new, return,
switch, this, throw, try, typeof, var, void, while, with

◼ Reserved Words

 abstract, boolean, byte, char, class, const, debugger,

double, enum, export, extends, final, float, goto,
implements, import, int, interface, long, native, package,
private, protected, public, short, static, super,
synchronized, throws, transient, volatile

JavaScript Basics

13

Primitive and Reference Values

◼ Primitive Values

 Primitive values are simple pieces of data that are stored on

the stack,

 which is to say that their value is stored directly in the location

that the variable accesses.

 The value is one of the JavaScript primitive types:

◼ Undefined, Null, Boolean, Number, or String.

 Many languages consider strings as a reference type and not a

primitive type, but JavaScript breaks from this tradition.

◼ Reference Values
 Reference values are objects that are stored in the heap,

 meaning that the value stored in the variable location is a

pointer to a location in memory where the object is stored.

JavaScript Basics

14

Primitive Types

◼ JavaScript has five primitive types:

 Undefined

◼ The Undefined type has only one value, undefined.

 Null

◼ The Null type has only one value, null.

 Boolean

◼ The Boolean type has two values, true and false.

 Number

◼ 32-bit integer and 64-bit floating-point values.

◼ Infinity → isFinite()

◼ NaN (Not a Number) → isNaN()

 String

◼ Using either double quotes (“) or single quote (‘).

◼ JavaScript has no character type.

JavaScript Basics

15

The typeof Operator

◼ To determine if a value is

in the range of values for a
particular type, JavaScript
provides the typeof
operator.

◼ Why the typeof operator
returns “object” for a value
that is null.
 An error in the original

JavaScript implementation.

 Today, it is rationalized

that null is considered a

placeholder for an object.

Value typeof

Boolean boolean

Number number

String string

Undefined undefined

Null object

Object object

Array object

Function function

JavaScript Basics

16

Conversions

◼ Converting to a String

 Primitive values for booleans, numbers, strings are pseudo-

objects, which means that they actually have properties and

methods.

 alert(“blue”.length); // outputs “4”
alert((false).toString()); // outputs “false”
alert((10).toString(2)); // outputs “1010”
alert((10).toString(16)); // outputs “A”

◼ Converting to a Number
 JavaScript provide two methods for converting non-number

primitives into numbers: parseInt() and parseFloat().

 var num1 = parseInt(“0xA”); // returns 10
var num2 = parseFloat(“4.5.6”); // returns 4.5
var num3 = parseInt(“blue”); // returns NaN

JavaScript Basics

17

Type Casting

◼ Boolean(value)

 Boolean(“”) → false; Boolean(“hi”) → true

 Boolean(0) → flase; Boolean(100) → true

 Boolean(null) → false; Boolean(undefined) → false

 Boolean(new Object()) → true

◼ Number(value)
 Number(false) → 0; Number(true) → 1

 Number(null) → 0; Number(undefined) → NaN

 Number(“4.5.6”) → NaN (cf. parseFloat())

 Number(new Object()) → NaN

◼ String(value)
 String(null) → “null”

 String(undefined) → “undefined”

JavaScript Basics

18

Reference Types

◼ Reference types are commonly referred to as classes, which

is to say that when you have a reference value, you are
dealing with an object.

◼ ECMAScript defines “object definitions” that are logically
equivalent to “classes” in other programming languages.

◼ The new operator
 var obj = new Object;

var obj = new Object(); // do this to avoid confusion

◼ The instanceof operator
 The instanceof operator identifies the type of object you are

working with.

 var aStrObject = new String(“Hello”);

var result = (aStrObject instanceof String); // returns true

JavaScript Basics

19

The Object Class

◼ The Object class in JavaScript is similar to java.lang.Object

in Java.

◼ Each of properties and methods are designed to be

overridden by other classes.

◼ Properties of the Object class:

 constructor – A reference value (pointer) to the function that

created the object.

 prototype – A reference value to the object prototype for this

object.

◼ Methods of the Object class:

 hasOwnProperty(property)

 isPrototypeOf(object)

 propertyIsEnumerable(property)

 toString()

 valueOf()

JavaScript Basics

20

Primitive Type-related Classes
◼ The Boolean Class

 It‟s best to use Boolean primitives instead of Boolean objects.
 var result = (new Boolean(false)) && true; // returns true

◼ cf. All objects are automatically converted to true in
Boolean expressions.

◼ The Number Class
 Methods:

◼ toFixed(), toExponential(), toPrecision(), etc.

 Whenever possible, you should use numeric primitives instead.

◼ The String Class
 Property: length

 Methods:

◼ charAt(), charCodeAt(), indexOf(), lastIndexOf()

◼ localeCompare(), concat(), slice(), substring()

◼ replace(), split(), match(), search()

◼ toLowerCase() toLocaleLowerCase(), toUpperCase(),
toLocaleUpperCase(), etc.

