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Structure

The presentation will be covering three parts:

Part 1: Software Reliability & Software Reliability Growth Models (SRGMs)

Part 2: Quality Models as Proxies for Failure Detection
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Part 3: Moving towards Software Systems Resilience & Self-* Capabilities
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Motivation - C4e Projéct - (\Zﬁij;icallﬂfrastl\'ucture
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* Critical Infrastructure provide mission critical services - typically implemented as
connected Cyberphysical systems (CPS)

e P1. Critical infrastructure protection:
- P1.1 Simulation and predictive analysis of critical infrastructures e
- P1.2 Formal verification of critical infrastructures C4
- P1.3 Recommendations for critical infrastructure realization
* Need to get a cohesive view, including cybersecurity and aspects related to cyber-law

N1 ERDF "CyberSecurity, CyberCrime and Critical Information Infrastructures Center of Excellence" (No. CZ.02.1.01/0.0/0.0/16_019/0000822).
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Software Reliability

¥ )

Software Reliability is defined as the probability of failure-free software operation for a specified period of
time in a specific environment

Probably one one the most important qualities of software systems as it can make a system
inoperative

MUNI
FI 4/58



ISO/IEC 25010 StandaE'd — kgitenmsg

* [SO/IEC 25010 places four key terms under reliability:

Maturity: “how well a system is able to meet the needs of reliability”
Availability: “how much a system is operational and accessible”

Fault Tolerance: “how well a system can operate despite hardware and/or software faults”
Recoverability: “how well a system can recover data in the event of a failure”
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Software Reliability En\giggeripg (SRE)

Software Reliability Engineering (SRE) is defined as the quantitative study of operational behaviour of software-
based systems with respect to user requirements concerning reliability

SRE includes:
1. Software reliability measurement — estimation and prediction
2. attributes and metrics of software design, development process, architecture and their
impact on reliability
3. usage of the acquired knowledge to guide the design of software systems and
development processes

Lyu, Michael R. Handbook of software reliability engineering. Vol. 222. Los Alamitos: IEEE computer society press, 1996.
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Failure Rate & Haza rdea te*
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* Reliability is defined as the probability that a software system will
not fail during the next x time units in a specific environment

Failure Rate: probability that a failure per unit of time occurs in the interval [¢, ¢ + At] given that a failure has not
occurred before ¢

F(t+At)—F(t)
AtR(t)

failurerate(A)=

Hazard rate z(¢): the probability that the component fails in a short interval of time given it has survived up till
that moment per unit interval of time
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_ .. F(t+At)—F(t)
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Main difference Hardgvare ySisoftwgre Reliability
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« Software does not have a wear-out region as in the hardware domain (in which
hardware becomes obsolete and can lead to an increase in failures)

Hazard rate z(t)
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Work of Lehman and Betéd.y (1/3)

* Lehman started by a nine month study in 1968 to evaluate the IBM programming process,
focusing on the OS/360 system

* After that experience Lehman and Belady joined in successive studies — laws of software
evolution were defined in a time range from 1974 to 1996

* The aim was to capture different growth trends of software systems and their long term
evolution

* The laws apply to E-type systems: “programs that mechanize a human or social activity”
(Lehman, 1980)

Interpretation
Explana?ion < Formal Theory
Modelling Formulation
Prediction
Theoretical Determination of
______________________________________ fit\______l_________ Rules, Guidelines
0Ob ti 1 v \\—’}
servationa -
Initial Data Contlnugd > Definitions,
Observation empirical
generalization

Source: Lehman, M., M., Ramil, J.,F. “Software evolution--Background, theory, practice,” Information Processing Letters, vol. 88, Ott. 2003, pagg. 33-44.
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What Lehman's Laws of\:‘s\oftwarfe Evolution tell us

AN ] /
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LI1.

Continuing change

Systems must continuously change as otherwise they will become less
useful

L2.

Increasing complexity

Changes lead to more complex structure: activities need to be done to
reduce complexity over time

L3.
L4.
LS.
Lé.

Large program evolution
Organizational stability
Conservation of familiarity

Continuing Growth

Attributes such as size, errors are invariant for each system release
Rate of development is approximately constant over the lifecycle
Incremental changes in each releases are constant over the lifecycle

Functionality of the system has to increase to maintain satisfaction from
the users

L7.

Declining Quality

The quality of systems will decline over time if the system is not adapted
to changes to the operation environment

LS.

Feedback System

System improvements evolution should be considered as a multi-loop
feedback system (e.g., integrating changing requirements from users)
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Some implications foanRE.\’
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Software Reliability Gl:oiill:h Modelling

— &

“If the history of fault detection and removal follows a particular recognizable pattern, it is possible to describe the
mathematical form of the pattern*
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Software Reliability Gpofxilj:h Modelling
— &

“If the history of fault detection and removal follows a particular recognizable pattern, it is possible to describe the
mathematical form of the pattern*

Fitting the cumulative failures over time ‘

Mean value function — m(t)

A

___________________________________________________

m(t) — mean value function

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
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Software Reliability Gl:oiill:h Modelling
— B8

“If the history of fault detection and removal follows a particular recognizable pattern, it is possible to describe the
mathematical form of the pattern*

— - - : Types of models
Fitting the cumulative failures over time ‘ Concave models — assume the total number of faults in software Is
. finite, and that it is possible to achieve fault-free software in finite time
Mean value function — m(t) P

S-shaped models — they also assume that the total number of faults is
finite. Early testing is not as effective in fault discovery as the testing in
the later stages. Therefore, there is a period in which the number of
faults is increasing

Infinite models — assume that it is not possible to develop fault-free
software because during fault removal we can introduce new ones

4 f m(t)  f m(t)  f m(t)
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One of the earllest stms..;
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* One of the first papers* to apply SRGMs to Open Source software projects

* Comparing several models, like Weibull, Hossain Dahiya (HD), Goel Okumoto S-shaped (GO-
S), Gompertz

* Three projects analyzed: Mozilla Firefox, LibreOffice, OpenSuse
* Generally the Weibull model was found to be the best in terms of Goodness of Fit (GoF)
* However, no model was generally good for predictive capability

=GOS |
== Gompertz |

* Rossi, B., Russo, B., & Succi, G. (2010). Modelling failures occurrences of open source software with reliability growth. In Open Source Software: New Horizons: 6th International IFIP WG 2.13
Conference on Open Source Systems, OSS 2010, Notre Dame, IN, USA, May 30-June 2, 2010 (pp. 268-280). Springer Berlin Heidelberg.
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..and how SRGMs have been used so far

C \\\\\-’ ] .