JavaScript Basics

21

Operators
◼ Unary

 delete, void, Prefix ++/--, Postfix ++/--, Unary +/-

◼ Bitwise

 ~, &, |, ^, <<, >>, >>>

◼ Boolean

 !, &&, ||

◼ Arithmetic

 +, -, *, /, %

◼ Assignment

 =, +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=, >>>=

◼ Comparison

 ==, !=, >, >=, <, <=, ===, !==

◼ Conditional

 variable = boolean_expression ? true_value : false_value;

◼ Comma

 var iNum = 1, iNum=2;

JavaScript Basics

22

Statements

◼ if...else

◼ switch

◼ while

◼ do...while

◼ for

◼ for...in

 It is used to enumerate the properties of an object.

(cf. all object has a method propertyIsEnumerable())

 for (property in expression) statement

◼ with

 A very slow segment. It is best to avoid using it.

◼ Label, break and continue

◼ try...catch...finally

◼ throw

JavaScript Basics

23

Functions

◼ A function is a collection of statements that can be run

anywhere at anytime.

◼ The function keyword

 function functionName(arg0, arg1,…, argN)

{ functionBody }

 var functionName = function(arg1, arg2,…, argN)

{ functionBody }

◼ Functions that have no return value actually return

undefined.

◼ Functions cannot be overloaded.

 The last function becomes the one that is used.

◼ The Function Class

 Functions are actually full-fledged objects.

 var functionName = new Function(arg1, arg2,…, argN,

functionBody);

JavaScript Basics

24

Functions

◼ The arguments object

 Within a function’s code, a special object called arguments

give the developer access to the function’s parameters without

specifically naming them.

 Any developer-defined function accepts any number of

arguments (up to 255).

 Any missing arguments are passed in as undefined.

 Any excess arguments are ignored.

◼ function doAdd() {

 if (arguments.length == 1) {
 alert(arguments[0] + 10);
 } else if (arguments.length == 2) {
 alert(arguments[0] + arguments[1]);
 }
}
doAdd(10); // outputs “20”
doAdd(30, 20); // outputs “50”

JavaScript Basics

25

Functions

◼ Closures

 A closure is an expression (typically a function) that can have

free variables together with an environment that binds those

variables (that closes the expression).

 Functions can be defined inside of other functions. The inner

function has access to the variables and parameters of the

outer function.

 The inner function is a closure.

◼ var iBaseNum = 10;

function addNumbers(iNum1, iNum2) {
 function doAddition() {
 return iBaseNum + iNum1 + iNum2;
 }
 return doAddition():
}

JavaScript Basics

Object Oriented Programming
in JavaScript

27

Object Oriented Terminology

◼ A class is a kind of recipe for an object.

◼ An object is a particular instance of a class.

◼ ECMAScript has no formal classes; ECMA-262 describes

object definitions as the recipes for an object.

◼ ECMA-262 defines an object as an “unordered collection of

properties each of which contains a primitive value, object,
or function”.

◼ If a member of an object is a function, it is considered to be

a method; otherwise, the member is considered a property.

◼ ECMAScript supports the requirements of object-oriented

languages.
 Encapsulation

 Inheritance

 Polymorphism

Object Oriented Programming in JavaScript

28

Class-based vs. Prototype-based

◼ Class-based Programming

 A style of object-oriented programming in which inheritance is

achieved by defining classes of objects, as apposed to the

objects themselves.

 The most popular and developed model of OOP.

 Smalltalk, Java, C++, etc.

◼ Prototype-based Programming
 A style of object-oriented programming in which classes are

not present, and behavior reuse (aka. inheritance) is

accomplished through a process of cloning existing objects

which serve as prototypes.

 Class-less, prototype-oriented, or instance-based

programming.

 Self, Cecil, ECMAScript(JavaScript), etc.

Object Oriented Programming in JavaScript

29

Early Binding vs. Late Binding

◼ Early binding means that properties and methods are

defined for an object (via its class) before it is instantiated
so the compiler/interpreter can properly assemble the
machine code ahead of time.
 Java, Visual Basic, etc. (cf. IntelliSense)

◼ Late binding means that the compiler/interpreter doesn’t
know what type of object is being held in a particular
variable until runtime.
 ECMAScript(JavaScript), etc.

◼ Due to the late binding, JavaScript allows a large amount of
object manipulation to occur without penalty.

Object Oriented Programming in JavaScript

30

Types of Objects in JavaScript

◼ Native Objects

 Any object supplied by an ECMAScript implementation

independent of the host environment.

 Object, Boolean, Number, String, Function, Array, Date,

RegExp, Error, EvalError, RangeError, ReferenceError,

SyntaxError, TypeError, URInternet Explorerrror

◼ Built-in Objects

 Any object supplied by an ECMAScript implementation,

independent of the host environment, which is present at the

start of the execution of an ECMAScript program.

 Every build-in object is a native object.

 Global, Math

◼ Host Objects

 Any object that is not native, provided by the host

environment of an ECMAScript implementation.

 All BOM and DOM objects are considered to be host objects.

Object Oriented Programming in JavaScript

31

The Array Class

◼ How to create an Array object:

 var aValues = new Array(10);

 var aColors = new Array(“red”, “green”, “blue”);

 var aColors = [“red”, “green”, “blue”];

◼ The array dynamically grows in size with each additional

item.
 aColor[3] = “yellow”; aColor[4] = “white”; ...

◼ Property of the Array class:

 length

◼ Methods of the Array class:

 join(), split()

 concat(), slice()

 push(), pop()

 shift(), unshift()

 reverse(), sort()

Object Oriented Programming in JavaScript

32

The Date Class

◼ Based on earlier versions of java.util.Date from Java.

◼ How to create a new Date class:

 var today = new Date();

◼ Methods of the Date class:

 parse(), UTC()

 Overides toString() and valueOf() differently.

 toDateString(), toTimeString(), toLocaleString(),

toLocaleDateString(), toLocaleTimeString(), toUTCString()

 getTimezoneOffset()

 getTime(), getFullYear(), getUTCFullYear(), getMonth(),

getUTCMonth(), getDate(), getUTCDate(), getDay(),

getUTCDay(), getHours(), getUTCHours(), getMinutes(),

getUTCMinutes(), getSeconds(), getUTCSecounds(),

getMilliseconds(), getUTCMillisenconds()

 Also has the equivalent set methods to above get methods.

Object Oriented Programming in JavaScript

33

The Global Object

◼ The Global object is the keeper of all the functions and

variables which were not defined inside of other objects.

◼ The Global object does not have an explicit name.

 var pointer = Global; // error

◼ Sometimes the this variable points at it, but often not.

◼ In the web browsers, window and self are members of the

Global object which point to the Global object.

◼ Properties of the Global object:

 undefined, NaN, Infinity, and all native object constructors.

◼ Methods of the Global object:

 isNaN(), isFinite(), parseInt(), parseFloat()

 encodeURI(), encodeURIComponent(), decodeURI(),

decodeURIComponent() → Unicode encoding support

◼ cf. escape(), unescape() → ASCII encoding only; BOM

 eval()

Object Oriented Programming in JavaScript

34

The Math Object

◼ Properties of the Math object:

 E, LN10, LN2, LOG2E, LOG10E, PI, SQRT1_2, SQRT2

◼ Methods of the Math object:

 min(), max(), abs()

 ceil(), floor(), round()

 exp(), log(), pow(), sqrt()

 acos(), asin(), atan(), atan2(), cos(), sin(), tan()

 random()

◼ A practical example:

 function selectFrom(iFirstValue, iLastValue) {

 var iChoices = iLastValue - iFirstValue + 1;
 return Math.floor(Math.random() * iChoices
 + iFirstValue);
}
// select from between 2 and 10
var iNum = selectFrom(2, 10);

Object Oriented Programming in JavaScript

35

Scope

◼ All properties and methods of all objects in JavaScript are

public.
◼ Due to the lack of private scope, a convention was

developed to indicate properties and methods should be
considered private.
 someObject.__color__ = “red”; or

someOjbect._color = “red”;

◼ Strictly speaking, JavaScript doesn’t have a static scope.

◼ The this keyword always points to the object that is calling
a particular method.

◼ When used inside of a function, var defines variables with
function-scope. The variables are not accessible from
outside of the function.

◼ Any variables used in a function which are not explicitly

defined as var are assumed to belong to an outer scope,
possibly to the Global Object.

Object Oriented Programming in JavaScript

36

Objects in JavaScript

◼ In JavaScript, objects are implemented as a collection of

named properties.

◼ The most basic objects in JavaScript act as hashtables or

dictionaries.

◼ Objects can be created directly through object literal

notation:
 var myDog = {

 age: 3,
 color: “black”,
 bark: function() { alert(“Baf!”); }
}

 The object‟s properties and methods are defined as a set of

comma-separated name/value pairs inside curly braces.

 Each of the members is introduced by name, followed by a

colon and then the definition.

 The methods are created by assigning an anonymous function.

Object Oriented Programming in JavaScript

37

Objects in JavaScript

◼ Being an interpreted language, JavaScript allows for the

creation of any number of properties in an object at any
time.
 myDog.name = “Snuppy”; //using dot notation

myDog[“breed”] = “Afghan Hound”; //using subscript notation

 var name = myDog[“name”]; //returns “Snuppy”

var breed = myDog.breed; //returns “Afghan Hound”

 The reserved words cannot be used in the dot notation, but

they can be used in the subscript notation.

◼ JavaScript Object Notation (JSON)
 JSON is a simple notation that uses JavaScript-like syntax for

data exchange.

 JSON is used pretty much everywhere in JavaScript these days,

as arguments to functions, as return values, as server

responses (in strings), etc.

Object Oriented Programming in JavaScript

38

Objects in JavaScript

◼ Objects can also be created by using the new operator and

providing the name of the class to instantiate.
 var myDog = new Object();

◼ A simple object:
 var obj = new Object();

obj.x = 1;
obj.y = 2;

 In addition to the x and y properties,
the object has an additional property

called constructor.