1. Large heterogeneity of results in terms of the best models

2. Generally small samples of projects analyzed

Ref Models Best Models #OSS GoF
Rahmain et GOS, SCH, WE WE 5 R2
al. 2010 [19]

Mohamed et GO, GOS - 2 RZ2
al. 2008 [18]

Zhou et al. WE WE 8 R2
2005 [20]

Rossi et al.  WE, WES, GO,GOM WE 3 R2, AIC
2010 [21] GOS, HD, YE

Tamura et al. GO, HD, LP LP 1 AIC,
2005 [24] MSE
Ullah et al. MO, HD, GO, GOS, GOM, HD 6 RZ2
2012 [23] WE, GOM, LOG, YE

Wang et al. GO, GOS, ISS, PNZ, W 3 R2,
2021 [17] PZ, WM, L, W MSE

MUNI
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*SCH - Schneidewind model [19], WES - Weibull S-Shaped model [25], GOM
- Gompertz model [26], LOG - Logistic model [27], LP - Logarithmic Poisson
Execution Time model [24], MSE - mean squared error, ISS - Inflection S-
Shaped model [28], PNZ - Pham-Nordmann-Zhang model [29], PZ - Pham-
Zhang model [30], WM - Wang-Mi model [31], L - Li model [32], W - Wang
model [17]
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STRAITTool(1/3) = .. -
— \

A tool to mine failure data from software repositories, build SRGM based on projects’ snapshots*

. Typical process

1. Getting issue reports from data sources

2. Creation of snapshots and persistence storage

3. Data processing & filtering ‘

4. Building of pluggable SRGM models (trend test, parameters
estimation, GoF metrics) ‘

5. Outputting module

Mun1 *Chren S, Micko, R., Buhnova, B., & Rossi, B. (2019, May). STRAIT: a tool for automated software reliability growth analysis. In 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR)
FI

. 105-110). IEEE.
(pp ) 19/58



STRAITTool(2/3) .. - -
— N \

A tool to mine failure data from software repositories, build SRGM based on projects’ snapshots*

. Typical process

1. Getting issue reports from data sources

2. Creation of snapshots and persistence storage

3. Data processing & filtering ‘

4. Building of pluggable SRGM models (trend test, parameters
estimation, GoF metrics) ‘

5. Outputting module

Components
Data _=lp + . Data
Processmg e Provider
:‘ Core }:
-~ L ks ~
T =S
Config ili Ouput

g ~
~ | ~
e A4 ~
Goodness-
[ Solver [Trend test ] of it J

Mun1 *Chren S, Micko, R., Buhnova, B., & Rossi, B. (2019, May). STRAIT: a tool for automated software reliability growth analysis. In 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR)
FI

. 105-110). IEEE.
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STRAIT Tool (3/3)

—EN

A tool to mine failure data from software repositories, build SRGM based on projects’ snapshots*

Typical process

1. Getting issue reports from data sources

2. Creation of snapshots and persistence storage

3. Data processing & filtering £
4. Building of pluggable SRGM models (trend test,
parameters estimation, GoF metrics) i
5. Outputting module
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Failures
M Time between failures
Yamada Raleigh model Log-Logistic model
Model function: Model function:
by =a® (1-e71-) B =% 09 e
Estimated parameters: Estimated parameters:
a=167106.1416680013 a=64241.66171720343
B =0.000000034892293 A = 0.0029420818571266
rta = 80.95261109990929 K = 4.405924919468303
Estimated by Least Squares. Estimated by Least Squares.
Failure occurence Failure occurence
) QS
/‘ /
El 12 k) S E3 ) 3 ) i L a2 15 ) 3 e 4w

Fesiaues O Cobwsdes o et

(pp. 105-110). IEEE.

* Chren, S., Micko, R., Buhnova, B., & Rossi, B. (2019, May). STRAIT: a tool for automated software reliability growth analysis. In 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR)
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Experimental Evaljjatie\;ﬁf;\;\i o-sies

1. We adapted and used STRAIT to mine data from GitHub bug tracking repositories: top ten projects
from different topics of the "Topic Lists” and combined them with ten more projects from the "Trending List”

2. We run STRAIT in a Cloud environment (16 threads / 128GB RAM) for increased performance

3. We fitted 792 SRGMs (88 projects x 9 models) with 383K software defects for RQ1, RQ2, and
additionally 261 SRGMs for software releases (29 releases x 9 models) in RQ3

Model Type p(t) ! Implemented models ‘
Goel-Okumoto (GO) Concave a(l —e~b)

Goel-Okumoto S-Shaped (GOS) S-Shaped a(1— (1 + bt)e™bt)

Hossain-Dahiya (HD) Concave a(l —e %)/ (14 ce™?)