 The object also contains a hidden
link property which points to the

prototype member of the object’s
constructor.

obj

x 1

y 2

Object.prototype

constructor Object

Object Oriented Programming in JavaScript

39

Constructor

◼ In JavaScript, a new class is defined by creating a simple

function.

◼ When a function is called with new operator, the function

servers as the constructor for the class.

◼ Internally, JavaScript creates an Object, and then calls the

constructor function. Inside the constructor, the variables
this is initialized to point the just created Object.
 function Foo() {

 this.x = 1;
 this.y = 2;
}

var obj = new Foo();

◼ The constructor will return the new
object, unless explicitly overridden
with the return statement.

obj

x 1

y 2

Foo.prototype

constructor Foo

Object.prototype

(Constructor) Object

Object Oriented Programming in JavaScript

40

Prototype

◼ The constructed object will contain a hidden link property,

which contains a reference to the constructor’s prototype
member.

◼ The prototype object is a kind of template upon which an

object is based when instantiated.

◼ Any properties or methods on the prototype object will be

passed on all instances of that class.

◼ Prototype Chaining

 When evaluating an expressions to retrieve a property,

JavaScript first looks to see if the property is defined directly

in the object.

 If it is not, it then looks at the object’s prototype to see if the

property is defined there.

 This continues up the prototype chain until reaching the root

prototype.

 If the prototype chain is exhausted, the undefined is returned.

Object Oriented Programming in JavaScript

41

Defining Classes and Objects

◼ Factory Paradigm

 No new operator → semantically out of favor.

 Every object has its own version of showColor()
 → Each object should share the same function.

function createCar(sColor, iDoors) {
 var oTempCar = new Object;
 oTempCar.color = sColor;
 oTempCar.doors = iDoors;
 oTempCar.showColor = function () { alert(this.color); };
 return oTempCar;
}

var oCar1 = createCar("red", 4);
var oCar2 = createCar("blue", 3);
oCar1.showColor(); // outputs "red"
oCar2.showColor(); // outputs "blue"

Object Oriented Programming in JavaScript

42

Defining Classes and Objects

◼ Constructor Paradigm

 The new operator.

 Just like factory paradigm, constructors duplicate functions.

 Constructors can be rewritten with external functions, but

semantically it doesn’t make sense.

function Car(sColor, iDoors) {
 this.color = sColor;
 this.doors = iDoors;
 this.showColor = function () { alert(this.color); };
}

var oCar1 = new Car("red", 4);
var oCar2 = new Car("blue", 3);
oCar1.showColor(); // outputs "red"
oCar2.showColor(); // outputs "blue"

Object Oriented Programming in JavaScript

43

Defining Classes and Objects

◼ Prototype Paradigm

 The constructor has no arguments.

 Functions can be shared without any consequences, but

objects rarely meant to shared across all instances.

function Car() {}

Car.prototype.color = "red";
Car.prototype.doors = 4;
Car.prototype.drivers = new Array("Mike", "Sue");
Car.prototype.showColor = function () { alert(this.color); };

var oCar1 = new Car();
var oCar2 = new Car();
oCar1.drivers.push("Matt");
alert(oCar1.drivers); // outputs "Mike,Sue,Matt"
alert(oCar2.drivers); // outputs "Mike,Sue,Matt"

Object Oriented Programming in JavaScript

44

Defining Classes and Objects

◼ Hybrid Constructor/Prototype Paradigm

 Use the constructor paradigm to define all nonfunction
properties of the object, and use the prototype paradigm to

define the function properties (methods) of the object.

function Car(sColor, iDoors, iMpg) {
 this.color = sColor;
 this.doors = iDoors;
 this.drivers = new Array("Mike", "Sue");
}

Car.prototype.showColor = function () { alert(this.color); };

var oCar1 = new Car("red", 4);
var oCar2 = new Car("blue", 3);
oCar1.drivers.push("Matt");
alert(oCar1.drivers); // outputs "Mike,Sue,Matt"
alert(oCar2.drivers); // outputs "Mike,Sue"

Object Oriented Programming in JavaScript

45

Defining Classes and Objects

◼ Dynamic Prototype Method

 Use a flag(_initialized) to determine if the prototype has bean
assigned any methods yet.

function Car(sColor, iDoors) {
 this.color = sColor;
 this.doors = iDoors;
 this.drivers = new Array("Mike", "Sue");

if (typeof Car._initialized == "undefined") {
 Car.prototype.showColor = function () { alert(this.color); };
 Car._initialized = true;
 }
}

Object Oriented Programming in JavaScript

46

A Practical Example – StringBuffer

◼ Defining the StringBuffer class:

 function StringBuffer() {

 this.__string__ = new Array();
}

 StringBuffer.prototype.append = function (str) {

 this.__strings__.push(str);
};

 StringBuffer.prototype.toString = function () {

 return this.__strings__.join("");
};

◼ Testing the code:
 var buffer = new StringBuffer();

buffer.append(“hello ”);
buffer.append(“world”);
var result = buffer.toString(); // outputs “hello world”

Object Oriented Programming in JavaScript

47

Modifying Objects

◼ Creating a New Method

 Number.prototype.toHexString = function() {

 return.this.toString(16);
}

 var iNum = 15;

alert(iNum.toHexString()); // outputs “F”

◼ Redefining an Existing Method
 The Function’s toString() method normally outputs the source

code of the function.