Musa-Okumoto (MO) Infinite aln(Bt + 1)

Duane (DU) Infinite atP

Weibull (WE) Concave a(l — e 0t%)

Yamada Exponential (YE) Concave a(l — e_m‘(l_eiﬁt))

Yamada Raleigh (YR) S-Shaped (1 — e—rai—e 97/2))

Log-Logistic (LL) S-Shaped  a(At)®/ (1 + (At)*)

MUNI Micko, R., Chren, S., & Rossi, B. (2022). Applicability of Software Reliability Growth Models to Open Source Software. In 2022 48th Euromicro Conference on Software Engineering and
FI Advanced Applications (SEAA) (pp. 255-262). IEEE.
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Aims of the experimen-;i!gvatgation
,

RQ1. What is the ranking of the models based on GoF?
RQ2. How does the project’s domain affect the GoF of models?
RQ3. Does project division into OSS releases change the applicability of SRGMs?

MUNI Micko, R., Chren, S., & Rossi, B. (2022). Applicability of Software Reliability Growth Models to Open Source Software. In 2022 48th Euromicro Conference on Software Engineering and
FI Advanced Applications (SEAA) (pp. 255-262). IEEE. 23/58



Used Metrics (GoF) * o socs

= \ N | T‘\\‘
o ] ] s, sum squared regression (SSR) n
R? (coefficient of determination) B = el sum of squares (SST) gg‘r’]vg\gzlli?e model fits the outputs
2y 4i)?
> (i —7)?
Indicators about the quality of the models, penalizing
Akaike Information Criterion (AIC) AIC = 2K —2In(L) models with higher nr of parameters
where:
) . ] ] K — the number of estimated parameters in the model,
Bayesian Information Criterion (BIC) BIC = KIn(n) —21In(L) L - the likelinood of the model given the data,
n — the size of the dataset.
; RSE — i )2 _o))l/2 How well the model fits the outputs (in
Residual Standard Error (RSE) (i:Zln(y f(x))?/(n—2)) the unit of dependent variable)

where:

y; — the i observed value,
f(x;) - the i predicted value,
n — the size of the dataset.

MUNI Micko, R., Chren, S., & Rossi, B. (2022). Applicability of Software Reliability Growth Models to Open Source Software. In 2022 48th Euromicro Conference on Software Engineering and
FI Advanced Applications (SEAA) (pp. 255-262). IEEE.
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RQ1 - Ranking of Models - - -

4\\ i

To answer this RQ, we considered 792 SRGMs fitted on the whole dataset with 383 788 software defects.
R AIC RSE 1.00

Model [| 1 o 7 o L o T I I R

LL 0979 | 0.094 3,374 1771.464 83.907 188.828 0.95 I I I I

YR 0.977 0.052 3,806 1847.782 175.468 445.723
WE 0976 | 0.096 3,411 1782.277 81.158 164.656

HD 0973 | 0.039 [ 3,769 | 1890.365 | 145.866 | 380.665 & 0.90

DU 0963 | 0.099 [ 3,708 | 1947.489 | 147.956 | 395.543

YE 0937 | 0.115 | 3,880 | 2087.951 | 233.414 | 604.541 0.85

GO 0935 | 0.115 | 3,896 | 2078.743 | 234270 | 604.028

MO 0931 | 0.123 | 3,883 | 2073.052 | 230.064 | 606.065 0.80

GOS [[0.896 | 0.220 | 3,767 | 1942.052 | 180.096 | 438.825 50 G0 G5 Hb L WMo WE VE VR

/ / /,ji\\ /////
Infinite —/ _—

Concave models

RQ1 Findings

Based on 792 fitted SRGMs, considering the R? metric LL, YR, WE, HD, DU are the best models. GO, GOS, MO,
YE show the highest variance than other models. GOS is in general the worse model in terms of R2,

MUNI Micko, R., Chren, S., & Rossi, B. (2022). Applicability of Software Reliability Growth Models to Open Source Software. In 2022 48th Euromicro Conference on Software Engineering and
FI Advanced Applications (SEAA) (pp. 255-262). IEEE. 25/58



RQ2 - Project Domain - -
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To answer this RQ, we considered 792 SRGMs fitted on the whole dataset with 383 788 software defects

and segmented by categories

Category # | Defects|| Category # | Defects
(AVG.) (AVG.)
C1 Admin/monitoring 14 | 10012 C5 SW Development | 16 | 1876
C2 Cryptocurrency 9 | 2527 C6 System/OS tools 10 | 8671
C3 DB and data analysis | 10 | 3327 C7 Text processing 7 | 833
C4 Multimedia 10 | 5286 C8 Web/Networking 12 | 1017
C1 C2 C3 C4 C5 Co C7 C8
Model M o m o 7 o m a 0 o 7 o m o m o
DU 0.989 0.008 0.982 0.016 0.850 0.269 0.976 0.027 0.982 0.016 0.976 0.020 0.952 0.076 0.960 0.080
GO 0.949 0.056 0.971 0.018 0.766 0.283 0.952 0.061 0.958 0.040 0.970 0.027 0.934 0.050 0.945 0.079
GOS 0.842 0.331 0.949 0.114 0.774 0.255 0.845 0.259 0.872 0.256 0.987 0.008 0.969 0.026 0.980 0.017
HD 0.970 0.043 0.977 0.021 0.988 0.011 0.968 0.072 0.966 0.033 0.982 0.028 0.954 0.041 0.988 0.008
LL 0.996 0.002 0.993 0.009 0.871 0.277 0.993 0.007 0.989 0.009 0.994 0.009 0.984 0.009 0.994 0.055
MO 0.947 0.058 0.970 0.018 0.757 0.301 0.947 0.059 0.957 0.040 0.967 0.026 0.910 0.103 0.952 0.021
WE 0.995 0.003 0.993 0.009 0.865 0.274 0.993 0.008 0.987 0.011 0.994 0.008 0.958 0.077 0.993 0.008
YE 0.950 0.056 0.971 0.018 0.762 0.286 0.952 0.061 0.958 0.040 0.970 0.027 0.935 0.050 0.969 0.028
YR 0.985 0.017 0.986 0.014 0.921 0.165 0.984 0.018 0.975 0.030 0.987 0.009 0.970 0.023 0.985 0.012

The GOS model, while statistically worse than all other models when considering the whole dataset, has some

RQ2 Findings (shortened)

domains in which it has low variance and good R? rankings.

I Micko, R., Chren, S., & Rossi, B. (2022). Applicability of Software Reliability Growth Models to Open Source Software. In 2022 48th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA) (pp. 255-262). IEEE.
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RQ3 - Impact of Project |

Releases

X \_/ /.

To answer this RQ, we used 63 SRGMs (7 projects with releases fitted by 9 models) and 261 SRGMs (29
releases, 9 models, 6 800 defects)

Rankings of models based on R2 considering Releases (R) and whole projects (NR)

R2

Z
o)

DU

GO

GOS

HD

LL

MO

WE

YE

YR

oo L] o] | ~=| &) o] 4] vl ®

| N ] ] ~| & o] o] W

RQ3 Findings (shortened)

Considering projects as a whole or releases mostly does not have an impact on the rankings of the models in terms
of R? (the top-3 models remain the same).

MUNI Micko, R., Chren, S., & Rossi, B. (2022). Applicability of Software Reliability Growth Models to Open Source Software. In 2022 48th Euromicro Conference on Software Engineering and
FI Advanced Applications (SEAA) (pp. 255-262). IEEE.
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Major Challenges for SRtMs e

“Faults are repaired immediately when they are discovered” — this might not be the case — however, filtering
of issues can help (e.g., duplicate reports)

“Failures are independent” — One of the strongest assumptions of the models are that each failure is independent
and does not cause additional failures

“Fault repairs are perfect” — fault repairs likely introduce new faults, so this can have an impact on the model

“Tests represent operational profile” — the models expect that the tests are representative of the usage of the
system. Nowadays there are workload generators and test case generators, so there can be a high similarity about
the two processes

“No new code is introduced during testing” — new code is frequently introduced throughout the entire test period
(faults repair and new features), especially for agile development. This 1s accounted for in parameter estimation since
real faults discoveries are used. However, the shape of the curve may be changed (i.e., make it less concave)

28/58



Alternative methods . . - - -

DN e T ]

They look more at the propagation and chaining of faults and fallures

Service s
Component C2 ervice
Interface p Interface

Propagatmn B (Error Propagation .l External ropagahon Propagatmn £l
ror| Fault ror |

Component C1

! Service status

'of component C1 Corroct
: P Service FanureYﬂ
: Service

! Service status

of L2 Correct Incorrect |
10t componen Service Service |

Source diagram: Avizienis, A., Laprie, J. C., & Randell, B. (2001). Fundamental concepts of computer system dependability. In Workshop on Robot
Dependability: Technological Challenge of Dependable Robots in Human Environments (pp. 1-16).

« Bayesian networks
* Fault trees and Markov chains
* Stochastic Petri Nets and Markov chains

29/58



I \ F=; o
N S e

S

Major Takeaways f
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- SRE deals with Software Reliability measurement, estimation and prediction.

- SRGMs are useful to model the cumulative reliability of software systems and are
part of the SRE process.

- SRGMs can be evaluated according to different metrics, both looking at the
goodness of fit and at the predictive capabilities. Being an inductive model, is not
possible to establish a model that will work best apriori.

MUNI
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Quality Models as Proxies
for Failures Detection
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0 Quality =Y

N, e

How IEEE maps Failures |

The mapping of internal attributes to external ones is a key aspect in
software reliability

nr. of failures
nr. of faults / over a period
errors over a \attribute * of time

pe“Od of time ~ ~subcharacteristic”

= ~characteristic - =~
Source image (adapted): ISO/IEC
internal attributes external attributes 91260 Standard

“When failure data is not available, metrics from the software development process can be used to estimate
the reliability Of the S()ftware” Lyu, Michael R. Handbook of software reliability engineering. Vol. 222. Los Alamitos: IEEE computer society press 1996.

MUTT
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...indeed many metrics_\?vere.p'sfe. in the prediction models

\

=
WRRRNN

Year Metrics Prediction model

2020  Source code metrics: 60 class-level complexity, size and object-oriented metrics Deep neural networks

2019 Source code metrics: ATFD, ATLD, CC, CDISP, CINT, CM, FanOut, LOC, LOCNAMM, MaMCL, Simple Logistic, Decision
MAXNESTING, MeMCL, NMCS, NOAM, NOLV, NOMNAMM, NPA, TCC, WOC Code smell metric: = Tree Majority, Naive Bayes,
Code smell intensity Logistic Regression

2013  Source code metrics: LOC, MLOC, PAR, NOF, NOM, NOC, CC, DIT, LCOM, NOT, WMC Process Various intra-system and
metrics: PRE, Churn Antipattern metrics: ANA, ACM, ARL, and ACPD cross-system

2011  Explored metrics: log(KLOC), Prior faults, Prior changes, Prior changed, Prior developers, Prior lines  Binomial regression
added/deleted/modified

2010  Source code metrics: WMC, DIT, NOC, RFC, LCOM, CBO, LCOM3, NPM, DAM, MOA, MFA, CAM, Kohonen’s neural network
IC, CBM, AMC, Ca, Ce, CC, LOC

2010  Source code metrics: WMC, DIT, NOC, RFC, LCOM, CBO,LOC, Fanln, FanOut, NOA, NPA, NOPRA,  Generalized linear regression
NOAI, NOM, NPM, NOPRM, NOMI Change metrics: EDHCM, LDHCM, LGDHCM

2009 Change complexity metrics: BCC, ECC, HCM Statistical linear regression

2001 Inheritance metrics: DIT, NOC Coupling metrics: ACAIC, ACMIC, DCAEC, DCMEC, OCAIC, Calibrated logistic regression

OCAEC, OCMIC, OCMEC

Rebro, D. A, Chren, S., & Rossi, B. (2023). Source Code Metrics for Software Defects Prediction. In Proceedings of the 38th ACM/SIGAPP Symposium on Applied
Computing (pp. 1469-1472).