 Function.prototype.toString = function() {

 return “code hidden”;
}

 function sayHi() { alert(“Hi”); }

alert(sayHi.toString()); // outputs “code hidden”

Object Oriented Programming in JavaScript

48

Implementing Inheritance

◼ Using Object Masquerading

function ClassA(sColor) {
 this.color = sColor;
 this.sayColor = function () { alert(this.color); };
}

function ClassB(sColor, sName) {
 this.newMethod = ClassA;
 this.newMethod(sColor);
 delete this.newMethod;
 this.name = sName;
 this.sayName = function () { alert(this.name); };
}

var objA = new ClassA("red");
var objB = new ClassB("blue", "Nicholas");
objA.sayColor(); // outputs “red”
objB.sayColor(); // outputs “blue”
objB.sayName(); // outputs “Nicholas”

 Object
masquerading

not intended

for use in the

original

ECMAScript.

 Object

masquerading

supports

multiple

inheritance.

Object Oriented Programming in JavaScript

49

Implementing Inheritance

◼ Using Object Masquerading – The call() Method

 The 3rd edition of ECMAScript includes two new methods of the
Function object: call() and apply().

 The first argument is the object to be used for this, and all

other arguments are passed directly to the function itself.

function ClassA(sColor) {
 this.color = sColor;
 this.sayColor = function () { alert(this.color); };
}

function ClassB(sColor, sName) {
 ClassA.call(this, sColor);
 this.name = sName;
 this.sayName = function () { alert(this.name); };
}

Object Oriented Programming in JavaScript

50

Implementing Inheritance

◼ Using Object Masquerading – The apply() Method

 The apply() method takes two arguments: the object to be
used for this and an array of arguments to be passed to the

function.

 You may use the arguments object.

function ClassA(sColor) {
 this.color = sColor;
 this.sayColor = function () { alert(this.color); };
}

function ClassB(sColor, sName) {
 ClassA.apply(this, new Array(sColor));
 // or ClassA.apply(this, arguments);
 this.name = sName;
 this.sayName = function () { alert(this.name); };
}

Object Oriented Programming in JavaScript

51

Implementing Inheritance

◼ Using Prototype Chaining

function ClassA() {}

ClassA.prototype.color = "red";
ClassA.prototype.sayColor = function () { alert(this.color); };

function ClassB() {}
ClassB.prototype = new ClassA();
ClassB.prototype.name = "";
ClassB.prototype.sayName = function () { alert(this.name); };

var objA = new ClassA();
var objB = new ClassB();
objA.color = "red";
objB.color = "blue";
objB.name = "Nicholas";
objA.sayColor(); // outputs “red”
objB.sayColor(); // outputs “blue”
objB.sayName(); // outputs “Nicholas”

Object Oriented Programming in JavaScript

http://ClassB.prototype.name
http://ClassB.prototype.name
http://ClassB.prototype.name

52

Implementing Inheritance

◼ Using Prototype Chaining (continued)

 Prototype chaining is the form of inheritance actually intended

for use in ECMAScript.

 Any properties or methods on the prototype object will be

passed on all instances of that class.

 No parameters are passed into the constructor call in

prototype chaining.

 The instanceof operator works in a rather unique way in

prototype chaining.

 Prototype chaining has no support for multiple inheritance.

 Because of the unique nature of the prototype object,

inheritance doesn’t work with dynamic prototyping.

Object Oriented Programming in JavaScript

53

Implementing Inheritance

◼ Hybrid Method: Object Masquerading/Prototype Chaining

function ClassA(sColor) {

 this.color = sColor;
}

ClassA.prototype.sayColor = function () { alert(this.color); };

function ClassB(sColor, sName) {
 ClassA.call(this, sColor);
 this.name = sName;
}

ClassB.prototype = new ClassA();
ClassB.prototype.sayName = function () { alert(this.name); };

var objA = new ClassA("red");
var objB = new ClassB("blue", "Nicholas");
objA.sayColor(); // outputs ”red”
objB.sayColor(); // outputs “blue”
objB.sayName(); // outputs “Nicholas”

Object Oriented Programming in JavaScript

54

A Practical Example - Polygon

◼ Creating the base class: Polygon()

 function Polygon(iSides) {

 this.sides = iSides;
}

 Polygon.prototype.getArea = function () {

 return 0;
};

◼ Creating the subclass: Triangle()
 function Triangle(iBase, iHeight) {

 Polygon.call(this, 3);
 this.base = iBase;
 this.height = iHeight;
}

 Triangle.prototype.getArea = function () {

 return 0.5 * this.base * this.height;
};

Object Oriented Programming in JavaScript

55

A Practical Example - Polygon

◼ Creating the subclass: Rectangle()

 function Rectangle(iLength, iWidth) {
 Polygon.call(this, 4);
 this.length = iLength;
 this.width = iWidth;
}