MUNI
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Software Defects Predi

T |\

é!:—ign Process

Software Defects Prediction: area that attempts to build models to predict parts of software more prone to software
defects based on previous history. Likely one of the most studied area in Software Engineering.

1. Data

2. Data pr

' Github —API—>

l _Clcne

Repo

SourceMeter-

Issues tracking
data

-

.VI:Océi' .—PyDriIIer—b Commitdata —

—

Class-level defect
data

Join

Class-level source
code metrics

.

Linked metrics ‘

3. Defect prediction

| 10-fold cross-validation

Training data

with bug data \
S

| Train> .
90% Trair Train model
Split Prediction
Testing data N
5 >
10% Input: Predicted data
Evaluate performance

Rebro, D. A, Chren, S., & Rossi, B. (2023). Source Code Metrics for Software Defects Prediction. In Proceedings of the

38th ACM/SIGAPP Symposium on Applied Computing (SAC)
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Calculatg average
Y

Prediction results

=)

HWUIN©

HWUIN©

HWUN©
L

Example: ranking of metrics in the
prediction model (the lower the better)

LCOM5 NLE CBO
[e) 9 9
1 1 1 T 9
Iho LD g FHT § 3
13 - i 1" - i l'g . .
NB DT RF NB DT RF NB DT RF
CBOI CD DIT
1 0 2] 2]
10 & &) 5 7o ¢ &
11 8 TIHT ° 3T 3 3
NB DT RF NB DT RF NB DT RF
NOC NPA NPM
. 9_ g_
1 8 51 54 g [e]
] & 83 =EREE
NB DT RF NB DT RF NB DT RF
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Generic process of defects prediction

1. Data collection 2. Data pr ing ‘ 3. Defect prediction
 Github | ——API—» Issues tracking | | [ 10-fold cross-validation
) data
_l_CI.Une CIass-I:;rteal defect Tra\nér(\wadata Train»  Train model
L_;z:\l —PyDriller» Commitdata —j g . . 7\| ‘
Repo__ Join Linked metrics Split Prediction
with bug data | s
~ A ¢
SourceMeter el source [esnoa —Input® Predicted data
code metrics 10%
Evaluate performance L
Calculatd average
) v
Prediction results
LOC CK
1.0 1.0 o LCOM5 S NLE ol CBO
o o N 9] 9] l? T g
51 é 51 5 g g
0.5 1 0.5 1 3 31 31 g
o ° 114 : — 115 - — 118 : -
é é é NB DT RF NB DT RF NB DT RF
0.0 T f T 0.0 t 1 1 CBOI cD DIT
NB DT RF NB DT RF 9 9 94
71 l% 71 = % 71 g 8
OTHER CK + OTHER 2] z ] % 8 HE 2 =
1.0 1.0 (R NS I SN A T
(@) o o o NB DT RF NB DT RF NB DT RF
0.5 4 0.5 1 NOC NPA NPM
94 9 9
3 = 0 AL 8 Blf ¢ 3
0.01-5 ! . 0.0 1 —= | . 3] 8 837 5 & |37 8
NB DT RF NB DT RF T — 11 , — i . .
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Quality Models (example:

* Many quality models were developed over time — the assumption is: control the quality and
you will control the failures S |
" In short, the model defines a Remediation |
- Cost (RC) to fix all the violations:

Level 1 Level 2

Characteristic Subcharacteristic S e 3 RC — Zrule effortTOFix(UiOZatlonsrule)
8| hr/day]

requirement

| Portability |
| Maintainability Understandability |
Readability |
| Security |
Fault tolerance |__—4 Switch statements have a “default” condition ‘
Architecture-related reliability |
| Efficiency |
Resource-related reliability |
| Changeability | Synchroniation-related reliability | _| B R ey CH e RS TG l
Statement related reliability I —| No assignment “=" within “while” statement |
| Reliability Logic-related reliability —| Invariant iteration index |
Data-related reliability | _4 |
o Coupling between objects (CBO) < 7
‘ Testability Integration Testing Tesability I—/ - -
Unit Testing Tesability |_/—| Number of parameters in a module call (NOP) < 6 |
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* Identifying which modules are more defects prone

* Identifying the importance of features for the prediction

* Considering changes in history of a project (drifts)

* Dealing with imbalanced data

* Associating defects to implementations activities

* Integration of the models into running systems

* Mining representative datasets (e.g., NASA dataset has been used for long time in SE)
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Evaluating the impact of several metrics on the defect prediction of models

Rebro, D. A., Chren, S., & Rossi, B. (2023). Source Code Metrics for Software Defects Prediction. In
Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing (pp. 1469-1472).

Evaluating the comparability of different maintainability indexes (SQALE, MI, SIG-TD)

Strecansky, P., Chren, S., & Rossi, B. (2020). Comparing maintainability index, SIG method, and SQALE for
technical debt identification. In Proceedings of the 35th Annual ACM Symposium on Applied Computing (pp. 121-
124).

Studying bug triaging in both Open Source Software and one company involved

Dedik, V., & Rossi, B. (2016). Automated bug triaging in an industrial context. In 2016 42th Euromicro
conference on software engineering and advanced applications (SEAA) (pp. 363-367). IEEE.

Evaluating the applicability of Mutation Testing in a industrial context

J. MoZucha and B. Rossi. Is mutation testing ready to be adopted industry-wide? In P. Abrahamsson, A.
Jedlitschka, A. Nguyen Duc, M. Felderer, S. Amasaki, and T. Mikkonen, editors, Product-Focused Software
Process Improvement, pages 217-232, Cham, 2016. Springer International Publishing
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Major Takeaways

MUNI
FI

- Software Defect Prediction can be considered as a proxy of failure prediction
when failure data is not available.

- Software Quality models were developed over time to model different aspects of
software systems, mainly based on different set of metrics.

- Software metrics & Software Quality Models have been used successfully in
prediction models to predict software defects.
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Software Systems Resilience &
Self-* capabillities
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Motivation (1/2)

5

* In previous work we created a testing management platform for Smart Grids based on the

Mosaik framework for co-simulations

* We extended Mosaik with the disconnect method to remove edges from the dataflow graph

and the entity graph — A simple way to simulate node failures
* This can be useful to understand the patterns of failures

Smart Grids Testing Processes

Mosaik Server

<<executionEnvironment>>
Python Interpreter

<<component>> &]
Mosaik

IPC

Simulator

<<executionEnvironment>>
Java Virtual Machine

<<executionEnvironment>>
Java Virtual Machine

<<component>>  &]
SG Testing Platform

TCP/IP

JDBC

Database Server

<<component>> ]
Database

HTTP

<<component>> €|
Mosaik API implementation

IPC / TCP/IP

<<component>> 2]
Software Simulator

RS-232/USB

<<component>> 2]
Hardware Simulator

<<user>>
Lab Technician PC

1

<<component>>
Web Browser

erministic  ran
Branch 5

- Mihal, P., Schvarcbacher, M., Rossi, B., & Pitner, T. (2022). Smart grids co-simulations: Survey & research directions. Sustainable Computing: Informatics and Systems,.

UNI - Schvarcbacher, M., Hrabovska, K., Rossi, B., & Pitner, T. (2018). Smart grid testing management platform (sgtmp). Applied Sciences, 8(11), 2278.
1 - Gryga, L., & Rossi, B. (2021). Co-simulation of Smart Grids: Dynamically Changing Topologies in Failure Scenarios. In Complexis.



Motivation (2/2)

A
5

. ®

]
F

* Inthe CERIT-SC Big Data project we looked into anomalies for

power consumption data

* Built a Big Data platform based on Apache Fink that could integrate

anomaly detection algorithms

Smart Grid

SM data

H Smart meter

Kafka

Kafka
producer

: i Data : i i
Data sources | |Data extraction| | Dat@ loading rocessin Data analysis | | Datal0ading | linterfacing and
and pre- p 9 and visualizing
processing transformation
Dataset
store: q Data b Data Flink stream Fiink batch Transfer, Reag:]:jront-
Hadoop ingestion densification processing: ink bate } load L
HDFS /// realk-time processing: | application
¢ analysis predictions
Streaming, Stream /
semi-structured extraction: |l //
: o ’ Hadoo
data source: adoop
! Katka 7| HDFsUI
smart grid data, producer / S Ul

Stream temp
data store:
Kafka broker

Time-series
low latency
data store:
KairosDB

Data store:
Hadoop
HDFS

) 4

Grafana
graphs

| Dashboard

Lip¢ak, P., Macak, M., & Rossi, B. (2019). Big data platform for smart grids power consumption anomaly detection. In 2019 federated
lIl NI conference on computer science and information systems (FedCSIS) (pp. 771-780). IEEE.

Job and model specification

Flink Ul: jar

React Ul:

submissions

Code editor

Big Data Analysis Platform

SG data O
<

Flink cluster Kafka Ingestion Manager
Bawh"”zcessmg densified
lobs Kafka dataset
» broker Data ingestion
L gae & A
/// - ’b}?{;/ - 1
Katka Katka Data store |~ Spring Boot
consumer, producer - Application
datasets
<
0 daa | X HDFS Flink job
Apache wil submission
i ~<ime
Flink —Views X ISubmitting ingestions|
KairosDB
Uploading and
Flink jobs jar deleting datasets
HDFS Ul ﬁ
Flink UI React App
e
1%
H
2 Ingestion control
>
Visualization Datasets control
A 4
graphs
> Dashboard
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security incidents

Software Systems Reg;ilieng

X
\

X

Resilience: ability of a system to self-heal, recover, and continue operating after encountering failure, outage,

adverse event

mitigation of faulty
\\\§§ operation

restoring normal operations
Normal Operation Mode

Degraded Operation Mode

Normal Operation Mode
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Software Systems RegiliengéifSelﬁ%Syst\ems

« Software Resilience is often associated with the following concepts (4S)

* Self-Configuring: The ability to readjust in real time without redeployment.

* Self-Healing: capacity to diagnose issues and take countermeasures returning to an operative state.
* Self-Optimization: optimization of the resources allocation based on the real time requirements.

* Self-Protection: capacity to anticipate, detect, identify, and defend from failures.
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Self Healing Researclf . e

m=
—

_ Continuous
autonomic Availability
computing

[IBM, 2003]

self-adaptive [ }
systems .
[Laddaga, 1997] Objectives j
[Self-healing
Detecting j
/ [ Attributes
— Diagnosing
self-stabilizing
fault-tolerant systems
systems [Dijkstra, 1974] i
[Pierce, 1965] Recovering

Maintenance of
health

Survivability

survivable
Open-closed

Loop

systems
[Linger, 1997] [ Means

Policies ]

i Adapted from Psaier, H., & Dustdar, S. (2011). A survey on self-healing systems: approaches and systems. Computing, 91, 43-73.
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Self Healing Researclf f =

SN **7\_/. e
—— Autonomic systems can . ]7 Continuous
232;3{;:\'; self-manage and operate with [ Vision [ Availability
(1BM. 2003) | Minimum human intervention

Maintenance of

self-adaptive
PV health

systems .
[Laddaga, 1997] Objectives
Self-adaptive systems can
monitor themselves and lf-heali
correct any deviations from Self-healing

expected behaviour
Fault tolerance is often difficult to achieve
/ (e.q., distributed systems): self-
stabilizing systems can improve towards
self-stabilizing | ©ne “correct” state in a certain time period