 Rectangle.prototype.getArea = function () {
 return this.length * this.width;
};

◼ Testing the code:
 var triangle = new Triangle(12, 4);

var rectangle = new Rectangle(22, 10);
alert(triangle.sides); // outputs “3”
alert(triangle.getArea()); // outputs “24”
alert(rectangle.sides); // outputs “4”
alert(rectangle.getArea()); // outputs “220”

Object Oriented Programming in JavaScript

Error Handling

57

Handling Errors

◼ JavaScript offers two specific ways to handle errors:

 The BOM includes the onerror event handler on both the

window object and on images;

 The 3rd edition of ECMAScript implements the

try...catch...finally construct as well as throw statement to

deal with exceptions.

◼ Errors vs. Exceptions
 Syntax errors, also called parsing errors, occur at compile time

for traditional programming languages and at interpret time

for JavaScript.

 Runtime errors, also called exceptions, occur during execution

after compilation or interpretation.

Error Handling

58

The onerror Event Handler

◼ The onerror event is fired on the window object whenever

an exception occurs on the page.
 window.onerror = function() { alert(“An error occurred.”); }

 To hide the browser’s error message, return a value of true.

◼ Error information is passed as three parameters into the
onerror event handler:
 Error message, URL and line number.

◼ Window.onerror = function(sMsg, sUrl, sLine) {

 alert(“An error occurred:\n” + sMsg + “\nURL:” +
 sURL + “\nLine Number:” + sLine);
 return true;
}

 The image’s onerror event handler doesn‟t pass any

arguments for error information.

Error Handling

59

The try...catch Statement

◼ The basic syntax:

 try {
 // code to run
} catch ([exception]) {
 // code to run if an exception occurs.
} [finally {
 // code that is always executed.
}]

 Unlike Java, the ECMAScript standard specifies only one catch
clause per try...catch statement.

◼ The Error Object

 Properties:

◼ name – A string indicating the type of error

◼ message – The actual error message

 Subclasses:

◼ EvalError, RangeError, ReferenceError, SyntaxError,
TypeErro, URIError

Error Handling

60

Determining the Type of Error

◼ Using the name property of the Error object:

 try {

 eval("a ++ b"); // causes SyntaxError
} catch (oException) {
 if (oException.name == "SyntaxError") {
 alert("Syntax Error: " + oException.message);
 } else {
 alert("An exception occurred: " + oException.message);
 }
}

◼ Using the instanceof operator and use the class name of

different errors:
 if (oException instanceof SyntaxError) {

 alert("Syntax Error: " + oException.message);
} else {
 alert("An exception occurred: " + oException.message);
}

Error Handling

61

Raising Exceptions

◼ The throw statement is used to raise exceptions purposely.

◼ The syntax:

 throw error_object;

 The error_object can be a string, a number, a Boolean value,

or an actual object.

◼ throw “error1”;

◼ throw 5001;

◼ throw new SyntaxError(“I don’t like your syntax.”);

◼ A practical example:

 function addTwoNumbers(a, b) {

 if (arguments.length < 2) {
 throw new Error(“Two numbers are required.”);
 } else {
 return a + b;
 }
}

Error Handling

Regular Expressions

63

Regular Expression Support

◼ Regular expressions are strings with a special syntax

indicating the occurrence of specific characters or
substrings within another string.

◼ Regular expressions was introduced into the 3rd edition of

ECMAScript.
◼ JavaScript supports regular expressions through the

ECMAScript RegExp class.
 var reCat = new RegExp(“Cat”);

var reCat = new RegExp(“cat”, “gi”); // g=global, i=case-
insensitive (cf. m=multiline).

◼ Some regular expression literals use Perl-style syntax:

 /string_pattern/[processing_instruction_flags]

 var reCat = /cat/gi;

Regular Expressions

64

Using a RegExp Object

◼ Using the methods of the RegExp object

 test() – Determine if a string matches the specified pattern.

◼ alert(reCat.test(“The cat meows.”)); // outputs “true”

 exec() – Returns an Array. The first item in array is the first

match; the others are back references.

◼ var result = reCat.exec(“A Cat catch cAt Bat”); // returns

an array containing “Cat”

◼ Using the methods of the String object.

 match() – Returns an array of all matches of the string.

◼ var result = “A Cat catch cAt Bat”.match(reCat); // returns

an array containing “Cat”, “cat” and “cAt”

 search() – Acts the same way as indexOf(), but uses a RegExp

object instead of a substring.

◼ alert(“A Cat catch cAt Bat”.search(reCat)); // outputs “2”

Regular Expressions

65

Characters in Regular Expressions

◼ Metacharacters

 A metacharacter is a character that is part of regular
expression syntax.