Survivability

N

Diagnosing

)
]
)
J
]

fault-tolerant systems
systems [Dijkstra, 1974] i
[Pierce, 1965] Recovering
Pioneering work about - Discipline defining survivability of a
theory of redundancy to survivable system in case of failures (resistance, Open-closed
improve the reliability of [ ¥ syster1ngsg7 recognition, recovery from failures, Loop
software systems [Linger, ] | adaptation of services)

VARDZAN

Policies :]

Adapted from Psaier, H., & Dustdar, S. (2011). A survey on self-healing systems: approaches and systems. Computing, 91, 43-73.

m=
— =
=
—
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Typical Aspects of Segf-H ea\lﬁgg Sysgems

Fault Fault Fault
Detection Isolation Recovery

/ / /

- Monitor the system - Identification of the source - taking actions to restore the
- Identify anomalies from of the fault normal state of the system
expected behaviour - Try to identify the (e.g., restarting a service)

- Trigger the alerts component that is the cause

of the fault
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Self-healing System C,';halle.@ies oo e

high

pected

fication, context)

Critical
State

deviation from ex

behaviour (speci.

low

Time t

Major Challenges:

How to define the expected behaviour?
Both in the sense of specifications but
also anomalies

Defining situational / context awareness

Fault analysis: when and which recovery
actions to take? What is “enough” of a
recovery action to restore the state?

Can the system “learn” based on the
actions performed?

Are predictive capabilities needed?
Taking preventive actions based on some
signals

How to deal with uncertainty of such
systems

Openness of the self-healing system:
how open/close is the system is in terms
of adaptive actions

Adapted from Dreo Rodosek, G., Geihs, K., Schmeck, H., & Burkhard, S. (2009). Self-healing systems: Foundations and challenges. In Dagstuhl
"F’”I‘" I Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik.
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Proposed SoftwareﬁAfchite‘t

u.re\tagjfgach\ the ”4S -

AN

4 Simulation Environment <MiSim>
Scenario
workload
(SW)

<RS>

[ Managing System based on the <Akka framework> N\
Supervisor
Strategy
A
o [} AN
- S
hY
~
Y
~
Y
Monitoring a .l Execute '
Knowledge
4
aclors | actors
robes . .
P Managed System <microservices> :Jr”m'me

GW = Gateway
S = service

<AR,SW>

injected
faults Tolerances Faults to
» Inject

l Topology '

Architectural
representation
(AR)

Running
Statistics
(RS)

Discrete
Event simulator

Topology &
resillence
patterns

Chaos Engineering <chaostoolkit>

Steady State
hypothesis

CB = Circult Breaker

J

Blast radius

\_
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Proposed Software Afchite\t

{3

ure'to reach the “4S”

Actor models )
implementation — integration
with the Chaos Engineering
toolkit

Chaos Engineering <chaostoolkit> )
Steady State
hypothesis
injected e
faults Tolerances
Inject
n
Chaos Engineering toolkit
oW = Galaway that can generate faults to the
CB = Circult Breaker system by instruction from the
J - supervision strategies J

S ANU® |
[ Managing System based on the <Akka framework> N\ 4 S ] Simulation Environment <MiSim> )
cenario
. Strallegy . <RS> (SW)
-7 N <7}
- ~
\ Topology
A N [_]\‘A Runnin
M Architectural Discrete Statlstlgs
f & representation Event simulator (RS)
N <AR,SW> (AR)
l Monitoring | Knowledge 1—@ Topology & Microservices simulator can
risalgz?ﬁse run simulation based on the

architectural representation
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Using the Actor Models to {

chthe ”4S ”(1 /2)
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Our proposal is to use the Actor Models.The actor model is a mathematlcal model of concurrent
computation with roots dating back to 1973. It was introduced by Hewitt et al. in 1973

The system using an actor model consists of location-transparent actors, seen in the model as
the universal primitives of concurrent computations. Each actor receives input and responds by

- sending a finite number of messages to the other actors
- creating a finite number of child actors

- modifying its internal state

Child
upervisor,

1. Fail
unexpectedly |

J/ .|l’
(-4

\ 2. Apply
custom
strategy

."

Mraz, M., Bangui, H., Rossi, B., & Buhnova, B. (2023). Adopting the Actor Model for Antifragile Serverless Architectures.
Proceedings of the 18th International Conference on Software Technologies (ICSOFT 2023)

4 Managing System based on the <Akka framework> N
- Slrallegy N . e
P N [
~
f F 3 N ~
~
v bR <AR,
l Monitoring l 4_" Execute l
y Y Knowledge
- AN
A4 S
by = .
proves Managed System <microservices> runtime
O—&
-~ fal
—|
e GW = Gateway
8 = service
CB = Circult Breaker
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Using the Actor Mdd‘ejs to ﬁ\ach;thg;%’leS"\(Z/Z*) |

Adopting the Actor Model for

* Implementation of the Actor Model with the AKKA BRIy ey

Marcel Mra;
Fa

framework
e Creation of a framework for the integration of the

supervision strategies
* Integration in a Spring Boot microservice system

* Integration of resilience patterns like the circuit

breaker

Mraz, M., Bangui, H., Rossi, B., & Buhnova, B. (2023). Adopting the Actor Model for Antifragile Serverless Architectures.
Proceedings of the 18th International Conference on Software Technologies (ICSOFT 2023)
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Using Chaos Engineering to reach the “4S”

“Chaos Engineering can help to understand how emergent behavior from component interactions could result
in a system drifting into an unsafe, chaotic state” From Miles, R. (2019). Learning Chaos engineering: discovering and overcoming

system weaknesses through experimentation. O'Reilly Media.