 . ^ $ * + ? { [] \ | ()

 Metacharacters are not used as literals, and don’t match

themselves in regular expressions.
 Any time you want to use one of these characters inside of a

regular expression, they must be escaped.
◼ var reQMark = /\?/; or
var reQMark = new RegExp(“\\?”); // double escaping

◼ Using special characters

 To represent a character using ASCII

◼ Two-digit hexadecimal code: \x62 → “b” (cf. octal: \142)

 To represent a character using Unicode

◼ Four-digit hexadecimal code: \u0062 → “b”

 Predefined special characters

◼ \t, \n, \r, \f, \a, \e, \cX, \b, \v, \0

Regular Expressions

66

Character Classes

◼ Character classes are groups of characters to test for,

which are enclosed inside of square brakets([]).
◼ Simple classes

 A simple class specifies the exact characters to look for.

 var result = “bat cat eat fat”.match(/[bcf]at/gi); // returns
array containing “bat”, “cat” and “fat”

◼ Negation classes

 A negation class matches all characters except for a selected
few.

 Use the caret (^).

 var result = “bat cat eat fat”.match(/[^bc]at/gi); // returns
array containing “eat” and “fat”

◼ Range classes

 A range class specifies a range of characters.

 Use the dash (-), which should be read as through.

 var result = “no1, no2 no3 no4”.match(/no[1-3]/gi); // returns
array containing “no1”, “no2” and “no3”

Regular Expressions

67

Character Classes

◼ Combination classes

 A combination class is a character class that is made up of

several other character classes.
 /[a-m1-4]/ → “a1”, “b3”, “h2”, “m4”, etc.

 JavaScript doesn’t support union and intersection classes, such

as [a-m[p-z]] or [a-m[^b-e]].

◼ Predefined classes

 . = [^\n\r] → Any character except „\n‟ and „\r‟.

 \d = [0-9] → A digit

 \D = [^0-9] → A non-digit

 \s = [\t\n\x0B\f\r] → A white-space character

 \S = [^ \t\n\x0B\f\r] → A non-white-space character

 \w = [a-zA-Z_0-9] → A word character

 \W = [^a-zA-Z_0-9] → A non-word character

Regular Expressions

68

Quantifiers

◼ Quantifiers enable you to specify how many times a

particular pattern should occur.

◼ Simple quantifiers

 ? → Either zero or one occurrence

 * → Zero or more occurrences

 + → One or more occurrences

 {n} → Exactly n occurrences

 {n,m} → At least n but no more than m occurrences

 {n,} → At least n occurrences

◼ /ba?d/ → “bd”, “bad”

◼ /ba*d/ → “bd”, “bad”, “baad”, “baaad”,..

◼ /ba+d/ → “bad”, “baad”, “baaad”,..

◼ /b?rea?d/ = /b{0,1}rea{0,1}d/ → “bread”, “read”, “red”,..

◼ /b[ea]{1,2}d/ → “baed”, “bead”, “baad”, “bed”,..

Regular Expressions

69

Quantifiers

◼ The three kinds of regular expression quantifiers are greedy,

reluctant, and possessive.

◼ The use of the *, ?, and + symbols

 Greedy: ?, *, +, {n}, {n,m}, {n,}

 Reluctant: ??, *?, +?, {n}?, {n,m}?, {n,}?

 Possessive: ?+, *+, ++, {n}+, {n,m}+, {n,}+

◼ var strToMatch = “abbbaabbbaaabbb123”;
var re1 = /.*bbb/g; // greedy
var re2 = /.*?bbb/g; // reluctant
var re3 = /.*+bbb/g; // possessive

strToMatch.match(re1); // “abbbaabbbaaabbb”
strToMatch.match(re2); // “abbb”, “aabbb” and “aaabbb”
strToMatch.match(re3); // null

◼ Some browsers don’t support for the possessive quantifier.

Regular Expressions

70

Grouping

◼ To handle character sequences instead of individual

characters, regular expressions support grouping.

◼ Grouping is used by enclosing a set of characters, character

classes, and/or quantifiers inside of a set of parentheses.
 /dogdog/g = /(dog){2}/g → “dogdog”

 /(mom(and dad)?)/ → “mom” or “mom and dad”

◼ A practical example:

 Let‟s add your own trim() method to the String object.

 String.prototype.trim = function () {

 var reExtraSpace = /^\s+(.*?)\s+$/;
 return this.replace(reExtraSpace, "$1");
};

◼ \s → A white-space character

◼ ^ → Beginning of the line

◼ $ → End of the line

Regular Expressions

71

Backreferences

◼ Each group is stored in a special location for later use.

These special values, stored from your groups, are called
backreferences.

◼ To use the backreferences:

 The values of the backreferences can be obtained from the
RegExp constructor itself. (RegExp.$1-$9).
◼ var reNumbers = /#(\d+)/;
reNumbers.test(“#123456789”);
alert(RegExp.$1); // ouputs “123456789”

 Backreferences can also be included in the expression that
defines the groups. Use the special escape sequences \1, \2,
and so on.
◼ /(dog)\1/ = /dogdog/

 Backreferences can be used with the String’s replace() method

by using the special character sequences $1, $2, and so on.
◼ var reMatch = /(\d{4}) (\d{4})/;
var result = “1234 5678”.replace(reMatch, “$2 $1”);
// returns “5678 1234”

Regular Expressions

72

Non-capturing Groups

◼ Groups that create backreferences are called capturing

groups. There are also non-capturing groups, which don’t
create backreferences.

◼ Use non-capturing groups to avoid the overhead of storing
the results in long regular expressions.

◼ To create a non-capturing group, just add a question mark
followed by a colon immediately after the opening
parenthesis.
 var reNumbers = /#(?:\d+)/;

reNumbers.test(“#123456789”);
alert(RegExp.$1); // ouputs “”

◼ A practical example:

 Let’s create your own stripHTML() method for a String.

 String.prototype.stripHTML = function () {
 var reTag = /<(?:.|\s)*?>/g;
 return this.replace(reTag, "");
};

Regular Expressions

73

Alternation

◼ Alternation can be used to match a single regular

expression out of several possible regular expressions.

◼ The alternation operator is the same as the ECMAScript

bitwise OR, a pipe(|), and it is placed between two
independent patterns.
 var reCatDog = /\b(cat|dog)\b/;

var result = “cat dog mouse hotdog”.match(reCatDog);
// returns an array containing “cat” and “dog”

◼ A pratical example:

 Let’s remove inappropriate words from user input.

 function filterText(sText) {

 var reBadWords = /badword|anotherbadword/gi;
 return sText.replace(reBadWords, function (sMatch) {
 return sMatch.replace(/./g, "*");
 });
}

Regular Expressions

74

Lookaheads

◼ Lookaheads are used to capture a particular group of

characters only if they appear before another set of
characters.
 JavaScript does not support lookbehinds.

◼ Positive lookaheads

 Created by enclosing a patter between (?= and).

 var reBed = /(bed(?=room))/;

alert(reBed.test("bedroom")); // outputs “true”
alert(reBed.test("bedding")); // outputs “false”
alert(RegExp.$1); // outputs “bed”

◼ A lookahead is not returned as part of group.

◼ Negative lookaheads

 Created by enclosing a patter between (?! and).

 var reBed = /(bed(?!room))/;

alert(reBed.test("bedroom")); // outputs “false”
alert(reBed.test("bedding")); // outputs “true”

Regular Expressions

75

Boundaries

◼ Boundaries are used in regular expressions to indicate the

location of a pattern.
 ^ → Beginning of the line

 $ → End of the line

 \b → Word boundary

 \B → Non-word boundary

◼ Examples:

 var reLastWord = /(\w+)\.$/;

reLastWord.test(“Important word is the last one.”);
alter(RegExp.$1); // outputs “one”

 var strMatch = “first second third fourth fifth sixth”;

var reWords = /\b(\S+?)\b/g;
var result = strMatch.match(reWords); // returns an array
“first”, “second”, “third”, “fourth”, “fifth” and “sixth”

◼ It is easier to use the word character class(\w):

var reWords = /(w+)/g;

Regular Expressions

76

Multiline Mode

◼ If there are multiple lines contained in a string, you can

specify multiline mode adding an m to the options of the
regular expression.

◼ Examples:
 var strMatch = “first second\nthird fourth\nfifth sixth”;

var reWords = /(\w+)$/g;
var result = strMatch.match(reWords); // returns an array
contains only “sixth”

var strMatch = “first second\nthird fourth\nfifth sixth”;
var reWords = /(\w+)$/gm;
var result = strMatch.match(reWords); // returns an array
containing “second”, “fourth” and “sixth”

Regular Expressions

77

The RegExp Object

◼ Instance properties:

 global, ignore, lastIndex, multiline, source, etc.

◼ Static properties:

 input ($_), lastMatch($&), lastParen($+), leftContext($`),

rightContext($‟)

 Backrefercences: $1, $2,..., $9

 An example:

 var reShort = /(s)ho(rt)/g;

reShort.test("bbq is short for barbecue“);
alert(RegExp.$_); // outputs “bbq is short for barbecue”
alert(RegExp[“$&”]); // outputs “short”
alert(RegExp[“$+”]); // outputs “rt”
alert(RegExp.leftContext); // outputs “bbq is ”
alert(RegExp.rightContext); // outputs “ for barbecue”
alert(RegExp.$1); // outputs “s”
alert(RegExp.$2); // outputs “rt”

Regular Expressions

78

A Practical Example

◼ Validating e-mail addresses

An valid e-mail satisfies that:

◼ at least one character must precede the at (@) symbol,

◼ and at least three must come after it,

◼ the second of which must be a period.

The regular expression is the following:

var reEmail = /^(?:\w+\.?)*\w+@(?:\w+\.)+\w+$/;

◼ (?:\w+\.?) → One or more word characters followed by

zero or one period.

◼ \w+@ → A word character is always before the @.

◼ (?:\w+\.) → One or more word characters followed by one

period.

◼ \w+$ → A word character must be the last character.

 function isValidEmail(sText) {
 var reEmail = /^(?:\w+\.?)*\w+@(?:\w+\.)+\w+$/;
 return reEmail.test(sText);
}

Regular Expressions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78