/

The
consequences of
the experiments

What are the s should be i
“normal” levels of Blast Eadzis contained )Ifgj,'/eucrg;aggigg gn
operation of the Define an the hypothesis
system \ | hypothesis based /

: _—on the steady

S‘te_o\ch/ SL/S‘teM
State Definition

Hypothesis
Definition

Sc/s‘tem
b mpr‘ove,men‘t

< | Learming process

\ \You can also

increase the blast
radius once you
are confident on

Implement the
changes based
on the chaos

experiments the results

MUNI
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State

% Hypo'thesis check % Fix any Lailures

Fault Injection Anall/ze Results

N

Was the
hypothesis
disproved?
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Integrating a Simulat«i:on Eanronmegk to i'eath the “4S”

Supervisor

[ Managing System based on the <Akka framework> \\

( Simulation Environment <MiSim>
| Scenario |

i

Stralegy

Monitoring

Knowledge

/
Analysis Plan
aclors |

{ l probes l

Managed System <mic

( Closed
entry / reset failure counter
do/

body =

if operation suceeds
return result

else
increment failure counter
return failure

We can optimize the
parameters for a Circuit
Breaker based on the typical
workload (either real or

) simulated)

success count
threshold reached

( Half-Open

timeout timer

entry / reset success counter
do/
body =
if operation succeeds
increment success counter
return result
else
return failure

expired

-

failure
threshold
reached

—

( Open A

entry / start timeout timer

operation failed

do / return failure
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Integrating a Simul’at.i;bn En,\’l{gonmegt:to feath the “4S”

e
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Managing System based on the <Akka framework> N\ 4 S ] Simulation Environment <MiSim>
cenario
- Strallegy N R ¢RS> (SW)
- - ~ ‘
N Topology
N Coon )y
AR Architectural Discrete
N representation
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Main Challenges .
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 Modelling expected behaviour and how to verify it

* Modelling unknown unknowns and uncertainty in the models
 Which anomaly detection algorithms to integrate into the system
* Modelling stress functions of components

* Integration of ML models for all the phases of Fault Detection, Isolation,
Recovery

* Accuracy of the simulator and capability of transfering the whole
architectural representation

* Automation of the design of chaos engineering experiments and
integration of ML models
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Main Takeaways i —

- Software Resilience means the capability of a software system to continue opera-
tions withstanding failures.

- Self-* are class of software systems with properties of self-healing, self-
configuration, self-optimization, self-protection.

- QOur vision is that we cannot have self-healing systems without considering self-
adaptive properties.

- One proposal is to adopt the Actor Models for the implementation of supervision
strategies integrating with Chaos Engineering and a microservices simulator.
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Thank you a lot!

Software Reliability Growth Modelling

Defect Prediction as proxies for failures

If the history of fault detection and removal follows a particular recognizable pattern, it is possible to describe the
mathematical form of the pattern

Types of models

Fiting the cumulative failures over time Concave models — assume the total number of faults in Software 15
. finite, and that it is possible to achieve fault-free software in finite time
Mean value function — p(t) P
. . . . S-shaped models — they also assume that the total number of faults is
finite. Early testing is not as effective in fault discovery as the testing in
the later stages. Therefore, there is a period in which the number of
faults is increasing

() - mean value function

Infinite models — assume that it is not possible to develop fault-free
software because during fault removal we can introduce new ones

/ ‘ f

mt) f mit) mit)|

* We can have prediction models telling us about the prediction of defects in code

Adopting the Actor Model For
Antifragile Serverless Architectures

Marcel Mraz, Hind Bangui, Bruno Rossi, and Barbora Bihnova
Faculty of Informatics, Masaryk University
Brno, Czech Republic

F-measure distribution

onmenss o exposethls Frsilies

* Itis assumed that the more defects - the more the failures

* look into code and improve to avoid future failures (for e.g., to see which modules require
more attention)

RQ1- Ranking of Models - - -

Using the Actor Models l:o-reach the “45”(1/2)

To answer this RQ, we considered 792 SRGMs fitted on the whole dataset with 383 788 software defects.

R AIC RSE 1.00)

Model | it - m I m - I T I I

158 0.979 | 0.094 | 3,374 | 1771464 | 83.907 | 188828 095

YR | 0977 | 0052 | 3.806 | 1847.782 | 175468 | 445723 I I

WE__| 0976 | 0096 | 3411 | 1782.277 | SLI58 | 164.656 I

HD 0973 | 0.039 | 3,769 | 1890365 | 145.866 | 380.665 | 090

DU | 0963 | 0.099 | 3,708 | 1947.489 | 147.956 | 395.543

YE 0.937 | 0.115 3.889 [ 2087.951 233.414 | 604.541 0.85/

GO 0.935 | 0.115 | 3,896 [ 2078.743 | 234270 | 604.028

MO | 0931 | 0.123 | 3,883 | 2073.052 | 230064 | 606065 080

GOS | 0.896 | 0220 | 3,767 | 1942.052 | 180.09 | 438825 BU GO GOS HD L MO WE VE
The Kruskel-Wal rrk sumtestfor R* p-value < 005 (arge effect sz e 2[H]=0.191) /
indicates statistically significant differences between two or more gro Infinite. ——7

Concave models  S-Shaped

RQ1 Findings

Based on 792 fitted SRGMs, considering the R? metric LL, YR, WE, HD, DU are the best models. GO, GOS, MO,
YE show the highest variance than other models. GOS is in general the worse model in terms of R2.

I

«  Our proposal is to use the Actor Models.The actor model isa mathematlcal model of concurrent
computation with roots dating back to 1973. It was introduced by Hewitt et al. in 1973

* The system using an actor model consists of location-transparent actors, seen in the model as
the universal primitives of concurrent computations. Each actor receives input and responds by

- sending a finite number of messages to the other actors
- creating a finite number of child actors

Managing System based on te <Akka rameworko,

- modifying its internal state

proot-of-concptsforthe

ris MUNT B50T

s o

[5ing chos ananee oy ey

Supervisor N (o ) (Cocue )
A .
’ \
/ \ 2. Apply
ur\alp;ﬂ:i"ed\y I’ " custom Managed System <microservices>
| strategy
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